384 Commits
v1.0 ... v1.1.0

Author SHA1 Message Date
Matt Pharr
b22943b4a4 Update release notes and doxygen for 1.1.0 release 2011-12-05 14:44:53 -08:00
Matt Pharr
13df5f1cb9 Performance results page 2011-12-05 14:24:42 -08:00
Matt Pharr
f19c2aba40 Windows build fixes for examples, update options task granularity 2011-12-05 14:23:50 -08:00
Matt Pharr
ffc1d97df7 Fix aobench_instrumented build on Windows 2011-12-05 13:33:29 -08:00
Matt Pharr
9dd498718b Updated options pricing example to have a tasking-based path as well. 2011-12-05 13:24:34 -08:00
Matt Pharr
6181ce59ae FunctionCallExpr bug: launch count wasn't being type checked, optimized.
This manifested itself by a call to an overloaded function in a launch count 
expression that wasn't being resolved.
2011-12-05 13:23:20 -08:00
Matt Pharr
48a6c2a35b Fix test for 16-wide case 2011-12-05 11:45:06 -08:00
Matt Pharr
0388f46a3b Remove test that was failing (now recorded as issue #130). 2011-12-05 09:39:50 -08:00
Matt Pharr
e3cae098fe Update test 2011-12-05 09:27:53 -08:00
Matt Pharr
455d963962 Don't ignore return value from getcwd() 2011-12-05 09:26:33 -08:00
Matt Pharr
d748c501c9 Fully automate building final HTML files from docs 2011-12-05 09:08:51 -08:00
Matt Pharr
5b8596102a Add entry about using valgrind with ispc to FAQ 2011-12-05 05:57:18 -08:00
Matt Pharr
dc525f281d Fix bug where declarations of arrays of func. ptrs would be lost.
Issue #126.
2011-12-05 05:35:47 -08:00
Matt Pharr
f95504fb5e Symbol table now properly handles scopes for function declarations.
Previously, they all went into one big pile that was never cleaned up;
this was the wrong thing to do in a world where one might have a 
function declaration inside another functions, say.
2011-12-04 17:37:13 -08:00
Matt Pharr
32904dfa11 Fix uninitialized memory error introduced in d65c02f3 2011-12-04 16:39:56 -08:00
Matt Pharr
186d0223d2 Fix AoS/SoA stdlib functions to match documentation
(i.e. actually remove the old offset parameter stuff now that
we can actually pass pointers.)
2011-12-03 22:44:16 -08:00
Matt Pharr
3efbfc30b7 Issue an error if a varying lvalue is passed to a reference function parameter.
(Previously, we crashed.)
2011-12-03 15:35:50 -08:00
Matt Pharr
0fd7811344 Small documentation edits and updates. 2011-12-03 15:35:50 -08:00
Matt Pharr
d492ba08e6 Fix bugs that broke typedefs in function definitions.
Issue #118.
2011-12-03 15:35:44 -08:00
Matt Pharr
a1c0b4f95a Allow 'continue' statements in 'foreach' loops. 2011-12-03 09:31:02 -08:00
Matt Pharr
c3b55de1ad Fix volume rendering example for command-line args change 2011-12-03 09:30:10 -08:00
Matt Pharr
e07ef6d46a 1.1 Users guide final (for now) 2011-12-02 17:04:39 -08:00
Matt Pharr
3e4d69cbd3 Checkpoint work on specifying execution model 2011-12-02 16:01:05 -08:00
Matt Pharr
511a3ab15a Checkpoint documentation work 2011-12-01 17:00:41 -08:00
Matt Pharr
24ef9dac8f Use foreach in the deferred shading example 2011-12-01 17:00:30 -08:00
Matt Pharr
3bb6bff15d Add tests of things the docs claim will cause an error to be issued 2011-12-01 17:00:13 -08:00
Matt Pharr
1390aed99c Make 32-bit addressing the default.
Also renamed the command-line flag to --addressing={32,64}.
2011-12-01 13:38:40 -08:00
Matt Pharr
82aa6efd12 Checkpoint user's guide edits 2011-12-01 13:38:17 -08:00
Matt Pharr
f90aa172a6 Documentation work; first pass perf guide complete 2011-12-01 09:42:56 -08:00
Matt Pharr
a2f118a14e FAQ and perf guide updates 2011-11-30 19:38:37 -08:00
Matt Pharr
c5aecd51e9 Fix indentation in usage message. 2011-11-30 17:11:12 -08:00
Matt Pharr
4d6bcdf41c Documentation refactoring, initial pass at FAQ 2011-11-30 17:11:03 -08:00
Matt Pharr
8bc7367109 Add foreach and foreach_tiled looping constructs
These make it easier to iterate over arbitrary amounts of data
elements; specifically, they automatically handle the "ragged
extra bits" that come up when the number of elements to be
processed isn't evenly divided by programCount.

TODO: documentation
2011-11-30 13:17:31 -08:00
Matt Pharr
b48775a549 Handle global arrays better in varying pointer analysis.
Specifically, indexing into global arrays sometimes comes in as a big 
llvm::ConstantVector, so we need to handle traversing those as well when
we do the corresponding checks in GatherScatterFlattenOpt so that we
still detect cases where we can convert them into the base pointer +
offsets form that's used in later analysis.
2011-11-30 12:29:49 -08:00
Matt Pharr
d4d6bc5d7f Fix crasher from malformed program 2011-11-30 10:32:08 -08:00
Matt Pharr
7a2561c429 Add count_{leading,trailing}_zeros() functions to stdlib.
(Documentation is still yet to be written.)
2011-11-30 10:12:16 -08:00
Matt Pharr
1703f2717c Add some new tests
One tricky pointer one currently hits an assertion (fix forthcoming).
2011-11-30 09:43:25 -08:00
Matt Pharr
92c46a2fc7 Add ISPC_{MAJOR,MINOR}_VERSION macros
(Currently set to 1.1)
2011-11-30 08:32:17 -08:00
Matt Pharr
c995902796 Add --werror flag to treat warnings as errors.
The specific need for it was so that tests in tests_errors
can test to see if a desired diagnostic warning is issued
(like ptrcast-lose-info does.)
2011-11-30 05:51:53 -08:00
Matt Pharr
6b9b7437ed Parse and then mostly ignore "signed" qualifier.
Just issue errors if both "signed" and "unsigned" are specified,
or if "signed" is applied to a non-int type.
2011-11-29 21:41:04 -08:00
Matt Pharr
a3641d7691 Convert arrays to pointers in expressions like (a+5)
This was one instance of the C-style array/pointer duality that
was missed the first time around.
2011-11-29 17:41:00 -08:00
Matt Pharr
e780662a3f Issue error if unsupported version of LLVM is used. 2011-11-29 17:25:35 -08:00
Matt Pharr
d65c02f323 Allow '0' to convert to a NULL pointer value. 2011-11-29 17:22:22 -08:00
Matt Pharr
11547cb950 stdlib updates to take advantage of pointers
The packed_{load,store}_active now functions take a pointer to a
location at which to start loading/storing, rather than an array
base and a uniform index.

Variants of the prefetch functions that take varying pointers 
are now available.

There are now variants of the various atomic functions that take
varying pointers (issue #112).
2011-11-29 15:41:38 -08:00
Matt Pharr
bbb32c0c5d Fix a bug where uniform/varying pointers aren't mangled differently 2011-11-29 15:41:01 -08:00
Matt Pharr
b1ae307163 Fix bug in FunctionEmitContext::SyncInst()
The launch group handle is now reset to NULL after sync is called;
this ensures that if tasks are launched in the same function after
a sync, that the ISPCAlloc() call for the next launch will be
passed a NULL handle (as it should be).
2011-11-29 13:26:48 -08:00
Matt Pharr
e52104ff55 Pointer fixes/improvements.
Allow <, <=, >, >= comparisons of pointers
Allow explicit type-casting of pointers to and from integers
Fix bug in handling expressions of the form "int + ptr" ("ptr + int"
  was fine).
Fix a bug in TypeCastExpr where varying -> uniform typecasts
  would be allowed (leading to a crash later)
2011-11-29 13:22:36 -08:00
Matt Pharr
4ca90272ba Fixes to build with LLVM 3.1 top of tree 2011-11-28 20:25:33 -08:00
Matt Pharr
2a6e3e5fea Fix bug in ptr+offset decomposition in GatherScatterFlattenOpt
Given IR that encoded computation like "vec(4) + ptr2int(some pointer)",
we'd report that "int2ptr(4)" was the base pointer and the ptr2int 
value was the offset.  This in turn could lead to incorrect code
from LLVM, since we'd end up with GEP instructions where the first
operand was int2ptr(4) and the offset was the original pointer value.
This in turn was sometimes leading to incorrect code and thence a 
failure on the tests/gs-double-improve-multidim.ispc test since LLVM's
memory read/write analysis assumes that nothing after the first operand
of a GEP is actually a pointer.
2011-11-28 15:00:41 -08:00
Matt Pharr
867efc2bce Multiple small fixes for better C conformance.
Allow atomic types to be initialized with single-element expression lists:
  int x = { 5 };
Issue an error if a storage class is provided with a function parameter.
Issue an error if two members of a struct have the same name.
Issue an error on trying to assign to a struct with a const member, even if
  the struct itself isn't const.
Issue an error if a function is redefined.
Issue an error if a function overload is declared that differs only in return
  type from a previously-declared function.
Issue an error if "inline" or "task" qualifiers are used outside of function
  declarations.
Allow trailing ',' at the end of enumerator lists.
Multiple tests for all of the above.
2011-11-27 13:09:59 -08:00
Matt Pharr
975db80ef6 Add support for pointers to the language.
Pointers can be either uniform or varying, and behave correspondingly.
e.g.: "uniform float * varying" is a varying pointer to uniform float
data in memory, and "float * uniform" is a uniform pointer to varying
data in memory.  Like other types, pointers are varying by default.

Pointer-based expressions, & and *, sizeof, ->, pointer arithmetic,
and the array/pointer duality all bahave as in C.  Array arguments
to functions are converted to pointers, also like C.

There is a built-in NULL for a null pointer value; conversion from
compile-time constant 0 values to NULL still needs to be implemented.

Other changes:
- Syntax for references has been updated to be C++ style; a useful
  warning is now issued if the "reference" keyword is used.
- It is now illegal to pass a varying lvalue as a reference parameter
  to a function; references are essentially uniform pointers.
  This case had previously been handled via special case call by value
  return code.  That path has been removed, now that varying pointers
  are available to handle this use case (and much more).
- Some stdlib routines have been updated to take pointers as
  arguments where appropriate (e.g. prefetch and the atomics).
  A number of others still need attention.
- All of the examples have been updated
- Many new tests

TODO: documentation
2011-11-27 13:09:59 -08:00
Matt Pharr
15a7d353ab Fix bug where freed std::string memory would sometimes still be accessed. 2011-11-24 20:46:09 -08:00
Matt Pharr
5828f7da07 Fix bugs in ArrayType::GetString() and GetCDeclaration() 2011-11-22 15:34:03 -08:00
Matt Pharr
d3e6879223 Improve error checking for unsized arrays.
Added support for resolving dimensions of multi-dimensional unsized arrays
from their initializer exprerssions (previously, only the first dimension
would be resolved.)

Added checks to make sure that no unsized array dimensions remain after
doing this (except for the first dimensision of array parameters to
functions.)
2011-11-21 10:41:23 -08:00
Matt Pharr
068ea3e4c4 Better SourcePos reporting for gathers/scatters 2011-11-21 10:26:53 -08:00
Matt Pharr
f5a21d96a1 Fix malformed program crasher 2011-11-21 10:26:53 -08:00
Matt Pharr
7290f7b16b Generalize/improve parsing of pointer declarations.
Substantial improvements and generalizations to the parsing and
declaration handling code to properly parse declarations involving
pointers.  (No change to user-visible functionality, but this
lays groundwork for supporting a more general pointer model.)
2011-11-14 08:45:55 -08:00
Matt Pharr
79684a0bed Add support for running tests that are expected to fail
Also add should-fail tests that exercise const and decl
initializers
2011-11-14 08:45:41 -08:00
Matt Pharr
6c8a064a5a Remove debugging dump() call 2011-11-07 14:57:28 -08:00
Matt Pharr
e5327a0f5a Update debug prints 2011-11-07 06:27:45 -08:00
Matt Pharr
f8eb100c60 Use llvm TargetData to find object sizes, offsets.
Previously, to compute the size of objects and the offsets of struct
elements within structs, we were using the trick of using getelementpointer 
with a NULL base pointer and then casting the result to an int32/64.
However, since we actually know the target we're compiling for at
compile time, we can use corresponding methods from TargetData to
get these values directly.

This mostly cleans up code, but may make some of the gather/scatter
lowering to loads/stores optimizations work better in the presence
of structures.
2011-11-06 19:31:19 -08:00
Matt Pharr
7a1ce558e9 Small code refactoring. 2011-11-06 16:47:45 -08:00
Matt Pharr
cabe358c0a Workaround change to linker behavior in LLVM 3.1
Now, the Linker::LinkModules() call doesn't link in any functions
marked as 'internal', which is problematic, since we'd like to have
just about all of the builtins marked as internal so that they are
eliminated after they've been inlined when they are in fact used.

This change removes all of the internal qualifiers in the builtins
and adds a lSetInternalFunctions() routine to builtins.cpp that
sets this property on the functions that need it after they've
been linked in by LinkModules().
2011-11-05 16:57:26 -07:00
Matt Pharr
b0d476fcdc Stop zero-initializing memory used to store return values.
This seems to have a noticable (small) performance benefit on a
few of the example workloads.
2011-11-05 09:49:44 -07:00
Matt Pharr
51ccfffbd0 Fix crash due to trying to type convert ExprLists in DeclStmt.
(Regression from function pointer changes.)
2011-11-05 09:35:43 -07:00
Matt Pharr
5fc8df3e55 Fix build with LLVM ToT 2011-11-04 07:06:15 -07:00
Matt Pharr
ba9bb3338f Add tests for function pointers. 2011-11-03 16:14:15 -07:00
Matt Pharr
afcd42028f Add support for function pointers.
Both uniform and varying function pointers are supported; when a function
is called through a varying function pointer, each unique function pointer
value across the running program instances is called once for the set of
active program instances that want to call it.
2011-11-03 16:14:14 -07:00
Matt Pharr
f1d8ff96ce Remove (unused) IfStmt::doAnyCheck. 2011-11-03 16:14:14 -07:00
Matt Pharr
d528533fba Add FunctionEmitContext::SmearScalar() method (and use it). 2011-11-03 16:14:14 -07:00
Matt Pharr
7d6f89c8d2 Improvements to source file position tracking.
Be better about tracking the full extent of expressions in the parser;
this leads to more intelligible error messages when we indicate where
exactly the error happened.
2011-11-03 16:14:14 -07:00
Matt Pharr
43a2d510bf Incorporate per-lane offsets for varying data in the front-end.
Previously, it was only in the GatherScatterFlattenOpt optimization pass that
we added the per-lane offsets when we were indexing into varying data.
(Specifically, the case of float foo[]; int index; foo[index], where foo
is an array of varying elements rather than uniform elements.)  Now, this
is done in the front-end as we're first emitting code.

In addition to the basic ugliness of doing this in an optimization pass, 
it was also error-prone to do it there, since we no longer have access
to all of the type information that's around in the front-end.

No functionality or performance change.
2011-11-03 13:15:07 -07:00
Matt Pharr
6084d6aeaf Added disable-handle-pseudo-memory-ops option. 2011-10-31 08:29:13 -07:00
Matt Pharr
d224252b5d Fix bug where multiplying varying array offset by zero would cause crash in optimization passes. 2011-10-31 08:28:51 -07:00
Matt Pharr
e009c0a61d Be able to determine if two types can be converted without requiring an Expr *.
The Expr::TypeConv() method has been replaced with both a
CanConvertTypes() routine that indicates whether one type
can be converted to another and a TypeConvertExpr()
routine that provides the same functionality as
Expr::TypeConv() used to.
2011-10-30 14:12:12 -07:00
Matt Pharr
d5a8538192 Move logic for resolving function call overloads.
This code previously lived in FunctionCallExpr but is now part
of FunctionSymbolExpr.  This change doesn't change any current
functionality, but lays groundwork for function pointers in
the language, where we'll want to do function call overload
resolution at other times besides when a function call is
actually being made.
2011-10-30 14:00:11 -07:00
Matt Pharr
cc298cd5fe Remove out-of-date comments about AVX being untested 2011-10-28 11:10:33 -07:00
Matt Pharr
8b719e4c4e Fix warnings reported by doxygen 2011-10-20 11:49:54 -07:00
Matt Pharr
a7dff17b35 Release notes and doxygen bump for v1.0.12 2011-10-20 11:45:58 -07:00
Matt Pharr
074cbc2716 Fix #ifdefs to catch LLVM 3.1svn now as well 2011-10-19 14:01:19 -07:00
Matt Pharr
114cb5b5c7 Add documentation about efficient reductions. Issue #110 2011-10-18 18:04:46 -07:00
Matt Pharr
f45ab0744e Significantly reduce the tendrils of DeclSpecs/Declarator/Declaration code
The stuff in decl.h/decl.cpp is messy, largely due to its close mapping
to C-style variable declarations.  This checkin has updated code throughout
all of the declaration statement, variable, and function code that operates
on symbols and types directly.  Thus, Decl* related stuff is now localized
to decl.h/decl.cpp and the parser.

Issue #13.
2011-10-18 15:37:29 -07:00
Matt Pharr
9b8ea3d500 Fix parser/lexer to more carefully check the "C" part of 'extern "C"' declarations. 2011-10-18 16:44:14 -04:00
Matt Pharr
290032f4f5 Be more careful about using the right mask when emitting gathers.
Specifically, we had been using the full mask for all gathers, rather than
using the internal mask when we were loading from locally-declared arrays.
Thus, given code like:

  uniform float x[programCount] = { .. . };
  float xx = x[programIndex];

Previously we weren't generating a plain vector load to initialize xx, when
this code was in a function where it wasn't known that the mask was all on,
even though it should have.  Now it does.
2011-10-17 20:25:52 -04:00
Matt Pharr
19087e4761 When casting pointers to ints, choose int32/64 based on target pointer size.
Issue #97.
2011-10-17 06:57:04 -04:00
Matt Pharr
70047fbf5f Disable warnings about type conversions that may lose precision.
It's not clear that these are actually all that helpful.
This also works around issue #89, wherein code like "int8 = 0" would
  give a warning about conversion from int32 to int8.
2011-10-17 06:36:42 -04:00
Matt Pharr
39ed7e14b2 Various improvements to function overload resolution.
Generalize the overload resolution code to be based on estimating a
  cost for various overload options and picking the one with the
  minimal cost.
Add a step that considers type conversions that are guaranteed to
  not lose information in function overload resolution.
Print better diagnostics when we can't find an unambiguous match.
2011-10-16 20:46:56 -04:00
Matt Pharr
209d093720 Update calls to setup clang::DiagnosticsEngine properly before running preprocessor.
This fixes (again) crashes when printing diagnostics when there are errors in 
preprocessor directives in the program we're compiling.
2011-10-16 07:59:55 -04:00
Matt Pharr
fc2954419d Update cost model to include "if" overhead in "if" statement calculation. 2011-10-15 13:52:08 -07:00
Matt Pharr
422b8268a9 Add assert() statement support. Issue #106. 2011-10-15 13:50:05 -07:00
Matt Pharr
1ab05c0351 Set a preprocessor #define based on the target ISA.
For example, ISPC_TARGET_SSE4 is #defined for the sse4 targets, etc.
2011-10-15 12:00:42 -07:00
Matt Pharr
c21e704a5c Fix LLVM 2.9 build. Issue #114 2011-10-15 06:48:20 -07:00
Matt Pharr
9f2aa8d92a Handle ConstantExpressions when computing address+offset vectors for scatter/gather.
In particular, this fixes issue #81, where a global variable access was leading to
ConstantExpressions showing up in this code, which it wasn't previously expecting.
2011-10-14 11:20:08 -07:00
Matt Pharr
2460fa5c83 Improve gather/scatter optimization passes to handle loops better.
Specifically, now we can work through phi nodes in the IR to detect cases
where an index value is actually the same across lanes or is linear across
the lanes.  For example, this is a loop that used to require gathers but
is now turned into vector loads:

    for (int i = programIndex; i < 16; i += programCount)
        sum += a[i];

Fixes issue #107.
2011-10-13 17:01:25 -07:00
Matt Pharr
dce25249ce Use the "avoid masked assignments when possible" tricks for pre/post decrement exprs.
Also, call out to the subroutine that handles this logic for dealing with call-by-value-return
stuff in function calls.
2011-10-13 16:46:30 -07:00
Matt Pharr
61adc74072 Add missing builtins-sse4-common.ll file 2011-10-11 19:40:37 -07:00
Matt Pharr
88e317f1a9 These tests now pass with LLVM ToT 2011-10-11 16:17:50 -07:00
Matt Pharr
49454bc207 Fix silly bug in 16-wide AOS-SOA 3-vector routine 2011-10-11 16:16:56 -07:00
Matt Pharr
286c23426e Add "double-wide" sse2-x2 target.
i.e. run 8 program instances together, along the lines of the double-pumped
sse4-x2 target.
2011-10-11 15:17:31 -07:00
Matt Pharr
1198520029 Improve gather->vector load optimization to detect <linear sequence>-<uniform> case.
Previously, we didn't handle subtraction ops when deciphering offsets in order to
try to change gathers t evictor loads.
2011-10-11 13:24:40 -07:00
Matt Pharr
06d70376ea Fix to build with LLVM TOT after LLVM API change 2011-10-11 09:26:45 -07:00
Matt Pharr
7cd7ca82d6 Fix some crashes from malformed programs 2011-10-11 08:28:50 -07:00
Matt Pharr
ecda4561bd Move some tests that now pass with LLVM 3.0 from failing_tests to tests/ 2011-10-10 11:51:47 -07:00
Matt Pharr
a89e26d725 Improvements to mask management code; removes a number of unnecessary blends.
We now maintain a the distinction between the value of the mask passed into a
function and the "internal" mask within the function that only accounts for
varying control flow within the function.

The full mask (the AND of the function mask and the internal mask) must be used
for assignments to static and global variables, and reference function parameters.
Further, it is the appropriate mask to use for making decisions about varying
control flow.  However, we can use the internal mask for assignments to variables
declared in the current function (including the return value and non-reference
parameters to the function).  Doing so allows us to catch a few more cases where
the internal mask is all on, even if the mask coming into the function wasn't all
on, and thence use moves rather than blends for those assignments.  (Which in
turn can allow additional optimizations to happen.)

Fixes issue #23.
2011-10-10 11:47:19 -07:00
Matt Pharr
3cb0115dce Add routines to standard library to do efficient AOS/SOA conversions.
Currently, we just support 3 and 4-wide variants (i.e. xyzxyz.. and xyzwxyzw..),
for int32 and float types.
2011-10-10 10:56:06 -07:00
Matt Pharr
f5391747b9 Remove suggestions from parser that we support "char" 2011-10-10 10:54:06 -07:00
Matt Pharr
b8768ffdfa Merge branch 'master' of github.com:ispc/ispc 2011-10-07 20:39:44 -07:00
Matt Pharr
6009608bc6 Mark inlined functions as having static linkage 2011-10-07 16:06:14 -07:00
Matt Pharr
ce7355f9ed Windows: fix examples build to look for ispc.exe in ../.. as well 2011-10-09 07:40:18 -07:00
Matt Pharr
6b4459d402 Windows: fix some compiler warnings during build 2011-10-09 07:40:17 -07:00
Matt Pharr
790dba2558 Doxygen bump and release notes for v1.0.11 2011-10-07 09:57:55 -07:00
Matt Pharr
4a2cbf2c4e Fix regression from AST checkin that caused perf. warnings to be issued for stdlib code. 2011-10-07 09:20:48 -07:00
Matt Pharr
53dd65fa2e Add ispc_test to buildall.bat script 2011-10-08 17:17:05 -07:00
Matt Pharr
f5afa52fd9 Add missing header 2011-10-06 17:10:30 -07:00
Matt Pharr
f9c67ff806 Explicit representation of ASTs for all the functions in a compile unit.
Added AST and Function classes.
Now, we parse the whole file and build up the AST for all of the
  functions in the Module before we emit IR for the functions (vs. before,
  when we generated IR along the way as we parsed the source file.)
2011-10-06 15:35:27 -07:00
Matt Pharr
ec5e627e56 Mark internal stdlib functions as "internal" linkage, not "private".
This fixes print() statements on OSX.
(http://llvm.org/bugs/show_bug.cgi?id=11080)
2011-10-06 13:32:20 -07:00
Matt Pharr
ff2a43ac19 Run the CFG simplification pass even when optimization is disabled.
This fixes an issue with undefined SVML symbols with code that called
transcendental functions in the stdandard library, even when the SVML
math library hadn't been selected.
2011-10-06 09:20:50 -07:00
Matt Pharr
9feea32471 Fix errors in documentation for some of the reduce_* stdlib functions 2011-10-06 07:52:10 -07:00
Matt Pharr
bedaec2295 Update examples for multi-target compilation.
Makefile and vcxproj file updates.
Also modified vcxproj files so that the various files ispc generates go into $(TargetDir),
  not the current directory.
Modified the ray tracer example to not have uniform short-vector types in its app-visible
  datatypes (these are laid out differently on SSE vs AVX); there was an existing lurking
  bug in the way this was done before.
2011-10-04 16:01:56 -07:00
Matt Pharr
a68d137df6 Documentation update for multi-target compilation. 2011-10-04 16:01:56 -07:00
Matt Pharr
59caa3d4e1 Various small Windows fixes.
Also fixed some tabs/spaces and compiler warning issues.
2011-10-04 16:01:56 -07:00
Matt Pharr
06975bc7ab Add support for compiling to multiple targets.
If a flag along the lines of "--target=sse4,avx-x2" is provided on the command-line,
then the program will be compiled for each of the given targets, with a separate
output file generated for each one.  Further, an output file with dispatch functions
that check the current system's CPU and then chooses the best available variant
is also created.

Issue #11.
2011-10-04 16:01:55 -07:00
Matt Pharr
880cbb18cc Remove checks to see if system's processor matches the target the code was compiled for.
(Preparation for multi-target output.)
2011-10-04 16:01:55 -07:00
Matt Pharr
686d9975b6 Add Symbol::exportedFunction member to hold llvm::Function * for app-callable version of function. 2011-10-04 15:56:54 -07:00
Matt Pharr
9b7f55a28e Add buildall.bat script for Windows. Also various example build fixes for Windows 2011-10-04 11:42:04 -07:00
Matt Pharr
e4d224a0f1 Use __cilk to detect Cilk support 2011-10-04 11:16:42 -07:00
Matt Pharr
0933a77c1b Improve task decomposition in ray tracing example.
Specifically, launch all of the tasks in one statement, rather than
still looping over spans in y and launching a collection of tasks
across x for each span.  This seems to give a few percent better
performance.
2011-10-04 09:33:59 -07:00
Matt Pharr
5f78edf07a Fix bug with screen decomposition in volume rendering example 2011-10-04 09:30:02 -07:00
Matt Pharr
a6fc657b40 Remove 'externGlobals' member from Module; instead find them when needed via new SymbolTable::GetMatchingVariables method. 2011-10-04 06:36:31 -07:00
Matt Pharr
fa5050d5c7 Error reporting improvements.
Don't print more than 3 lines of source file context with errors.
  (Any more than that is almost certainly not the Right Thing to do.)
Make some parsing error messages more clear.
2011-10-03 21:09:04 -07:00
Matt Pharr
d5a48d9a1e Fix incorrect LLVM_3_0svn #ifdefs 2011-10-03 08:29:19 -07:00
Matt Pharr
2df9da2524 Be careful to not inadvertently match NULL functions in optimization passes. 2011-10-01 08:34:11 -07:00
Matt Pharr
0b02f94988 Task system performance tweaks.
Switch back to GCD on OSX.
Increase TaskInfo allocation count.
This fixes the regression with deferred on AVX (from 17x to 25x
  again with 4 cores.)
2011-10-01 08:04:09 -07:00
Matt Pharr
65c50b60fc Cleanups to deferred shading workload 2011-09-30 20:35:42 -07:00
Matt Pharr
9de34eb22c Release notes and doxygen bump for v1.0.10 2011-09-30 19:42:14 -07:00
Matt Pharr
f8f25a11b6 Added deferred shading workload 2011-09-30 19:42:14 -07:00
Matt Pharr
cb7976bbf6 Added updated task launch implementation that now tracks task groups.
Within each function that launches tasks, we now can easily track which
tasks that function launched, so that the sync at the end of the function
can just sync on the tasks launched by that function (not all tasks
launched by all functions.)

Implementing this led to a rework of the task system API that ispc generates
code to call; the example task systems in examples/tasksys.cpp have been
updated to conform to this API.  (The updated API is also documented in
the ispc user's guide.)

As part of this, "launch[n]" syntax was added to launch a number of tasks
in a single launch statement, rather than requiring a loop over 'n' to
launch n tasks.

This commit thus fixes issue #84 (enhancement to launch multiple tasks from
a single launch statement) as well as issue #105 (recursive task launches
were broken).
2011-09-30 11:20:53 -07:00
Matt Pharr
5ee4d7fce8 Add comment 2011-09-30 11:11:52 -07:00
Matt Pharr
8f3e46f67e Use InterlockedExchangeAdd on Windows 2011-09-29 16:19:59 -07:00
Matt Pharr
9ed07ff2b5 Fix __num_cores() definition on Windows to not cause unresolved symbols 2011-09-29 13:35:50 -07:00
Matt Pharr
32a0a30cf5 Only allow exact matches for function overload resolution for builtins.
The intent is that the code in stdlib.ispc that is calling out to the built-ins
  should match argument types exactly (using explicit casts as needed), just
  for maximal clarity/safety.
2011-09-28 17:20:31 -07:00
Matt Pharr
6d39d5fc3e Small cleanups.
Add __num_cores() to the list of symbols to remove from the module at the end.
Fix declarations of mask type for 64-bit atomics to silence warnings.
2011-09-28 16:26:35 -07:00
Matt Pharr
c999c8a237 Add num_cores() stdlib routine. Issue #102. 2011-09-28 16:16:58 -07:00
Matt Pharr
aad269fdf4 Added support for 'uniform' global atomics.
Issue #93.
2011-09-28 16:06:07 -07:00
Matt Pharr
d45c536c47 Fix Windows debug build of simple example 2011-09-28 14:11:32 -07:00
Matt Pharr
f1b8e5b1bf Release notes and doxygen bump for 1.0.9 release 2011-09-26 16:21:32 -07:00
Matt Pharr
e7a70b05af Fix statically-linked tests on Linux 2011-09-26 16:11:45 -07:00
Matt Pharr
cf73286938 More small Windows build fixes. Also switch to LLVM 3.0 libs 2011-09-26 16:07:23 -07:00
Matt Pharr
e6f80c0adc Remove stale include of MCJIT.h 2011-09-26 16:04:52 -07:00
Matt Pharr
5e31d7b6d0 Windows build: use LLVM_INSTALL_DIR to find clang.exe 2011-09-26 16:04:50 -07:00
Matt Pharr
649f2ad7b7 Update parser to make 'sync' a statement, not an expr. 2011-09-23 20:33:24 -07:00
Matt Pharr
fade1cdf1d Pretty much all conversions to varying double are slow, so don't bother warning about them. 2011-09-23 16:03:35 -07:00
Matt Pharr
d261105a86 Error/warning reporting improvements.
- Don't suggest matches when given an empty string or a single, non-alpha
  character.
- Also fixed the parser to be a bit less confusing when it encounters an
  unexpected EOF.
2011-09-23 15:51:23 -07:00
Matt Pharr
b3d3e8987b Provide a properly initialized TextDiagnosticPrinter to clang's preprocessor.
Fixes issue #100 (crash when the preprocessor was trying to emit a diagnostic
about a mismatched #if/#endif).
2011-09-23 15:50:18 -07:00
Matt Pharr
4e91f3777a Fix BinaryExpr to handle reference-typed operands.
Fixes issue #101.
2011-09-23 15:19:14 -07:00
Matt Pharr
5584240c7f Fix crash with function declarations with unnamed parameters.
Fixes issue #103.
Previously, we were inadvertently grabbing the function's return type
  for the parameter, rather than the actual parameter type.
2011-09-23 15:05:59 -07:00
Matt Pharr
7126a39092 Disable PIC on Windows 2011-09-19 15:32:43 -07:00
Matt Pharr
8ad28a3f6f update doxygen, release notes for 1.0.8 release 2011-09-19 15:22:25 -07:00
Matt Pharr
9921b8e530 Predicated 'if' statement performance improvements.
Go back to running both sides of 'if' statements with masking and without
branching if we can determine that the code is relatively simple (as per
the simple cost model), and is safe to run even if the mask is 'all off'.
This gives a bit of a performance improvement for some of the examples
(most notably, the ray tracer), and is the code that one wants generated
in this case anyhow.
2011-09-19 09:54:09 -07:00
Matt Pharr
9052d4b10b Linux build fixes 2011-09-17 13:42:46 -07:00
Matt Pharr
2405dae8e6 Use malloc() to get space for task arguments when compiling to AVX.
This is to work around the LLVM bug/limitation discused in LLVM bug
10841 (http://llvm.org/bugs/show_bug.cgi?id=10841).
2011-09-17 13:38:51 -07:00
Matt Pharr
3607f3e045 Remove support for building with LLVM 2.8. Fixes issue #66.
Both 2.9 and top-of-tree generate substantially better code than
LLVM 2.8 did, so it's not worth fixing the 2.8 build.
2011-09-17 13:18:59 -07:00
Matt Pharr
de84acfa5d On OSX with LLVM 2.9, always generate position-independent code.
Fixes Issue #99.
2011-09-17 13:03:51 -07:00
Matt Pharr
a501ab1aa6 Fix parenthesization bugs in cost estimates.
Also added the debugging print that helped find these issues.
Revert inlining some functions in examples
2011-09-16 19:07:07 -07:00
Matt Pharr
cdc850f98c Inline some functions in examples 2011-09-16 17:02:21 -07:00
Matt Pharr
ca87579f23 Add a very simple cost model to estimate runtime cost of running code.
This is currently only used to decide whether it's worth doing an
"are all lanes running" check at the start of functions--for small
functions, it's not worth the overhead.

The cost is estimated relatively early in compilation (e.g. before
we know if an array access is a scatter/gather or not, before
constant folding, etc.), so there are many known shortcomings.
2011-09-16 15:09:17 -07:00
Matt Pharr
38fc13d1ab Remove now unused function. 2011-09-16 14:21:13 -07:00
Matt Pharr
cf9d9f717e Logic simplification to 'mixed true/false' case for coherent ifs.
Use the approach from 173632f446 here as
well.
2011-09-16 14:10:55 -07:00
Matt Pharr
173632f446 Generate more efficient for regular varying 'if' statements.
For the case where we have a regular (i.e. non-'cif') 'if' statement,
the generated code just simply checks to see if any program instance
is running before running the corresponding statements.  This is a
lighter-weight check than IfStmt::emitMaskMixed() was performing.
2011-09-16 12:03:42 -07:00
Matt Pharr
1dedd88132 Improve implementaton of 'are both masks equal' check for AVX.
Previously, we did a vector equal compare and then a movmsk, the
result of which we checked to see if it was on for all lanes.
Because masks are vectors of i32s, under AVX, the vector equal
compare required two 4-wide SSE compares and some shuffling.
Now, we do a movmsk of both masks first and then a scalar
equality comparison of those two values, which seems to generate
overall better code.
2011-09-15 06:25:02 -07:00
Matt Pharr
0848c2cc19 Actually make all 'if' statements check for 'all off' mask.
Contrary to claims in 0c2048385, that checkin didn't include the changes
to not run if/else blocks if none of the program instances wanted to be
running them.  This checkin fixes that and thus actually fixes issue #74.
2011-09-13 19:48:04 -07:00
Matt Pharr
e2a88d491f Mark the internal __fast_masked_vload function as static 2011-09-13 15:43:48 -07:00
Matt Pharr
30f9dcd4f5 Unroll loops by default, add --opt=disable-loop-unroll to disable.
Issue #78.
2011-09-13 15:37:18 -07:00
Matt Pharr
0c344b6755 Fix Linux build of mandelbrot_tasks example 2011-09-13 15:17:30 -07:00
Matt Pharr
6734021520 Issue warning when compile-time constant out-of-bounds array index is used.
Issue #98.
Also fixes two examples that had bugs of this type that this warning
  uncovered!
2011-09-13 14:42:20 -07:00
Matt Pharr
dd153d3c5c Handle more instruction types when flattening offset vectors.
Generalize the lScalarizeVector() utility routine (used in determining
when we can change gathers/scatters into vector loads/stores, respectively)
to handle vector shuffles and vector loads.  This fixes issue #79, which
provided a case where a gather was being performed even though a vector
load was possible.
2011-09-13 09:43:56 -07:00
Matt Pharr
9ca7541d52 Remove check for any program instances running before function calls.
Given the change in 0c20483853, this is no longer necessary, since
we know that one instance will always be running if we're executing a
given block of code.
2011-09-13 06:26:16 -07:00
Matt Pharr
0c20483853 Make all "if" statements "coherent" ifs. Workaround for issue #74.
Using blend to do masked stores is unsafe if all of the lanes are off:
it may read from or write to invalid memory.  For now, this workaround
transforms all 'if' statements into coherent 'if's, ensuring that an
instruction only runs if at least on program instance wants to be running
it.

One nice thing about this change is that a number of implementations of
various builtins can be simplified, since they no longer need to confirm
that at least one program instance is running.

It might be nice to re-enable regular if statements in a future checkin,
but we'd want to make sure they don't have any masked loads or blended
masked stores in their statement lists.  There isn't a performance
impact for any of the examples with this change, so it's unclear if
this is important.

Note that this only impacts 'if' statements with a varying condition.
2011-09-12 16:25:08 -07:00
Matt Pharr
9d4ff1bc06 Fix alignment in usage message 2011-09-12 15:06:41 -07:00
Matt Pharr
83f22f1939 Add experimental --fast-masked-vload flag for SSE. 2011-09-12 12:29:33 -07:00
Matt Pharr
6375ed9224 AVX: Fix bug with misdeclaration of blend intrinsic.
This was preventing the "convert an all-on blend to one of the
  operand values" optimization from kicking on in AVX.
2011-09-12 06:42:38 -07:00
Matt Pharr
cf23cf9ef4 Fix typo in user guide. Issue #96 2011-09-12 05:24:32 -07:00
Matt Pharr
1147b53dcd Add #define with target vector width in emitted headers 2011-09-09 09:33:56 -07:00
Matt Pharr
4cf831a651 When --fast-math is enabled, tell LLVM about it, too. 2011-09-09 09:32:59 -07:00
Matt Pharr
785d8a29d3 Run mem2reg pass even when doing -O0 compiles 2011-09-09 09:24:43 -07:00
Matt Pharr
46d2bad231 Fix malformed program crash 2011-09-09 09:24:43 -07:00
Matt Pharr
32da8e11b4 Fix crash with varying global vector types when emitting header file. 2011-09-09 09:16:59 -07:00
Matt Pharr
5dedb6f836 Add --scale command line argument to mandelbrot and rt examples.
This applies a floating-point scale factor to the image resolution;
it's useful for experiments with many-core systems where the 
base image resolution may not give enough work for good load-balancing
with tasks.
2011-09-07 20:07:51 -07:00
Matt Pharr
2ea6d249d5 Fix mapping to 8, 16 program instances in AO bench example.
With this, we now compute a correct image with AVX.
2011-09-07 11:34:24 -07:00
Matt Pharr
c86128e8ee AVX: go back to using blend (vs. masked store) when possible.
All of the masked store calls were inhibiting putting values into
registers, which in turn led to a lot of unnecessary stack traffic.
This approach seems to give better code in the end.
2011-09-07 11:26:49 -07:00
Matt Pharr
375f1cb8e8 Make octaves and octaves loop uniform in noise example 2011-09-07 10:34:23 -07:00
Matt Pharr
3ca7b6b078 Remove MCJIT stuff from ispc_test (fix Linux build) 2011-09-07 09:44:27 -07:00
Matt Pharr
effe901890 Add task-parallel version of aobench 2011-09-07 05:43:21 -07:00
Matt Pharr
4f451bd041 More AVX fixes
Fix RNG state initialization for 16-wide targets
Fix a number of bugs in reduce_add builtin implementations for AVX.
Fix some tests that had incorrect expected results for the 16-wide
  case.
2011-09-06 15:53:11 -07:00
Matt Pharr
c76ef7b174 Add command-line option to specify position-independent codegen 2011-09-06 11:12:43 -07:00
Matt Pharr
743d82e935 Various documentation updates. 2011-09-06 09:51:02 -07:00
Matt Pharr
18546e9c6d Add option to disable optimizations to test running script 2011-09-04 18:09:00 -07:00
Matt Pharr
f24ab16b91 Release notes, doxygen update for 1.0.7 release. 2011-09-03 07:33:39 -07:00
Matt Pharr
766b34683c Fix Windows build 2011-09-03 07:23:16 -07:00
Matt Pharr
b5bfa43e92 Fix error with float suffixes 2011-09-02 13:09:25 -07:00
Matt Pharr
99221f7d17 Fix a few places in examples where C reference implementaion had a double-precision
fp constant undesirably causing computation to be done in double precision.

Makes C scalar versions of the options pricing models, rt, and aobench 3-5% faster.
Makes scalar version of noise about 15% faster.
Others are unchanged.
2011-09-01 16:31:22 -07:00
Matt Pharr
eb7913f1dd AVX: fix alignment when changing masked load to regular load.
Also added some debugging/tracing stuff (commented out).
Commented out iffy assert that was hitting for avx stuff.
2011-09-01 15:45:49 -07:00
Matt Pharr
08cad7a665 AVX bugfixes 2011-09-01 14:23:10 -07:00
Matt Pharr
9cd92facbd Fix test: was incorrectly failing for 8-wide targets 2011-09-01 05:03:49 -07:00
Matt Pharr
85063f493c Revert attempt to be clever about which LLVM libraries to link in--just
link all of them.  (This was causing build problems for some folks.)
2011-09-01 05:02:44 -07:00
Matt Pharr
f65a20c700 AVX bugfix: when replacing 'all on' masked store with a store,
the rvalue is operand 2, not operand 1 (which is the mask!)
2011-08-31 18:06:29 -07:00
Matt Pharr
e144724979 Improve performance of global atomics, taking advantage of associativity.
For associative atomic ops (add, and, or, xor), we can take advantage of
their associativity to do just a single hardware atomic instruction, 
rather than one for each of the running program instances (as the previous
implementation did.)

The basic approach is to locally compute a reduction across the active
program instances with the given op and to then issue a single HW atomic
with that reduced value as the operand.  We then take the old value that
was stored in the location that is returned from the HW atomic op and
use that to compute the values to return to each of the program instances
(conceptually representing the cumulative effect of each of the preceding
program instances having performed their atomic operation.)

Issue #56.
2011-08-31 05:35:01 -07:00
Matt Pharr
96a297c747 Small improvements to help output 2011-08-30 14:48:22 -07:00
Matt Pharr
67e00b97c6 Fix incorrect assertions in ConstExpr constructors 2011-08-30 11:08:53 -07:00
Matt Pharr
a94cabc692 Modify stencil example to do separate runs with and without task parallelism. 2011-08-30 05:08:21 -07:00
Matt Pharr
ad9e66650d AVX bugfix with alignment for store instructions.
When replacing 'all on' masked store with regular store, set alignment 
to be the vector element alignment, not the alignment for a whole vector. 
(i.e. 4 or 8 byte alignment, not 32 or 64).
2011-08-29 16:58:48 -07:00
Matt Pharr
6de494cfdb Fix AVX bug introduced in 4ab982bc16 2011-08-29 16:50:59 -07:00
Matt Pharr
58e34ba4ae Add new test-driver script, run_tests.py.
Old run_tests.sh still lives (for now).
Changes include:
- Tests are run in parallel across all of the available CPU cores
- Option to create a statically-linked executable for each test
  (rather than using the LLVM JIT).  This is in particular useful
  for AVX, which doesn't have good JIT support yet.
- Static executables also makes it possible to test x86, not
  just x86-64, codegen.
- Fixed a number of tests in failing_tests, which were actually
  failing due to the fact that the expected function signature of
  tests had changed.
2011-08-29 14:15:09 -07:00
Matt Pharr
33feeffe5d Update timing header so it works with C code 2011-08-29 11:23:43 -07:00
Matt Pharr
d0db46aac5 Use logical shift right op for shifts of unsigned ints. Fixes issue #88. 2011-08-29 10:32:26 -07:00
Matt Pharr
da76396c75 Fix typo in SSE2 attributes string. 2011-08-27 08:59:25 -07:00
Matt Pharr
bbf3fb6307 Disable popcnt on SSE4 targets--should only enable if system CPU supports it 2011-08-27 04:09:55 -07:00
Matt Pharr
4ab982bc16 Various AVX fixes (found by inspection).
Emit calls to masked_store, not masked_store_blend, when handling
  masked stores emitted by the frontend.
Fix bug in binary8to16 macro in builtins.m4
Fix bug in 16-wide version of __reduce_add_float
Remove blend function implementations for masked_store_blend for
  AVX; just forward those on to the corresponding real masked store
  functions.
2011-08-26 12:58:02 -07:00
Matt Pharr
34301e09f5 Fix incorrect comment in builtins definitions files.
(And all of the places it was cut and pasted to. :-( ).
2011-08-26 10:44:46 -07:00
Matt Pharr
84e586e767 Commit correct atomics tests 2011-08-26 10:43:30 -07:00
Matt Pharr
72a2f5d2f4 Make SSE2 __popcnt_int64 return i64 to be consistent with other targets 2011-08-26 10:42:12 -07:00
Matt Pharr
606cbab0d4 Performance improvements for global min/max atomics. Issue #57.
Compute a "local" min/max across the active program instances and 
  then do a single atomic memory op.
Added a few tests to exercise global min/max atomics (which were
  previously untested!)
2011-08-26 10:35:24 -07:00
Matt Pharr
54ec56c81d Clean up and centralize LLVM target initialization 2011-08-26 10:15:33 -07:00
Matt Pharr
a322398c62 When emitting header files, put 'extern' declarations of globals used
in ispc code outside of the ispc namespace.  Fixes issue #64.
2011-08-26 10:03:06 -07:00
Matt Pharr
f22b3a25bd Update command-line processing and usage string now that we have a preprocessor on Windows.
We had been prohibiting Windows users from providing #definitions on the command
  line, which is the wrong thing to do ever since we switched to using the
  clang preprocessor.
2011-08-26 09:58:08 -07:00
Matt Pharr
b67498766e Big rewrite / improvement of target handling.
If no CPU is specified, use the host CPU type, not just a default of "nehalem".
Provide better features strings to the LLVM target machinery.
 -> Thus ensuring that LLVM doesn't generate SSE>2 instructions for the SSE2
    target (Fixes issue #82).
 -> Slight code improvements from using cmovs in generated code now
Use the llvm popcnt intrinsic for the SSE2 target now (it now generates code
  that doesn't call the popcnt instruction now that we properly tell LLVM
  which instructions are and aren't available for SSE2.)
2011-08-26 09:54:45 -07:00
Matt Pharr
c340ff3893 Fixes to build with LLVM ToT 2011-08-25 08:53:56 +01:00
Matt Pharr
b0f59777d4 Silly bug: don't pass NULL to the print() stmt when we want a llvm::Value * that has the value NULL.
(This was causing crashes with print() statements with no additional values to
  be printed.)
2011-08-25 07:48:13 +01:00
Matt Pharr
e14208f489 Update to call DIBuilder::finalize() with LLVM 3.0 2011-08-24 22:28:20 +01:00
Matt Pharr
7756265503 Add double-pumped AVX target (i.e., run 16-wide). Not yet tested. 2011-08-20 11:28:22 +01:00
Matt Pharr
f841b775c3 Small bugfixes in AVX builtins 2011-08-20 09:09:55 +01:00
Matt Pharr
8c921544a0 fix broken test 2011-08-18 20:40:50 +01:00
Matt Pharr
fe54f1ad8e Fixes to build with latest LLVM ToT 2011-08-18 08:34:49 +01:00
Matt Pharr
74c2c8ae07 Linux build fixes 2011-08-17 07:08:44 -07:00
Matt Pharr
87ec7aa10d release notes, housekeeping for 1.0.6 release 2011-08-17 14:55:21 +01:00
Matt Pharr
206c851146 Various improvements to example task systems in examples/.
- Only have a single copy of all of the tasks_*.cpp sample implementations,
  stored in examples/.
- Reduce dynamic storage allocation and locking in task launch code paths.
- Don't have a hard limit of the number of tasks that can be launched on
  Windows (fix issue #85).
2011-08-17 14:31:45 +01:00
Matt Pharr
60bdf1ef8a Modify rt example to also do a set of runs with tasks + SPMD together. 2011-08-17 13:14:32 +01:00
Matt Pharr
d7662b3eb9 Use reduce_equal() in volume rendering example to avoid some gathers.
Modified this example to use reduce_equal() to see if all of the program
instances want to load the 8 sample values around the same voxel.  When
this is the case, we can just do 8 scalar loads, rather than needing to
do a fully general gather.  Once this check fails, it isn't done again,
since it's not likely to start succeeding in the future.  This gives
a ~10% speedup with the low-res data set, and basically no performance
difference with the high-res one.  (It makes sense that the lower-resolution
the voxel sampling, the longer all of the rays will stay in the same set
of voxels.)
2011-08-17 12:37:07 +01:00
Matt Pharr
ecaa57c7c6 Add volume rendering example. (~2.3x speedup from SIMD vs serial code.) 2011-08-17 12:05:37 +01:00
Matt Pharr
fce183c244 Merge branch 'master' of github.com:ispc/ispc 2011-08-17 10:32:49 +01:00
Matt Pharr
7a92f8b3f9 Add MSVC build support for stencil example 2011-08-17 02:28:49 -07:00
Matt Pharr
96af08e789 Print notices about image files being written 2011-08-16 06:31:26 +01:00
Matt Pharr
cb29c10660 Fix tests on Windows: need arch=x86 since ispc_test.exe is a32-bit app 2011-08-15 08:25:08 -07:00
Matt Pharr
04c93043d6 Target handling fixes.
Set the Module's target appropriately when it's first created.
Compile separate 32 and 64 bit versions of the builtins-c bitcocde
  and load the appropriate one based on the target we're compiling
  for.
2011-08-15 16:03:50 +01:00
Matt Pharr
46037c7a11 Merge branch 'master' of github.com:ispc/ispc 2011-08-15 12:44:38 +01:00
Matt Pharr
c570108026 Fix linux build of stencil example 2011-08-15 04:44:17 -07:00
Matt Pharr
230a0fadea Attempt to generate debug info for task parameters. 2011-08-15 12:31:56 +01:00
Matt Pharr
87cf05e0d2 Improve performance of 64-bit reduce_equal implementations.
Just pulling out the elements and doing a set of scalar equality tests
is the best approach for those (nearly 2x better than the rotate and
vector equality check that we use for 32-bit stuff).
2011-08-14 07:39:05 +01:00
Matt Pharr
ff608eef71 Change reduce_equal to return false if no instances are executing 2011-08-14 07:11:45 +01:00
Matt Pharr
f868a63064 Add support for scan operations across program instances (add, and, or). 2011-08-13 20:11:41 +01:00
Matt Pharr
c74116aa24 Fix crasher with malformed program 2011-08-12 07:47:17 +01:00
Matt Pharr
8c534d4d74 Add reduce_equal() function to standard library. 2011-08-10 15:55:55 -07:00
Matt Pharr
d821a11c7c Fix min/max for integer types with AVX. 2011-08-04 06:24:20 -07:00
Matt Pharr
8a138eeb5a vim syntax highlighting for ispc from <andreas.wendleder@googlemail.com> 2011-08-04 05:49:28 -07:00
Matt Pharr
137ea7bde6 Rename semaphore filename to be more generic 2011-08-04 05:28:00 -07:00
Matt Pharr
e05b3981d9 Add stencil example 2011-08-03 13:49:02 -07:00
Matt Pharr
a5a133ccce Do more iterations of RNG test to let result converge to bounds. 2011-08-03 13:44:49 -07:00
Matt Pharr
0ac4f7b620 Add various prefetch functions to the standard library. 2011-08-03 13:31:45 -07:00
Matt Pharr
467f1e71d7 Add fast versions of the float<-->half conversion routines in the stdlib.
These get slightly wrong results for zero and the denorms and also
don't handle the Inf/NaN stuff correctly, but are much more efficient
than the full versions of these routines.
2011-08-03 15:58:42 +01:00
Matt Pharr
a2996ed5d9 More efficient implementation of frandom() in stdlib 2011-08-03 14:28:06 +01:00
Matt Pharr
7d7dd2b204 Merge branch 'master' of github.com:ispc/ispc 2011-08-01 12:16:33 +01:00
Matt Pharr
172794ba5f Release notes and doxygen update for 1.0.5 release 2011-08-01 12:15:42 +01:00
Matt Pharr
9ee6f86c73 Fix Windows build of ispc_test 2011-08-01 04:05:37 -07:00
Matt Pharr
a4bb6b5520 Add new example with implementation of Perlin Noise
~4.2x speedup versus serial on OSX / gcc.
~2.9x speedup versus serial on Windows / MSVC.
2011-08-01 10:33:18 +01:00
Matt Pharr
a552927a6a Cleanup implementation of target builtins code.
- Renamed stdlib-sse.ll to builtins-sse.ll (etc.) in an attempt to better indicate
the fact that the stuff in those files has a role beyond implementing stuff for
the standard library.
- Moved declarations of the various __pseudo_* functions from being done with LLVM
API calls in builtins.cpp to just straight up declarations in LLVM assembly
language in builtins.m4.  (Much less code to do it this way, and more clear what's
going on.)
2011-08-01 05:58:43 +01:00
Matt Pharr
2d52c732f1 Doc updates for recent new swizzle support 2011-07-31 19:03:55 +02:00
Matt Pharr
25676d5643 When --debug is specified, only print the entire module bitcode twice.
Fixes issue #77.  Previously, it dumped out the entire module every time
a new function was defined, which got to be quite a lot of output by
the time the stdlib functions were all added!
2011-07-29 07:26:37 +02:00
Matt Pharr
158bd6ef9e Fix bug with initializer expression lists for globlal/static array-typed variables. 2011-07-28 11:38:56 +01:00
Matt Pharr
7f662de6e3 Emit debug declaration of variables before the instructions for their initializers. 2011-07-28 11:05:02 +01:00
Matt Pharr
80ca02af58 Add missing #include, fix Linux build. Fixes issue #75. 2011-07-27 10:51:13 +01:00
Matt Pharr
8aea4a836d Fix crash when trying to generate debug info with program source from stdin 2011-07-27 07:42:47 +01:00
Matt Pharr
922dbdec06 Fixes to build with LLVM top-of-tree 2011-07-26 10:57:49 +01:00
Matt Pharr
e230d2c9ca Make the target argument work in the run_tests.sh script 2011-07-26 10:57:39 +01:00
Matt Pharr
d0674b1706 When doing << or >> operators, don't convert the return type to the type of the shift amount.
Fixes issue #73.  Previously, if we had e.g. an int16 type that was being shifted
left by 1, then the constant integer 1 would come in as an int32, we'd convert
the int16 to an int32, and then we'd do the shift.  Now, for shifts, the type
of the expression is always the same as the type of the value being shifted.
2011-07-25 23:36:05 +01:00
Matt Pharr
16be1d313e AVX updates / improvements.
Add optimization patterns to detect and simplify masked loads and stores
  with the mask all on / all off.
Enable AVX for LLVM 3.0 builds (still generally hits bugs / unimplemented
  stuff on the LLVM side, but it's getting there).
2011-07-25 07:41:37 +01:00
Matt Pharr
0932dcd98b Fix build with llvm top-of-tree 2011-07-23 08:35:45 +01:00
Matt Pharr
43a619669f Fix memory bug where we were accessing memory that had been freed.
(The string for which c_str() was called was just a temporary, so its destructor ran after funcName was initialized, leading funcName to point at freed memory.)
2011-07-22 13:15:50 +01:00
Pete Couperus
59036cdf5b Add support for multi-element vector swizzles. Issue #17.
This commit adds support for swizzles like "foo.zy" (if "foo" is,
for example, a float<3> type) as rvalues.  (Still need support for
swizzles as lvalues.)
2011-07-22 13:10:14 +01:00
Matt Pharr
98a2d69e72 Add code to check signatures of LLVM intrinsic declarations in stdlib*.ll files.
Fix a case where we were using the wrong signature for stmxcsr and ldmxcsr.
2011-07-22 12:53:17 +01:00
Matt Pharr
da0fd93315 AVX fixes: add missing 8/16-bit gathers and scatters, set features string appropriately when AVX is enabled. 2011-07-22 12:36:44 +01:00
Matt Pharr
165f90357f Tiny cleanups, doc update re int8/16 performance 2011-07-21 16:04:16 +01:00
Matt Pharr
8ef3df57c5 Add support for in-memory half float data. Fixes issue #10 2011-07-21 15:55:45 +01:00
Matt Pharr
96d40327d0 Fix issue #72: 64 gathers/scatters led to undefined symbols 2011-07-21 14:44:55 +01:00
Matt Pharr
bba7211654 Add support for int8/int16 types. Addresses issues #9 and #42. 2011-07-21 06:57:40 +01:00
Matt Pharr
2d573acd17 Another LLVM dev tree API change fix 2011-07-18 17:28:49 +01:00
Matt Pharr
654cfb4b4b Many fixes for recent LLVM dev tree API changes 2011-07-18 15:54:39 +01:00
Matt Pharr
65a29ec316 Only create ispc-callable functions for bitcode functions that start with "__"
Don't create ispc-callable symbols for other functions that we find in the LLVM
bitcode files that are loaded up and linked into the module so that they can be 
called from ispc stdlib functions.  This fixes an issue where we had a clash
between the declared versions of double sin(double) and the corresponding
ispc stdlib routines for uniform doubles, which in turn led to bogus code
being generated for calls to those ispc stdlib functions.
2011-07-18 13:03:50 +01:00
Matt Pharr
6b0a6c0124 Fix issue #67: don't crash ungracefully if target ISA not supported on system.
- In the ispc-generated header files, a #define now indicates which compilation target
  was used.
- The examples use utility routines from the new file examples/cpuid.h to check the
  system's CPU's capabilities to see if it supports the ISA that was used for
  compiling the example code and print error messages if things aren't going to
  work...
2011-07-18 12:29:43 +01:00
Matt Pharr
213c3a9666 Release notes, bump doxygen version # for next release.
Add more .gitignore stuff.
2011-07-17 16:52:36 +02:00
Matt Pharr
f0f876c3ec Add support for enums. 2011-07-17 16:43:05 +02:00
Matt Pharr
17e5c8b7c2 Fix LLVM 2.9 build. 2011-07-13 09:24:02 +01:00
Andreas Wendleder
646db5aacb Reflect changes in LLVM's type system. 2011-07-13 06:44:44 +01:00
Matt Pharr
a535aa586b Fix issue #2: use zero extend to convert bool->int, not sign extend.
This way, we match C/C++ in that casting a bool to an int gives either the value
zero or the value one.  There is a new stdlib function int sign_extend(bool)
that does sign extension for cases where that's desired.
2011-07-12 13:30:05 +01:00
Matt Pharr
6e8af5038b Fix issue #62: emit stdlib code as char array, not a string
MSVC 2010 issues an error if given a string larger than 64k characters
long.  To work around this, the pre-processed stdlib.ispc code is now
stored as an array of characters terminated with a NUL (i.e. the same thing
in the end); MSVC is fine with arrays larger than 64k characters.
2011-07-08 09:14:52 -07:00
Andreas Wendleder
7058ca1aaf Script fixes.
Indent correctly, don't nag about nonexisting files and add a carriage
return.
2011-07-08 16:45:03 +01:00
Andreas Wendleder
ae6ee3ea46 Cmake based LLVM builds don't have svn in their identification. 2011-07-08 16:44:22 +01:00
Matt Pharr
e156651190 Fix __load_masked_{32,64} to properly obey the mask. Fixes issue #28.
Fixed the implementations of these builtin functions for targets that don't have native masked load instructions so that they do no loads if the vector mask is all off, and only do an (unaligned) vector load if both the first and last element of the mask are on.  Otherwise they serialize and do scalar loads for only the active lanes.  This fixes a number of potential sources of crashes due to accessing invalid memory.
2011-07-08 11:21:11 +01:00
Matt Pharr
092d288aef Merge pull request #61 from danschubert/master
Fixed VC2010 warnings caused by implicit conversion from 'long' to 'char'.
2011-07-07 08:45:40 -07:00
Daniel Schubert
409bdc0dba Fixed VC2010 warnings:
lex.ll(397): warning C4244: '=' : conversion from 'long' to 'char', possible loss of data
lex.ll(402): warning C4244: '=' : conversion from 'long' to 'char', possible loss of data

by explicit cast to 'char'.

See: http://msdn.microsoft.com/en-us/library/w4z2wdyc(v=vs.80).aspx

long strtol(
   const char *nptr,
   char **endptr,
   int base 
);
2011-07-07 08:17:03 -07:00
Matt Pharr
aef8c09019 Add support for atomic swap/cmpexchg with float and double types.
Addresses issue #60.
2011-07-07 14:07:52 +01:00
Matt Pharr
729f522a01 Fix bug in double-precision version of ldexp() in stdlib. 2011-07-07 13:57:20 +01:00
Matt Pharr
96ad2265e7 Merge pull request #59 from danschubert/patch-1
Fixed VC2010 warning
2011-07-07 05:27:24 -07:00
Matt Pharr
5a53a43ed0 Finish support for 64-bit types in stdlib. Fixes issue #14.
Add much more suppport for doubles and in64 types in the standard library, basically supporting everything for them that are supported for floats and int32s.  (The notable exceptions being the approximate rcp() and rsqrt() functions, which don't really have sensible analogs for doubles (or at least not built-in instructions).)
2011-07-07 13:25:55 +01:00
danschubert
be8e121b71 Fixed VC2010 error message: builtins.cpp(183): warning C4018: '<' : signed/unsigned mismatch 2011-07-07 05:19:32 -07:00
Matt Pharr
f1aaf0115e Fix a number of cases in the parser where segfaults were possible with malformed programs. 2011-07-07 12:48:14 +01:00
Matt Pharr
6b5ee6ccc0 Add missing "$$=NULL;" in error production in parser.
This fixes a crash from a malformed program bug.
2011-07-07 11:10:27 +01:00
Matt Pharr
a1d5ea69b9 Support 64-bit integer constants in parser. Partial fix to issue #21. 2011-07-06 16:54:14 +01:00
Matt Pharr
af70718eca Always include the passed arg types when printing errors about function overload resolution failing. 2011-07-06 15:33:50 +01:00
Matt Pharr
8e5ea9c33c Set up NULL values for default arguments when creating ispc functions from LLVM bitcode builtins.
Fixes occasional crashes due to accessing uninitialized memory.
2011-07-06 15:33:26 +01:00
Matt Pharr
6e4c165c7e Use malloc to allocate storage for task parameters on Windows.
Fixes bug #55.  A number of tests were crashing on Windows due to the task
launch code using alloca to allocate space for the tasks' parameters.  On
Windows, the stack isn't generally big enough for this to be a good idea.
Also added an alignment parmaeter to ISPCMalloc() to pass the alignment
requirement along.
2011-07-06 05:53:25 -07:00
Matt Pharr
4d733af3c7 Add check to make sure file exists before running preprocessor.
(If the file doesn't exist, clang ends up crashing, so we'd like to
avoid that.)
2011-07-06 11:33:33 +01:00
Matt Pharr
b8dae5cb9a Fix GetDirectoryAndFileName() on Windows.
Use the Windows pathname manipulation routines to robustly implement this
on Windows.  Fixes issue #30.
2011-07-06 03:23:25 -07:00
Matt Pharr
6ea213ad5d Added a few error productions to the parser.
A few more productions to recover from parse errors (in function parameter lists and in statement lists).  These eliminate some of the massive cascading error messages from a single parse error that the previous error recovery strategy would sometimes cause.  Fixes issue #44.
2011-07-06 09:32:14 +01:00
Pete Couperus
126e065601 Merge from petecoup/shortvec-in-struct branch.
Fixes issue #49: using short vector types in struct declarations
would give a bogus parse error.
2011-07-06 09:07:51 +01:00
Matt Pharr
5cc750ecee Add comment re popcnt on SSE2 target. 2011-07-06 07:38:29 +01:00
Matt Pharr
92106e866e Fix typos in documentation. 2011-07-06 07:37:20 +01:00
Matt Pharr
6d3e44ead7 Add missing 'internal' qualifiers to two atomic function implementations. 2011-07-06 07:20:46 +01:00
Matt Pharr
f0d254b941 Bump release number in doxygen.cfg 2011-07-04 17:27:01 +01:00
Matt Pharr
5bcc611409 Implement global atomics and a memory barrier in the standard library.
This checkin provides the standard set of atomic operations and a memory barrier in the ispc standard library.  Both signed and unsigned 32- and 64-bit integer types are supported.
2011-07-04 17:20:42 +01:00
Matt Pharr
24f47b300d Merge branch 'master' of github.com:ispc/ispc 2011-07-04 15:49:16 +01:00
Matt Pharr
5c810e620d Improvements to the routine that maps from LLVM types to ispc types. 2011-07-04 15:49:04 +01:00
Matt Pharr
c6bc8fd64f Type conversion and function call overload resolution bug fixes. 2011-07-04 15:11:28 +01:00
Matt Pharr
3b3015162f Documentation updates for new preprocessor support. 2011-07-04 14:55:55 +01:00
Matt Pharr
46ccc251c8 Added C preprocessor support for Windows.
Link the appropriate clang libraries to make the preprocessor
stuff work on Windows builds.  Also updated the solution files
for the examples to stop using cl.exe for preprocessing but to
just call ispc directly.  Finishes fixes for issue #32.
2011-07-04 05:01:04 -07:00
Matt Pharr
b0658549c5 Fix crash when no input filename was provided. 2011-07-04 12:52:03 +01:00
Matt Pharr
c14c3ceba6 Provide both signed and unsigned int variants of bitcode-based builtins.
When creating function Symbols for functions that were defined in LLVM bitcode for the standard library, if any of the function parameters are integer types, create two ispc-side Symbols: one where the integer types are all signed and the other where they are all unsigned.  This allows us to provide, for example, both store_to_int16(reference int a[], uniform int offset, int val) as well as store_to_int16(reference unsigned int a[], uniform int offset, unsigned int val). functions.

Added some additional tests to exercise the new variants of these.

Also fixed some cases where the __{load,store}_int{8,16} builtins would read from/write to memory even if the mask was all off (which could cause crashes in some cases.)
2011-07-04 12:10:26 +01:00
Pete Couperus
fac50ba454 Use clang's preprocessor, rather than forking a process to run cpp
on Mac/Linux (and not having a built-in preprocessor solution at all
on Windows.)  Fixes issue #32.
2011-07-04 08:35:31 +01:00
Matt Pharr
fe7717ab67 Added shuffle() variant to the standard library that takes two
varying values and a permutation index that spans the concatenation
of the two of them (along the lines of SHUFPS...)
2011-07-02 08:43:35 +01:00
Matt Pharr
a9540b7c18 Update implementations of masked load/store builtins for AVX to actually use the AVX intrinsics that do this. (As always, not yet tested, pending fuller LLVM AVX support.) 2011-07-01 16:27:49 +01:00
Matt Pharr
28625eb1df Disable ability to specify AVX target on command line (pending things coming more online in LLVM's AVX codebase.) 2011-07-01 16:25:22 +01:00
Matt Pharr
c6bbfe8b54 Many fixes to AVX builtins implementations. (Found by inspection, still not working pending further LLVM support for AVX.)
- Call SSE versions for all the various scalar intrinsics
- Fix names of many (all?) AVX intrinsics; all were missing .256 suffix, others had additional issues.
2011-07-01 16:20:03 +01:00
Matt Pharr
9b7eb88b0c Small fixes to calls to SSE double-precision intrinsic calls for scalar values: actually use the scalar version, not the vector version. 2011-07-01 16:16:05 +01:00
Matt Pharr
6ed6961958 Add checks to sample task systems to ensure that TasksInit has been
called; if not, print an informative error message.
2011-07-01 14:11:16 +01:00
Matt Pharr
d2d5858be1 It is no longer legal to initialize arrays and structs with single
scalar values (that ispc used to smear across the array/struct
elements).  Now, initializers in variable declarations must be
{ }-delimited lists, with one element per struct member or array
element, respectively.

There were a few problems with the previous implementation of the
functionality to initialize from scalars.  First, the expression
would be evaluated once per value initialized, so if it had side-effects,
the wrong thing would happen.  Next, for large multidimensional arrays,
the generated code would be a long series of move instructions, rather
than loops (and this in turn made LLVM take a long time.)

While both of these problems are fixable, it's a non-trivial
amount of re-plumbing for a questionable feature anyway.

Fixes issue #50.
2011-07-01 13:45:58 +01:00
Matt Pharr
a2940d63b4 Update call to llvm::Target::createTargetMachine() for LLVM dev tree
build to handle recent change to API.  If building with LLVM tot, a
version starting with or after this change must be used:

    commit 276365dd4bc0c2160f91fd8062ae1fc90c86c324
    Author: Evan Cheng <evan.cheng@apple.com>
    Date:   Thu Jun 30 01:53:36 2011 +0000

    Fix the ridiculous SubtargetFeatures API where it implicitly expects CPU name to
    be the first encoded as the first feature. It then uses the CPU name to look up
    features / scheduling itineray even though clients know full well the CPU name
    being used to query these properties.

    The fix is to just have the clients explictly pass the CPU name!

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134127 91177308-0d34-0410-b5e6-96231b3b80d8
2011-07-01 08:32:58 +01:00
Matt Pharr
32764e7639 Update release notes, doxygen version number 2011-07-01 05:12:57 +01:00
Matt Pharr
bcae21dbca Update examples to use fpmath:fast and to enable intrinsics on Windows 2011-06-30 13:17:14 -07:00
Matt Pharr
eb22fa6173 Generalize FunctionEmitContext::PtrToIntInst and IntToPtrInst to
do the right thing if given a varying lvalue (i.e. an array of
pointers).  Fixes issue #34.
2011-06-29 12:38:12 +01:00
Matt Pharr
5f7e61f9b5 Another stdlib dependency improvement 2011-06-29 12:26:44 +01:00
Matt Pharr
28a68e3c1f More code simplifications from using CollectionType. Finishes Issue #37 2011-06-29 09:32:31 +01:00
Matt Pharr
6b153566f3 Simplify a bunch of code by using CollectionType to collect struct
codepaths in with array/vector codepaths. (Issue #37).
2011-06-29 07:59:43 +01:00
Matt Pharr
214fb3197a Initial plumbing to add CollectionType base-class as common ancestor
to StructTypes, ArrayTypes, and VectorTypes.  Issue #37.
2011-06-29 07:42:09 +01:00
Matt Pharr
b4068efcfb Fixes to run_tests.sh script
- Use bash, not zsh (don't make people install zsh for no good reason)
- Print help if -h command line option is given
- Allow specifying the compilation target to use on the command line
- If one or more filenames are provided, just run those tests.  Otherwise,
  run everything in the tests/ directory.
2011-06-29 07:25:01 +01:00
Matt Pharr
24216d841f Update release notes for 1.0.2 stuff so far 2011-06-29 07:00:17 +01:00
Matt Pharr
be45beb54b Implement our own routine to turn C99-style hexadecimal float constants in strong form into floating-point values. With this, we can correctly handle hex float constants on Windows, where the builtin atof() routine just returns zero for them. Fixes issue #16. 2011-06-29 06:57:39 +01:00
Matt Pharr
cb58c78c1a Pipe through source file locations of structure element declarations; these are now supplied to the llvm::DIBuilder::createMemberType() method rather than giving it the position of the overall struct declaration for each one. Fixes issue #31 2011-06-29 05:38:42 +01:00
Matt Pharr
86de910ecd Improve implementation of __masked_store_blend_64() for AVX target by doing two 8-wide 32-bit blends rather than serializing. Fixes issue #29 2011-06-28 20:52:06 -07:00
Matt Pharr
ce7978ae74 Align stack-allocated arrays of uniform types to the target vector alignment (they will often be accessed in programCount-sized chunks and this should make that a bit more efficient in the common case). Fixes issue #15 2011-06-28 20:42:18 -07:00
Matt Pharr
7aec7486f8 Make SSE2 the default target on Atom CPUs unless explicitly overridden. (Fixes issue #45 2011-06-28 08:32:58 -07:00
Daniel Schubert
b6d6ee6fc2 Fixed typos. 2011-06-28 07:38:00 -07:00
Matt Pharr
cb74346d36 Fix typo (thx jsimmons) 2011-06-27 19:51:46 -07:00
Matt Pharr
2709c354d7 Add support for broadcast(), rotate(), and shuffle() stdlib routines 2011-06-27 17:31:44 -07:00
Matt Pharr
36063bae79 Update call to llvm::DIBuilder::createMemberType to fix building with LLVM dev TOT 2011-06-26 08:00:00 -07:00
Matt Pharr
e6d6a82484 Merge pull request #41 from benharper123/master
Update docs on store/load int8/16
2011-06-25 17:28:21 -07:00
Ben Harper
f830e21cfa Updated docs for store/load int8/int16 2011-06-26 02:02:18 +02:00
Matt Pharr
ae2c24c3c1 Merge branch 'master' of github.com:ispc/ispc 2011-06-24 17:06:08 -07:00
Andreas Wendleder
6dfd74c74c Add verbose flag and report progress. 2011-06-24 17:05:24 -07:00
Matt Pharr
7055888cb7 Merge branch 'master' of github.com:ispc/ispc 2011-06-24 16:21:54 -07:00
Matt Pharr
7854a71ea9 Merge branch 'master' of github.com:ispc/ispc 2011-06-24 16:21:06 -07:00
Matt Pharr
b7519d1268 fix date in ReleaseNotes.txt 2011-06-24 16:20:36 -07:00
Matt Pharr
f2758f0831 Merge branch 'master' of github.com:ispc/ispc 2011-06-24 16:20:06 -07:00
Matt Pharr
ff76c2334e small doc fix, removed incorrect comment from example 2011-06-24 16:19:51 -07:00
Matt Pharr
9b6bf5dabc Add release notes doc 2011-06-24 16:11:46 -07:00
Matt Pharr
6cf4d7e216 Merge branch 'master' of /Users/mmp/git/ispc 2011-06-24 05:11:06 -07:00
Matt Pharr
ab33afaea4 Merge branch 'master' of home:/Users/mmp/git/ispc 2011-06-23 18:54:14 -07:00
Matt Pharr
865e430b56 Finished updating alignment issues for vector types; don't assume pointers
are aligned to the natural vector width.
2011-06-23 18:51:15 -07:00
Matt Pharr
fab5794faf Merge branch 'master' of github.com:ispc/ispc 2011-06-23 18:25:44 -07:00
Matt Pharr
990bee5a86 Merge branch 'master' of github.com:ispc/ispc 2011-06-23 18:21:02 -07:00
Matt Pharr
b84167dddd Fixed a number of issues related to memory alignment; a number of places
were expecting vector-width-aligned pointers where in point of fact,
there's no guarantee that they would have been in general.

Removed the aligned memory allocation routines from some of the examples;
they're no longer needed.

No perf. difference on Core2/Core i5 CPUs; older CPUs may see some
regressions.

Still need to update the documentation for this change and finish reviewing
alignment issues in Load/Store instructions generated by .cpp files.
2011-06-23 18:18:33 -07:00
Matt Pharr
3c3cd88692 initial alignment work 2011-06-23 17:36:44 -07:00
Andreas Wendleder
f39d31174e Follow LLVM API change. 2011-06-23 16:10:03 -07:00
Andreas Wendleder
39542f420a Ignore built files. 2011-06-23 16:06:38 -07:00
Matt Pharr
d340dcbfcc Modify makefile to print out llvm version and install directory it's using 2011-06-23 16:02:09 -07:00
Matt Pharr
e5bc6cd67c Update examples/ Makefiles to make x86-64 explicit in compiler flags 2011-06-23 10:00:07 -07:00
Matt Pharr
40bd133dec Add dependency to make sure that bison runs (to generate parse.hh) before we try to compile lex.cpp 2011-06-22 14:47:03 -07:00
Matt Pharr
2ced56736e small comment changes, remove dead code 2011-06-22 14:38:49 -07:00
Matt Pharr
bf74a3360f Merge pull request #24 from petecoup/master
LLVM 2.8 mods
2011-06-22 12:03:19 -07:00
Matt Pharr
aaafdf80f2 Move two tests that are currently failing into failing_tests/ 2011-06-22 05:28:23 -07:00
Matt Pharr
6086d3597c Fix more instances of incorrect PI constants 2011-06-22 05:27:56 -07:00
ispc
a3fbb098ad Merge pull request #1 from superoptimizer/master
The value of pi used in Makefile was wrong in the 7th and 11th significant digits.
2011-06-22 05:18:32 -07:00
Mark Lacey
38d4ecccf4 Fix pi in two places 3.14159<2>653<6>. 2011-06-21 23:55:44 -07:00
Pete Couperus
af435e52c1 Minor mods to build on Fedora 15, LLVM 2.8 2011-06-21 22:57:36 -07:00
Matt Pharr
8b7522e98b Always #define LLVM_2_9 on Windows builds 2011-06-21 15:02:44 -07:00
Matt Pharr
bffb380677 Rename readme file 2011-06-21 13:24:25 -07:00
623 changed files with 39970 additions and 11181 deletions

6
.gitignore vendored
View File

@@ -1,2 +1,8 @@
*.pyc
*~
depend
ispc
ispc_test
objs
docs/doxygen
docs/ispc.html

View File

@@ -114,3 +114,30 @@ CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
SOFTWARE.
---------------------------------------------------------------------------
ispc's code to convert to and from half-precision floats is based on James
Tursa's code, which is covered by the following license:
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

View File

@@ -2,26 +2,42 @@
# ispc Makefile
#
ARCH = $(shell uname)
ARCH_OS = $(shell uname)
ARCH_TYPE = $(shell arch)
CLANG=clang
LLVM_LIBS=$(shell llvm-config --ldflags --libs) -lpthread -ldl
CLANG_LIBS = -lclangFrontend -lclangDriver \
-lclangSerialization -lclangParse -lclangSema \
-lclangAnalysis -lclangAST -lclangLex -lclangBasic
ISPC_LIBS=$(CLANG_LIBS) \
$(shell llvm-config --ldflags --libs) \
-lpthread -ldl
ISPC_TEST_LIBS=$(shell llvm-config --ldflags --libs) \
-lpthread -ldl
LLVM_CXXFLAGS=$(shell llvm-config --cppflags)
LLVM_VERSION_DEF=-DLLVM_$(shell llvm-config --version | sed s/\\./_/)
LLVM_VERSION=$(shell llvm-config --version | sed s/\\./_/)
LLVM_VERSION_DEF=-DLLVM_$(LLVM_VERSION)
BUILD_DATE=$(shell date +%Y%m%d)
BUILD_VERSION=$(shell git log | head -1)
BUILD_VERSION=$(shell git log --abbrev-commit --abbrev=16 | head -1)
CXX=g++
CPP=cpp
CXXFLAGS=-g3 $(LLVM_CXXFLAGS) -I. -Iobjs/ -Wall $(LLVM_VERSION_DEF) \
OPT=-g3
CXXFLAGS=$(OPT) $(LLVM_CXXFLAGS) -I. -Iobjs/ -Wall $(LLVM_VERSION_DEF) \
-DBUILD_DATE="\"$(BUILD_DATE)\"" -DBUILD_VERSION="\"$(BUILD_VERSION)\""
LDFLAGS=
ifeq ($(ARCH),Linux)
ifeq ($(ARCH_OS),Linux)
# try to link everything statically under Linux (including libstdc++) so
# that the binaries we generate will be portable across distributions...
LDFLAGS=-static -L/usr/lib/gcc/x86_64-linux-gnu/4.4
ifeq ($(ARCH_TYPE),x86_64)
LDFLAGS=-static -L/usr/lib/gcc/x86_64-linux-gnu/4.4
else
LDFLAGS=-L/usr/lib/gcc/i686-redhat-linux/4.6.0
endif
endif
LEX=flex
@@ -29,22 +45,24 @@ YACC=bison -d -v -t
###########################################################################
CXX_SRC=builtins.cpp ctx.cpp decl.cpp expr.cpp ispc.cpp \
CXX_SRC=ast.cpp builtins.cpp ctx.cpp decl.cpp expr.cpp func.cpp ispc.cpp \
llvmutil.cpp main.cpp module.cpp opt.cpp stmt.cpp sym.cpp type.cpp \
util.cpp
HEADERS=builtins.h ctx.h decl.h expr.h ispc.h llvmutil.h module.h \
HEADERS=ast.h builtins.h ctx.h decl.h expr.h func.h ispc.h llvmutil.h module.h \
opt.h stmt.h sym.h type.h util.h
STDLIB_SRC=stdlib-avx.ll stdlib-sse2.ll stdlib-sse4.ll stdlib-sse4x2.ll
BUILTINS_SRC=builtins-avx.ll builtins-avx-x2.ll builtins-sse2.ll builtins-sse2-x2.ll \
builtins-sse4.ll builtins-sse4-x2.ll builtins-dispatch.ll
BISON_SRC=parse.yy
FLEX_SRC=lex.ll
OBJS=$(addprefix objs/, $(CXX_SRC:.cpp=.o) $(STDLIB_SRC:.ll=.o) stdlib-c.o stdlib_ispc.o \
$(BISON_SRC:.yy=.o) $(FLEX_SRC:.ll=.o))
OBJS=$(addprefix objs/, $(CXX_SRC:.cpp=.o) $(BUILTINS_SRC:.ll=.o) \
builtins-c-32.o builtins-c-64.o stdlib_ispc.o $(BISON_SRC:.yy=.o) \
$(FLEX_SRC:.ll=.o))
default: ispc ispc_test
.PHONY: dirs clean depend doxygen
.PRECIOUS: objs/stdlib-%.cpp
.PHONY: dirs clean depend doxygen print_llvm_src
.PRECIOUS: objs/builtins-%.cpp
depend: $(CXX_SRC) $(HEADERS)
@echo Updating dependencies
@@ -56,6 +74,9 @@ dirs:
@echo Creating objs/ directory
@/bin/mkdir -p objs
print_llvm_src:
@echo Using LLVM `llvm-config --version` from `llvm-config --libdir`
clean:
/bin/rm -rf objs ispc ispc_test
@@ -63,13 +84,13 @@ doxygen:
/bin/rm -rf docs/doxygen
doxygen doxygen.cfg
ispc: dirs $(OBJS)
ispc: print_llvm_src dirs $(OBJS)
@echo Creating ispc executable
@$(CXX) $(LDFLAGS) -o $@ $(OBJS) $(LLVM_LIBS)
@$(CXX) $(LDFLAGS) -o $@ $(OBJS) $(ISPC_LIBS)
ispc_test: dirs ispc_test.cpp
@echo Creating ispc_test executable
@$(CXX) $(LDFLAGS) $(CXXFLAGS) -o $@ ispc_test.cpp $(LLVM_LIBS)
@$(CXX) $(LDFLAGS) $(CXXFLAGS) -o $@ ispc_test.cpp $(ISPC_TEST_LIBS)
objs/%.o: %.cpp
@echo Compiling $<
@@ -83,36 +104,49 @@ objs/parse.o: objs/parse.cc $(HEADERS)
@echo Compiling $<
@$(CXX) $(CXXFLAGS) -o $@ -c $<
objs/lex.cpp: lex.ll
objs/lex.cpp: lex.ll
@echo Running flex on $<
@$(LEX) -o $@ $<
objs/lex.o: objs/lex.cpp $(HEADERS)
objs/lex.o: objs/lex.cpp $(HEADERS) objs/parse.cc
@echo Compiling $<
@$(CXX) $(CXXFLAGS) -o $@ -c $<
$(STDLIB_SRC): stdlib.m4
objs/builtins-%.cpp: builtins-%.ll
@echo Creating C++ source from builtin definitions file $<
@m4 -DLLVM_VERSION=$(LLVM_VERSION) builtins.m4 $< | ./bitcode2cpp.py $< > $@
objs/stdlib-%.cpp: stdlib-%.ll
@echo Creating C++ source from stdlib file $<
@m4 stdlib.m4 $< | ./bitcode2cpp.py $< > $@
objs/stdlib-%.o: objs/stdlib-%.cpp
objs/builtins-%.o: objs/builtins-%.cpp
@echo Compiling $<
@$(CXX) $(CXXFLAGS) -o $@ -c $<
objs/stdlib-c.cpp: stdlib-c.c
@echo Creating C++ source from stdlib file $<
@$(CLANG) -I /opt/l1om/usr/include/ -emit-llvm -c $< -o - | llvm-dis - | ./bitcode2cpp.py $< > $@
objs/builtins-c-32.cpp: builtins-c.c
@echo Creating C++ source from builtins definition file $<
@$(CLANG) -m32 -emit-llvm -c $< -o - | llvm-dis - | ./bitcode2cpp.py builtins-c-32.c > $@
objs/stdlib-c.o: objs/stdlib-c.cpp
objs/builtins-c-32.o: objs/builtins-c-32.cpp
@echo Compiling $<
@$(CXX) $(CXXFLAGS) -o $@ -c $<
objs/builtins-c-64.cpp: builtins-c.c
@echo Creating C++ source from builtins definition file $<
@$(CLANG) -m64 -emit-llvm -c $< -o - | llvm-dis - | ./bitcode2cpp.py builtins-c-64.c > $@
objs/builtins-c-64.o: objs/builtins-c-64.cpp
@echo Compiling $<
@$(CXX) $(CXXFLAGS) -o $@ -c $<
objs/stdlib_ispc.cpp: stdlib.ispc
@echo Creating C++ source from $<
@$(CPP) -DISPC=1 -DPI=3.1415936535 $< | ./stdlib2cpp.py > $@
@$(CLANG) -E -x c -DISPC=1 -DPI=3.1415926536 $< -o - | ./stdlib2cpp.py > $@
objs/stdlib_ispc.o: objs/stdlib_ispc.cpp
@echo Compiling $<
@$(CXX) $(CXXFLAGS) -o $@ -c $<
objs/builtins-sse2.cpp: builtins.m4 builtins-sse2-common.ll builtins-sse2.ll
objs/builtins-sse2-x2.cpp: builtins.m4 builtins-sse2-common.ll builtins-sse2-x2.ll
objs/builtins-sse4.cpp: builtins.m4 builtins-sse4-common.ll builtins-sse4.ll
objs/builtins-sse4-x2.cpp: builtins.m4 builtins-sse4-common.ll builtins-sse4-x2.ll
objs/builtins-avx.cpp: builtins.m4 builtins-avx-common.ll builtins-avx.ll
objs/builtins-avx-x2.cpp: builtins.m4 builtins-avx-common.ll builtins-avx-x2.ll

View File

@@ -15,8 +15,8 @@ code.
ispc is an open source compiler under the BSD license; see the file
LICENSE.txt. ispc supports Windows, Mac, and Linux, with both x86 and
x86-64 targets. It currently supports the SSE2 and SSE4 instruction sets,
though support for AVX should be available soon.
x86-64 targets. It currently supports the SSE2, SSE4, and AVX instruction
sets.
For more information and examples, as well as a wiki and the bug database,
see the ispc distribution site, http://ispc.github.com.

View File

@@ -1,5 +1,5 @@
/*
Copyright (c) 2010-2011, Intel Corporation
Copyright (c) 2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -31,60 +31,35 @@
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* A simple task system for ispc programs based on Apple's Grand Central
Dispatch. */
/** @file ast.cpp
@brief
*/
#include <dispatch/dispatch.h>
#include "ast.h"
#include "func.h"
#include "sym.h"
static dispatch_queue_t gcdQueue;
static dispatch_group_t gcdGroup;
///////////////////////////////////////////////////////////////////////////
// ASTNode
// ispc expects these functions to have C linkage / not be mangled
extern "C" {
void ISPCLaunch(void *f, void *data);
void ISPCSync();
ASTNode::~ASTNode() {
}
struct TaskInfo {
void *func;
void *data;
};
///////////////////////////////////////////////////////////////////////////
// AST
void
AST::AddFunction(Symbol *sym, const std::vector<Symbol *> &args, Stmt *code) {
if (sym == NULL)
return;
functions.push_back(new Function(sym, args, code));
}
void
TasksInit() {
gcdQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
gcdGroup = dispatch_group_create();
AST::GenerateIR() {
for (unsigned int i = 0; i < functions.size(); ++i)
functions[i]->GenerateIR();
}
static void
lRunTask(void *ti) {
typedef void (*TaskFuncType)(void *, int, int);
TaskInfo *taskInfo = (TaskInfo *)ti;
TaskFuncType func = (TaskFuncType)(taskInfo->func);
// FIXME: these are bogus values; may cause bugs in code that depends
// on them having unique values in different threads.
int threadIndex = 0;
int threadCount = 1;
// Actually run the task
func(taskInfo->data, threadIndex, threadCount);
// FIXME: taskInfo leaks...
}
void ISPCLaunch(void *func, void *data) {
TaskInfo *ti = new TaskInfo;
ti->func = func;
ti->data = data;
dispatch_group_async_f(gcdGroup, gcdQueue, ti, lRunTask);
}
void ISPCSync() {
// Wait for all of the tasks in the group to complete before returning
dispatch_group_wait(gcdGroup, DISPATCH_TIME_FOREVER);
}

94
ast.h Normal file
View File

@@ -0,0 +1,94 @@
/*
Copyright (c) 2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file ast.h
@brief
*/
#ifndef ISPC_AST_H
#define ISPC_AST_H 1
#include "ispc.h"
#include <vector>
/** @brief Abstract base class for nodes in the abstract syntax tree (AST).
This class defines a basic interface that all abstract syntax tree
(AST) nodes must implement. The base classes for both expressions
(Expr) and statements (Stmt) inherit from this class.
*/
class ASTNode {
public:
ASTNode(SourcePos p) : pos(p) { }
virtual ~ASTNode();
/** The Optimize() method should perform any appropriate early-stage
optimizations on the node (e.g. constant folding). The caller
should use the returned ASTNode * in place of the original node.
This method may return NULL if an error is encountered during
optimization. */
virtual ASTNode *Optimize() = 0;
/** Type checking should be performed by the node when this method is
called. In the event of an error, a NULL value may be returned.
As with ASTNode::Optimize(), the caller should store the returned
pointer in place of the original ASTNode *. */
virtual ASTNode *TypeCheck() = 0;
virtual int EstimateCost() const = 0;
/** All AST nodes must track the file position where they are
defined. */
SourcePos pos;
};
/** Simple representation of the abstract syntax trees for all of the
functions declared in a compilation unit.
*/
class AST {
public:
/** Add the AST for a function described by the given declaration
information and source code. */
void AddFunction(Symbol *sym, const std::vector<Symbol *> &args,
Stmt *code);
/** Generate LLVM IR for all of the functions into the current
module. */
void GenerateIR();
private:
std::vector<Function *> functions;
};
#endif // ISPC_AST_H

View File

@@ -4,30 +4,36 @@ import sys
import string
import re
import subprocess
import platform
import os
length=0
src=str(sys.argv[1])
target = re.sub(".*stdlib-", "", src)
target = re.sub(".*builtins-", "", src)
target = re.sub("\.ll$", "", target)
target = re.sub("\.c$", "", target)
target = re.sub("-", "_", target)
llvm_as="llvm-as"
if platform.system() == 'Windows' or string.find(platform.system(), "CYGWIN_NT") != -1:
llvm_as = os.getenv("LLVM_INSTALL_DIR").replace("\\", "/") + "/bin/" + llvm_as
try:
as_out=subprocess.Popen([ "llvm-as", "-", "-o", "-"], stdout=subprocess.PIPE)
as_out=subprocess.Popen([llvm_as, "-", "-o", "-"], stdout=subprocess.PIPE)
except IOError:
print >> sys.stderr, "Couldn't open " + src
sys.exit(1)
print "unsigned char stdlib_bitcode_" + target + "[] = {"
print "unsigned char builtins_bitcode_" + target + "[] = {"
for line in as_out.stdout.readlines():
length = length + len(line)
for c in line:
print ord(c)
print ", "
print " 0 };\n\n"
print "int stdlib_bitcode_" + target + "_length = " + str(length) + ";\n"
print "int builtins_bitcode_" + target + "_length = " + str(length) + ";\n"
as_out.wait()

16
buildall.bat Normal file
View File

@@ -0,0 +1,16 @@
@echo off
REM If LLVM_INSTALL_DIR isn't set globally in your environment,
REM it can be set here_
set LLVM_INSTALL_DIR=c:\users\mmp\llvm-dev
REM Both the LLVM binaries and python need to be in the path
set path=%LLVM_INSTALL_DIR%\bin;%PATH%;c:\cygwin\bin
msbuild ispc.vcxproj /V:m /p:Platform=Win32 /p:Configuration=Release
msbuild ispc_test.vcxproj /V:m /p:Platform=Win32 /p:Configuration=Release
msbuild examples\examples.sln /V:m /p:Platform=x64 /p:Configuration=Release /t:rebuild
msbuild examples\examples.sln /V:m /p:Platform=x64 /p:Configuration=Debug /t:rebuild
msbuild examples\examples.sln /V:m /p:Platform=Win32 /p:Configuration=Release /t:rebuild
msbuild examples\examples.sln /V:m /p:Platform=Win32 /p:Configuration=Debug /t:rebuild

274
builtins-avx-common.ll Normal file
View File

@@ -0,0 +1,274 @@
;; Copyright (c) 2010-2011, Intel Corporation
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;;
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;;
;; * Neither the name of Intel Corporation nor the names of its
;; contributors may be used to endorse or promote products derived from
;; this software without specific prior written permission.
;;
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; AVX target implementation.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rcp
declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone
define float @__rcp_uniform_float(float) nounwind readonly alwaysinline {
; uniform float iv = extract(__rcp_u(v), 0);
; return iv * (2. - v * iv);
%vecval = insertelement <4 x float> undef, float %0, i32 0
%call = call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %vecval)
%scall = extractelement <4 x float> %call, i32 0
; do one N-R iteration
%v_iv = fmul float %0, %scall
%two_minus = fsub float 2., %v_iv
%iv_mul = fmul float %scall, %two_minus
ret float %iv_mul
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding floats
declare <4 x float> @llvm.x86.sse41.round.ss(<4 x float>, <4 x float>, i32) nounwind readnone
define float @__round_uniform_float(float) nounwind readonly alwaysinline {
; roundss, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
; the roundss intrinsic is a total mess--docs say:
;
; __m128 _mm_round_ss (__m128 a, __m128 b, const int c)
;
; b is a 128-bit parameter. The lowest 32 bits are the result of the rounding function
; on b0. The higher order 96 bits are copied directly from input parameter a. The
; return value is described by the following equations:
;
; r0 = RND(b0)
; r1 = a1
; r2 = a2
; r3 = a3
;
; It doesn't matter what we pass as a, since we only need the r0 value
; here. So we pass the same register for both.
%xi = insertelement <4 x float> undef, float %0, i32 0
%xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 8)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
define float @__floor_uniform_float(float) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <4 x float> undef, float %0, i32 0
; roundps, round down 0b01 | don't signal precision exceptions 0b1001 = 9
%xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 9)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
define float @__ceil_uniform_float(float) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <4 x float> undef, float %0, i32 0
; roundps, round up 0b10 | don't signal precision exceptions 0b1010 = 10
%xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 10)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding doubles
declare <2 x double> @llvm.x86.sse41.round.sd(<2 x double>, <2 x double>, i32) nounwind readnone
define double @__round_uniform_double(double) nounwind readonly alwaysinline {
%xi = insertelement <2 x double> undef, double %0, i32 0
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 8)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
define double @__floor_uniform_double(double) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <2 x double> undef, double %0, i32 0
; roundpd, round down 0b01 | don't signal precision exceptions 0b1001 = 9
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 9)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
define double @__ceil_uniform_double(double) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <2 x double> undef, double %0, i32 0
; roundpd, round up 0b10 | don't signal precision exceptions 0b1010 = 10
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 10)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rsqrt
declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone
define float @__rsqrt_uniform_float(float) nounwind readonly alwaysinline {
; uniform float is = extract(__rsqrt_u(v), 0);
%v = insertelement <4 x float> undef, float %0, i32 0
%vis = call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %v)
%is = extractelement <4 x float> %vis, i32 0
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul float %0, %is
%v_is_is = fmul float %v_is, %is
%three_sub = fsub float 3., %v_is_is
%is_mul = fmul float %is, %three_sub
%half_scale = fmul float 0.5, %is_mul
ret float %half_scale
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; sqrt
declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone
define float @__sqrt_uniform_float(float) nounwind readonly alwaysinline {
sse_unary_scalar(ret, 4, float, @llvm.x86.sse.sqrt.ss, %0)
ret float %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; fastmath
declare void @llvm.x86.sse.stmxcsr(i8 *) nounwind
declare void @llvm.x86.sse.ldmxcsr(i8 *) nounwind
define void @__fastmath() nounwind alwaysinline {
%ptr = alloca i32
%ptr8 = bitcast i32 * %ptr to i8 *
call void @llvm.x86.sse.stmxcsr(i8 * %ptr8)
%oldval = load i32 *%ptr
; turn on DAZ (64)/FTZ (32768) -> 32832
%update = or i32 %oldval, 32832
store i32 %update, i32 *%ptr
call void @llvm.x86.sse.ldmxcsr(i8 * %ptr8)
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; float min/max
declare <4 x float> @llvm.x86.sse.max.ss(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.min.ss(<4 x float>, <4 x float>) nounwind readnone
define float @__max_uniform_float(float, float) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.max.ss, %0, %1)
ret float %ret
}
define float @__min_uniform_float(float, float) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.min.ss, %0, %1)
ret float %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; int min/max
declare <4 x i32> @llvm.x86.sse41.pminsd(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.x86.sse41.pmaxsd(<4 x i32>, <4 x i32>) nounwind readnone
define i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminsd, %0, %1)
ret i32 %ret
}
define i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxsd, %0, %1)
ret i32 %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unsigned int min/max
declare <4 x i32> @llvm.x86.sse41.pminud(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.x86.sse41.pmaxud(<4 x i32>, <4 x i32>) nounwind readnone
define i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminud, %0, %1)
ret i32 %ret
}
define i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxud, %0, %1)
ret i32 %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops
declare i32 @llvm.ctpop.i32(i32) nounwind readnone
define i32 @__popcnt_int32(i32) nounwind readonly alwaysinline {
%call = call i32 @llvm.ctpop.i32(i32 %0)
ret i32 %call
}
declare i64 @llvm.ctpop.i64(i64) nounwind readnone
define i64 @__popcnt_int64(i64) nounwind readonly alwaysinline {
%call = call i64 @llvm.ctpop.i64(i64 %0)
ret i64 %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision sqrt
declare <2 x double> @llvm.x86.sse.sqrt.sd(<2 x double>) nounwind readnone
define double @__sqrt_uniform_double(double) nounwind alwaysinline {
sse_unary_scalar(ret, 2, double, @llvm.x86.sse.sqrt.sd, %0)
ret double %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision min/max
declare <2 x double> @llvm.x86.sse2.max.sd(<2 x double>, <2 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.min.sd(<2 x double>, <2 x double>) nounwind readnone
define double @__min_uniform_double(double, double) nounwind readnone alwaysinline {
sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.min.sd, %0, %1)
ret double %ret
}
define double @__max_uniform_double(double, double) nounwind readnone alwaysinline {
sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.max.sd, %0, %1)
ret double %ret
}

658
builtins-avx-x2.ll Normal file
View File

@@ -0,0 +1,658 @@
;; Copyright (c) 2010-2011, Intel Corporation
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;;
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;;
;; * Neither the name of Intel Corporation nor the names of its
;; contributors may be used to endorse or promote products derived from
;; this software without specific prior written permission.
;;
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Basic 16-wide definitions
stdlib_core(16)
packed_load_and_store(16)
scans(16)
int64minmax(16)
include(`builtins-avx-common.ll')
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rcp
declare <8 x float> @llvm.x86.avx.rcp.ps.256(<8 x float>) nounwind readnone
define <16 x float> @__rcp_varying_float(<16 x float>) nounwind readonly alwaysinline {
; float iv = __rcp_v(v);
; return iv * (2. - v * iv);
unary8to16(call, float, @llvm.x86.avx.rcp.ps.256, %0)
; do one N-R iteration
%v_iv = fmul <16 x float> %0, %call
%two_minus = fsub <16 x float> <float 2., float 2., float 2., float 2.,
float 2., float 2., float 2., float 2.,
float 2., float 2., float 2., float 2.,
float 2., float 2., float 2., float 2.>, %v_iv
%iv_mul = fmul <16 x float> %call, %two_minus
ret <16 x float> %iv_mul
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding floats
declare <8 x float> @llvm.x86.avx.round.ps.256(<8 x float>, i32) nounwind readnone
define <16 x float> @__round_varying_float(<16 x float>) nounwind readonly alwaysinline {
; roundps, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
round8to16(%0, 8)
}
define <16 x float> @__floor_varying_float(<16 x float>) nounwind readonly alwaysinline {
; roundps, round down 0b01 | don't signal precision exceptions 0b1001 = 9
round8to16(%0, 9)
}
define <16 x float> @__ceil_varying_float(<16 x float>) nounwind readonly alwaysinline {
; roundps, round up 0b10 | don't signal precision exceptions 0b1010 = 10
round8to16(%0, 10)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding doubles
declare <4 x double> @llvm.x86.avx.round.pd.256(<4 x double>, i32) nounwind readnone
define <16 x double> @__round_varying_double(<16 x double>) nounwind readonly alwaysinline {
round4to16double(%0, 8)
}
define <16 x double> @__floor_varying_double(<16 x double>) nounwind readonly alwaysinline {
round4to16double(%0, 9)
}
define <16 x double> @__ceil_varying_double(<16 x double>) nounwind readonly alwaysinline {
round4to16double(%0, 10)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rsqrt
declare <8 x float> @llvm.x86.avx.rsqrt.ps.256(<8 x float>) nounwind readnone
define <16 x float> @__rsqrt_varying_float(<16 x float> %v) nounwind readonly alwaysinline {
; float is = __rsqrt_v(v);
unary8to16(is, float, @llvm.x86.avx.rsqrt.ps.256, %v)
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul <16 x float> %v, %is
%v_is_is = fmul <16 x float> %v_is, %is
%three_sub = fsub <16 x float> <float 3., float 3., float 3., float 3.,
float 3., float 3., float 3., float 3.,
float 3., float 3., float 3., float 3.,
float 3., float 3., float 3., float 3.>, %v_is_is
%is_mul = fmul <16 x float> %is, %three_sub
%half_scale = fmul <16 x float> <float 0.5, float 0.5, float 0.5, float 0.5,
float 0.5, float 0.5, float 0.5, float 0.5,
float 0.5, float 0.5, float 0.5, float 0.5,
float 0.5, float 0.5, float 0.5, float 0.5>, %is_mul
ret <16 x float> %half_scale
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; sqrt
declare <8 x float> @llvm.x86.avx.sqrt.ps.256(<8 x float>) nounwind readnone
define <16 x float> @__sqrt_varying_float(<16 x float>) nounwind readonly alwaysinline {
unary8to16(call, float, @llvm.x86.avx.sqrt.ps.256, %0)
ret <16 x float> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; svml
; FIXME: need either to wire these up to the 8-wide SVML entrypoints,
; or, use the macro to call the 4-wide ones 4x with our 16-wide
; vectors...
declare <16 x float> @__svml_sin(<16 x float>)
declare <16 x float> @__svml_cos(<16 x float>)
declare void @__svml_sincos(<16 x float>, <16 x float> *, <16 x float> *)
declare <16 x float> @__svml_tan(<16 x float>)
declare <16 x float> @__svml_atan(<16 x float>)
declare <16 x float> @__svml_atan2(<16 x float>, <16 x float>)
declare <16 x float> @__svml_exp(<16 x float>)
declare <16 x float> @__svml_log(<16 x float>)
declare <16 x float> @__svml_pow(<16 x float>, <16 x float>)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; float min/max
declare <8 x float> @llvm.x86.avx.max.ps.256(<8 x float>, <8 x float>) nounwind readnone
declare <8 x float> @llvm.x86.avx.min.ps.256(<8 x float>, <8 x float>) nounwind readnone
define <16 x float> @__max_varying_float(<16 x float>,
<16 x float>) nounwind readonly alwaysinline {
binary8to16(call, float, @llvm.x86.avx.max.ps.256, %0, %1)
ret <16 x float> %call
}
define <16 x float> @__min_varying_float(<16 x float>,
<16 x float>) nounwind readonly alwaysinline {
binary8to16(call, float, @llvm.x86.avx.min.ps.256, %0, %1)
ret <16 x float> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; int min/max
define <16 x i32> @__min_varying_int32(<16 x i32>, <16 x i32>) nounwind readonly alwaysinline {
binary4to16(ret, i32, @llvm.x86.sse41.pminsd, %0, %1)
ret <16 x i32> %ret
}
define <16 x i32> @__max_varying_int32(<16 x i32>, <16 x i32>) nounwind readonly alwaysinline {
binary4to16(ret, i32, @llvm.x86.sse41.pmaxsd, %0, %1)
ret <16 x i32> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unsigned int min/max
define <16 x i32> @__min_varying_uint32(<16 x i32>, <16 x i32>) nounwind readonly alwaysinline {
binary4to16(ret, i32, @llvm.x86.sse41.pminud, %0, %1)
ret <16 x i32> %ret
}
define <16 x i32> @__max_varying_uint32(<16 x i32>, <16 x i32>) nounwind readonly alwaysinline {
binary4to16(ret, i32, @llvm.x86.sse41.pmaxud, %0, %1)
ret <16 x i32> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops
declare i32 @llvm.x86.avx.movmsk.ps.256(<8 x float>) nounwind readnone
define i32 @__movmsk(<16 x i32>) nounwind readnone alwaysinline {
%floatmask = bitcast <16 x i32> %0 to <16 x float>
%mask0 = shufflevector <16 x float> %floatmask, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%v0 = call i32 @llvm.x86.avx.movmsk.ps.256(<8 x float> %mask0) nounwind readnone
%mask1 = shufflevector <16 x float> %floatmask, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%v1 = call i32 @llvm.x86.avx.movmsk.ps.256(<8 x float> %mask1) nounwind readnone
%v1shift = shl i32 %v1, 8
%v = or i32 %v1shift, %v0
ret i32 %v
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; horizontal float ops
declare <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float>, <8 x float>) nounwind readnone
define float @__reduce_add_float(<16 x float>) nounwind readonly alwaysinline {
%va = shufflevector <16 x float> %0, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%vb = shufflevector <16 x float> %0, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%v1 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %va, <8 x float> %vb)
%v2 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %v1, <8 x float> %v1)
%v3 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %v2, <8 x float> %v2)
%scalar1 = extractelement <8 x float> %v3, i32 0
%scalar2 = extractelement <8 x float> %v3, i32 4
%sum = fadd float %scalar1, %scalar2
ret float %sum
}
define float @__reduce_min_float(<16 x float>) nounwind readnone alwaysinline {
reduce16(float, @__min_varying_float, @__min_uniform_float)
}
define float @__reduce_max_float(<16 x float>) nounwind readnone alwaysinline {
reduce16(float, @__max_varying_float, @__max_uniform_float)
}
reduce_equal(16)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; horizontal int32 ops
define <16 x i32> @__add_varying_int32(<16 x i32>,
<16 x i32>) nounwind readnone alwaysinline {
%s = add <16 x i32> %0, %1
ret <16 x i32> %s
}
define i32 @__add_uniform_int32(i32, i32) nounwind readnone alwaysinline {
%s = add i32 %0, %1
ret i32 %s
}
define i32 @__reduce_add_int32(<16 x i32>) nounwind readnone alwaysinline {
reduce16(i32, @__add_varying_int32, @__add_uniform_int32)
}
define i32 @__reduce_min_int32(<16 x i32>) nounwind readnone alwaysinline {
reduce16(i32, @__min_varying_int32, @__min_uniform_int32)
}
define i32 @__reduce_max_int32(<16 x i32>) nounwind readnone alwaysinline {
reduce16(i32, @__max_varying_int32, @__max_uniform_int32)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; horizontal uint32 ops
define i32 @__reduce_add_uint32(<16 x i32> %v) nounwind readnone alwaysinline {
%r = call i32 @__reduce_add_int32(<16 x i32> %v)
ret i32 %r
}
define i32 @__reduce_min_uint32(<16 x i32>) nounwind readnone alwaysinline {
reduce16(i32, @__min_varying_uint32, @__min_uniform_uint32)
}
define i32 @__reduce_max_uint32(<16 x i32>) nounwind readnone alwaysinline {
reduce16(i32, @__max_varying_uint32, @__max_uniform_uint32)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; horizontal double ops
declare <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double>, <4 x double>) nounwind readnone
define double @__reduce_add_double(<16 x double>) nounwind readonly alwaysinline {
%va = shufflevector <16 x double> %0, <16 x double> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%vb = shufflevector <16 x double> %0, <16 x double> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%vc = shufflevector <16 x double> %0, <16 x double> undef,
<4 x i32> <i32 8, i32 9, i32 10, i32 11>
%vd = shufflevector <16 x double> %0, <16 x double> undef,
<4 x i32> <i32 12, i32 13, i32 14, i32 15>
%vab = fadd <4 x double> %va, %vb
%vcd = fadd <4 x double> %vc, %vd
%sum0 = call <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double> %vab, <4 x double> %vcd)
%sum1 = call <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double> %sum0, <4 x double> %sum0)
%final0 = extractelement <4 x double> %sum1, i32 0
%final1 = extractelement <4 x double> %sum1, i32 2
%sum = fadd double %final0, %final1
ret double %sum
}
define double @__reduce_min_double(<16 x double>) nounwind readnone alwaysinline {
reduce16(double, @__min_varying_double, @__min_uniform_double)
}
define double @__reduce_max_double(<16 x double>) nounwind readnone alwaysinline {
reduce16(double, @__max_varying_double, @__max_uniform_double)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; horizontal int64 ops
define <16 x i64> @__add_varying_int64(<16 x i64>,
<16 x i64>) nounwind readnone alwaysinline {
%s = add <16 x i64> %0, %1
ret <16 x i64> %s
}
define i64 @__add_uniform_int64(i64, i64) nounwind readnone alwaysinline {
%s = add i64 %0, %1
ret i64 %s
}
define i64 @__reduce_add_int64(<16 x i64>) nounwind readnone alwaysinline {
reduce16(i64, @__add_varying_int64, @__add_uniform_int64)
}
define i64 @__reduce_min_int64(<16 x i64>) nounwind readnone alwaysinline {
reduce16(i64, @__min_varying_int64, @__min_uniform_int64)
}
define i64 @__reduce_max_int64(<16 x i64>) nounwind readnone alwaysinline {
reduce16(i64, @__max_varying_int64, @__max_uniform_int64)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; horizontal uint64 ops
define i64 @__reduce_add_uint64(<16 x i64> %v) nounwind readnone alwaysinline {
%r = call i64 @__reduce_add_int64(<16 x i64> %v)
ret i64 %r
}
define i64 @__reduce_min_uint64(<16 x i64>) nounwind readnone alwaysinline {
reduce16(i64, @__min_varying_uint64, @__min_uniform_uint64)
}
define i64 @__reduce_max_uint64(<16 x i64>) nounwind readnone alwaysinline {
reduce16(i64, @__max_varying_uint64, @__max_uniform_uint64)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unaligned loads/loads+broadcasts
load_and_broadcast(16, i8, 8)
load_and_broadcast(16, i16, 16)
load_and_broadcast(16, i32, 32)
load_and_broadcast(16, i64, 64)
; no masked load instruction for i8 and i16 types??
load_masked(16, i8, 8, 1)
load_masked(16, i16, 16, 2)
declare <8 x float> @llvm.x86.avx.maskload.ps.256(i8 *, <8 x float> %mask)
declare <4 x double> @llvm.x86.avx.maskload.pd.256(i8 *, <4 x double> %mask)
define <16 x i32> @__load_masked_32(i8 *, <16 x i32> %mask) nounwind alwaysinline {
%floatmask = bitcast <16 x i32> %mask to <16 x float>
%mask0 = shufflevector <16 x float> %floatmask, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%val0 = call <8 x float> @llvm.x86.avx.maskload.ps.256(i8 * %0, <8 x float> %mask0)
%mask1 = shufflevector <16 x float> %floatmask, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%ptr1 = getelementptr i8 * %0, i32 32 ;; 8x4 bytes = 32
%val1 = call <8 x float> @llvm.x86.avx.maskload.ps.256(i8 * %ptr1, <8 x float> %mask1)
%retval = shufflevector <8 x float> %val0, <8 x float> %val1,
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%reti32 = bitcast <16 x float> %retval to <16 x i32>
ret <16 x i32> %reti32
}
define <16 x i64> @__load_masked_64(i8 *, <16 x i32> %mask) nounwind alwaysinline {
; double up masks, bitcast to doubles
%mask0 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 2, i32 2, i32 3, i32 3>
%mask1 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 4, i32 4, i32 5, i32 5, i32 6, i32 6, i32 7, i32 7>
%mask2 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 8, i32 8, i32 9, i32 9, i32 10, i32 10, i32 11, i32 11>
%mask3 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 12, i32 12, i32 13, i32 13, i32 14, i32 14, i32 15, i32 15>
%mask0d = bitcast <8 x i32> %mask0 to <4 x double>
%mask1d = bitcast <8 x i32> %mask1 to <4 x double>
%mask2d = bitcast <8 x i32> %mask2 to <4 x double>
%mask3d = bitcast <8 x i32> %mask3 to <4 x double>
%val0d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %0, <4 x double> %mask0d)
%ptr1 = getelementptr i8 * %0, i32 32
%val1d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %ptr1, <4 x double> %mask1d)
%ptr2 = getelementptr i8 * %0, i32 64
%val2d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %ptr2, <4 x double> %mask2d)
%ptr3 = getelementptr i8 * %0, i32 96
%val3d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %ptr3, <4 x double> %mask3d)
%val01 = shufflevector <4 x double> %val0d, <4 x double> %val1d,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%val23 = shufflevector <4 x double> %val2d, <4 x double> %val3d,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%val0123 = shufflevector <8 x double> %val01, <8 x double> %val23,
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%val = bitcast <16 x double> %val0123 to <16 x i64>
ret <16 x i64> %val
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; masked store
; FIXME: there is no AVX instruction for these, but we could be clever
; by packing the bits down and setting the last 3/4 or half, respectively,
; of the mask to zero... Not sure if this would be a win in the end
gen_masked_store(16, i8, 8)
gen_masked_store(16, i16, 16)
; note that mask is the 2nd parameter, not the 3rd one!!
declare void @llvm.x86.avx.maskstore.ps.256(i8 *, <8 x float>, <8 x float>)
declare void @llvm.x86.avx.maskstore.pd.256(i8 *, <4 x double>, <4 x double>)
define void @__masked_store_32(<16 x i32>* nocapture, <16 x i32>,
<16 x i32>) nounwind alwaysinline {
%ptr = bitcast <16 x i32> * %0 to i8 *
%val = bitcast <16 x i32> %1 to <16 x float>
%mask = bitcast <16 x i32> %2 to <16 x float>
%val0 = shufflevector <16 x float> %val, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%val1 = shufflevector <16 x float> %val, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%mask0 = shufflevector <16 x float> %mask, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%mask1 = shufflevector <16 x float> %mask, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
call void @llvm.x86.avx.maskstore.ps.256(i8 * %ptr, <8 x float> %mask0, <8 x float> %val0)
%ptr1 = getelementptr i8 * %ptr, i32 32
call void @llvm.x86.avx.maskstore.ps.256(i8 * %ptr1, <8 x float> %mask1, <8 x float> %val1)
ret void
}
define void @__masked_store_64(<16 x i64>* nocapture, <16 x i64>,
<16 x i32> %mask) nounwind alwaysinline {
%ptr = bitcast <16 x i64> * %0 to i8 *
%val = bitcast <16 x i64> %1 to <16 x double>
; double up masks, bitcast to doubles
%mask0 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 2, i32 2, i32 3, i32 3>
%mask1 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 4, i32 4, i32 5, i32 5, i32 6, i32 6, i32 7, i32 7>
%mask2 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 8, i32 8, i32 9, i32 9, i32 10, i32 10, i32 11, i32 11>
%mask3 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 12, i32 12, i32 13, i32 13, i32 14, i32 14, i32 15, i32 15>
%mask0d = bitcast <8 x i32> %mask0 to <4 x double>
%mask1d = bitcast <8 x i32> %mask1 to <4 x double>
%mask2d = bitcast <8 x i32> %mask2 to <4 x double>
%mask3d = bitcast <8 x i32> %mask3 to <4 x double>
%val0 = shufflevector <16 x double> %val, <16 x double> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%val1 = shufflevector <16 x double> %val, <16 x double> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%val2 = shufflevector <16 x double> %val, <16 x double> undef,
<4 x i32> <i32 8, i32 9, i32 10, i32 11>
%val3 = shufflevector <16 x double> %val, <16 x double> undef,
<4 x i32> <i32 12, i32 13, i32 14, i32 15>
call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr, <4 x double> %mask0d, <4 x double> %val0)
%ptr1 = getelementptr i8 * %ptr, i32 32
call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr1, <4 x double> %mask1d, <4 x double> %val1)
%ptr2 = getelementptr i8 * %ptr, i32 64
call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr2, <4 x double> %mask2d, <4 x double> %val2)
%ptr3 = getelementptr i8 * %ptr, i32 96
call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr3, <4 x double> %mask3d, <4 x double> %val3)
ret void
}
masked_store_blend_8_16_by_16()
declare <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float>, <8 x float>,
<8 x float>) nounwind readnone
define void @__masked_store_blend_32(<16 x i32>* nocapture, <16 x i32>,
<16 x i32>) nounwind alwaysinline {
%maskAsFloat = bitcast <16 x i32> %2 to <16 x float>
%oldValue = load <16 x i32>* %0, align 4
%oldAsFloat = bitcast <16 x i32> %oldValue to <16 x float>
%newAsFloat = bitcast <16 x i32> %1 to <16 x float>
%old0 = shufflevector <16 x float> %oldAsFloat, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%old1 = shufflevector <16 x float> %oldAsFloat, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%new0 = shufflevector <16 x float> %newAsFloat, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%new1 = shufflevector <16 x float> %newAsFloat, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%mask0 = shufflevector <16 x float> %maskAsFloat, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%mask1 = shufflevector <16 x float> %maskAsFloat, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%blend0 = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %old0,
<8 x float> %new0,
<8 x float> %mask0)
%blend1 = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %old1,
<8 x float> %new1,
<8 x float> %mask1)
%blend = shufflevector <8 x float> %blend0, <8 x float> %blend1,
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%blendAsInt = bitcast <16 x float> %blend to <16 x i32>
store <16 x i32> %blendAsInt, <16 x i32>* %0, align 4
ret void
}
declare <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double>, <4 x double>,
<4 x double>) nounwind readnone
define void @__masked_store_blend_64(<16 x i64>* nocapture %ptr, <16 x i64> %newi64,
<16 x i32> %mask) nounwind alwaysinline {
%oldValue = load <16 x i64>* %ptr, align 8
%old = bitcast <16 x i64> %oldValue to <16 x double>
%old0d = shufflevector <16 x double> %old, <16 x double> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%old1d = shufflevector <16 x double> %old, <16 x double> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%old2d = shufflevector <16 x double> %old, <16 x double> undef,
<4 x i32> <i32 8, i32 9, i32 10, i32 11>
%old3d = shufflevector <16 x double> %old, <16 x double> undef,
<4 x i32> <i32 12, i32 13, i32 14, i32 15>
%new = bitcast <16 x i64> %newi64 to <16 x double>
%new0d = shufflevector <16 x double> %new, <16 x double> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%new1d = shufflevector <16 x double> %new, <16 x double> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%new2d = shufflevector <16 x double> %new, <16 x double> undef,
<4 x i32> <i32 8, i32 9, i32 10, i32 11>
%new3d = shufflevector <16 x double> %new, <16 x double> undef,
<4 x i32> <i32 12, i32 13, i32 14, i32 15>
%mask0 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 2, i32 2, i32 3, i32 3>
%mask1 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 4, i32 4, i32 5, i32 5, i32 6, i32 6, i32 7, i32 7>
%mask2 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 8, i32 8, i32 9, i32 9, i32 10, i32 10, i32 11, i32 11>
%mask3 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 12, i32 12, i32 13, i32 13, i32 14, i32 14, i32 15, i32 15>
%mask0d = bitcast <8 x i32> %mask0 to <4 x double>
%mask1d = bitcast <8 x i32> %mask1 to <4 x double>
%mask2d = bitcast <8 x i32> %mask2 to <4 x double>
%mask3d = bitcast <8 x i32> %mask3 to <4 x double>
%result0d = call <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double> %old0d,
<4 x double> %new0d, <4 x double> %mask0d)
%result1d = call <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double> %old1d,
<4 x double> %new1d, <4 x double> %mask1d)
%result2d = call <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double> %old2d,
<4 x double> %new2d, <4 x double> %mask2d)
%result3d = call <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double> %old3d,
<4 x double> %new3d, <4 x double> %mask3d)
%result01 = shufflevector <4 x double> %result0d, <4 x double> %result1d,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%result23 = shufflevector <4 x double> %result2d, <4 x double> %result3d,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%result = shufflevector <8 x double> %result01, <8 x double> %result23,
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%result64 = bitcast <16 x double> %result to <16 x i64>
store <16 x i64> %result64, <16 x i64> * %ptr
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; gather/scatter
gen_gather(16, i8)
gen_gather(16, i16)
gen_gather(16, i32)
gen_gather(16, i64)
gen_scatter(16, i8)
gen_scatter(16, i16)
gen_scatter(16, i32)
gen_scatter(16, i64)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision sqrt
declare <4 x double> @llvm.x86.avx.sqrt.pd.256(<4 x double>) nounwind readnone
define <16 x double> @__sqrt_varying_double(<16 x double>) nounwind alwaysinline {
unary4to16(ret, double, @llvm.x86.avx.sqrt.pd.256, %0)
ret <16 x double> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision min/max
declare <4 x double> @llvm.x86.avx.max.pd.256(<4 x double>, <4 x double>) nounwind readnone
declare <4 x double> @llvm.x86.avx.min.pd.256(<4 x double>, <4 x double>) nounwind readnone
define <16 x double> @__min_varying_double(<16 x double>, <16 x double>) nounwind readnone alwaysinline {
binary4to16(ret, double, @llvm.x86.avx.min.pd.256, %0, %1)
ret <16 x double> %ret
}
define <16 x double> @__max_varying_double(<16 x double>, <16 x double>) nounwind readnone alwaysinline {
binary4to16(ret, double, @llvm.x86.avx.max.pd.256, %0, %1)
ret <16 x double> %ret
}

557
builtins-avx.ll Normal file
View File

@@ -0,0 +1,557 @@
;; Copyright (c) 2010-2011, Intel Corporation
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;;
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;;
;; * Neither the name of Intel Corporation nor the names of its
;; contributors may be used to endorse or promote products derived from
;; this software without specific prior written permission.
;;
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Basic 8-wide definitions
stdlib_core(8)
packed_load_and_store(8)
scans(8)
int64minmax(8)
include(`builtins-avx-common.ll')
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rcp
declare <8 x float> @llvm.x86.avx.rcp.ps.256(<8 x float>) nounwind readnone
define <8 x float> @__rcp_varying_float(<8 x float>) nounwind readonly alwaysinline {
; float iv = __rcp_v(v);
; return iv * (2. - v * iv);
%call = call <8 x float> @llvm.x86.avx.rcp.ps.256(<8 x float> %0)
; do one N-R iteration
%v_iv = fmul <8 x float> %0, %call
%two_minus = fsub <8 x float> <float 2., float 2., float 2., float 2.,
float 2., float 2., float 2., float 2.>, %v_iv
%iv_mul = fmul <8 x float> %call, %two_minus
ret <8 x float> %iv_mul
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding floats
declare <8 x float> @llvm.x86.avx.round.ps.256(<8 x float>, i32) nounwind readnone
define <8 x float> @__round_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
%call = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %0, i32 8)
ret <8 x float> %call
}
define <8 x float> @__floor_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round down 0b01 | don't signal precision exceptions 0b1001 = 9
%call = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %0, i32 9)
ret <8 x float> %call
}
define <8 x float> @__ceil_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round up 0b10 | don't signal precision exceptions 0b1010 = 10
%call = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %0, i32 10)
ret <8 x float> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding doubles
declare <4 x double> @llvm.x86.avx.round.pd.256(<4 x double>, i32) nounwind readnone
define <8 x double> @__round_varying_double(<8 x double>) nounwind readonly alwaysinline {
round4to8double(%0, 8)
}
define <8 x double> @__floor_varying_double(<8 x double>) nounwind readonly alwaysinline {
; roundpd, round down 0b01 | don't signal precision exceptions 0b1000 = 9
round4to8double(%0, 9)
}
define <8 x double> @__ceil_varying_double(<8 x double>) nounwind readonly alwaysinline {
; roundpd, round up 0b10 | don't signal precision exceptions 0b1000 = 10
round4to8double(%0, 10)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rsqrt
declare <8 x float> @llvm.x86.avx.rsqrt.ps.256(<8 x float>) nounwind readnone
define <8 x float> @__rsqrt_varying_float(<8 x float> %v) nounwind readonly alwaysinline {
; float is = __rsqrt_v(v);
%is = call <8 x float> @llvm.x86.avx.rsqrt.ps.256(<8 x float> %v)
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul <8 x float> %v, %is
%v_is_is = fmul <8 x float> %v_is, %is
%three_sub = fsub <8 x float> <float 3., float 3., float 3., float 3.,
float 3., float 3., float 3., float 3.>, %v_is_is
%is_mul = fmul <8 x float> %is, %three_sub
%half_scale = fmul <8 x float> <float 0.5, float 0.5, float 0.5, float 0.5,
float 0.5, float 0.5, float 0.5, float 0.5>, %is_mul
ret <8 x float> %half_scale
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; sqrt
declare <8 x float> @llvm.x86.avx.sqrt.ps.256(<8 x float>) nounwind readnone
define <8 x float> @__sqrt_varying_float(<8 x float>) nounwind readonly alwaysinline {
%call = call <8 x float> @llvm.x86.avx.sqrt.ps.256(<8 x float> %0)
ret <8 x float> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; svml
; FIXME: need either to wire these up to the 8-wide SVML entrypoints,
; or, use the macro to call the 4-wide ones twice with our 8-wide
; vectors...
declare <8 x float> @__svml_sin(<8 x float>)
declare <8 x float> @__svml_cos(<8 x float>)
declare void @__svml_sincos(<8 x float>, <8 x float> *, <8 x float> *)
declare <8 x float> @__svml_tan(<8 x float>)
declare <8 x float> @__svml_atan(<8 x float>)
declare <8 x float> @__svml_atan2(<8 x float>, <8 x float>)
declare <8 x float> @__svml_exp(<8 x float>)
declare <8 x float> @__svml_log(<8 x float>)
declare <8 x float> @__svml_pow(<8 x float>, <8 x float>)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; float min/max
declare <8 x float> @llvm.x86.avx.max.ps.256(<8 x float>, <8 x float>) nounwind readnone
declare <8 x float> @llvm.x86.avx.min.ps.256(<8 x float>, <8 x float>) nounwind readnone
define <8 x float> @__max_varying_float(<8 x float>,
<8 x float>) nounwind readonly alwaysinline {
%call = call <8 x float> @llvm.x86.avx.max.ps.256(<8 x float> %0, <8 x float> %1)
ret <8 x float> %call
}
define <8 x float> @__min_varying_float(<8 x float>,
<8 x float>) nounwind readonly alwaysinline {
%call = call <8 x float> @llvm.x86.avx.min.ps.256(<8 x float> %0, <8 x float> %1)
ret <8 x float> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; int min/max
define <8 x i32> @__min_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
binary4to8(ret, i32, @llvm.x86.sse41.pminsd, %0, %1)
ret <8 x i32> %ret
}
define <8 x i32> @__max_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
binary4to8(ret, i32, @llvm.x86.sse41.pmaxsd, %0, %1)
ret <8 x i32> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unsigned int min/max
define <8 x i32> @__min_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
binary4to8(ret, i32, @llvm.x86.sse41.pminud, %0, %1)
ret <8 x i32> %ret
}
define <8 x i32> @__max_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
binary4to8(ret, i32, @llvm.x86.sse41.pmaxud, %0, %1)
ret <8 x i32> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops
declare i32 @llvm.x86.avx.movmsk.ps.256(<8 x float>) nounwind readnone
define i32 @__movmsk(<8 x i32>) nounwind readnone alwaysinline {
%floatmask = bitcast <8 x i32> %0 to <8 x float>
%v = call i32 @llvm.x86.avx.movmsk.ps.256(<8 x float> %floatmask) nounwind readnone
ret i32 %v
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; horizontal float ops
declare <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float>, <8 x float>) nounwind readnone
define float @__reduce_add_float(<8 x float>) nounwind readonly alwaysinline {
%v1 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %0, <8 x float> %0)
%v2 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %v1, <8 x float> %v1)
%scalar1 = extractelement <8 x float> %v2, i32 0
%scalar2 = extractelement <8 x float> %v2, i32 4
%sum = fadd float %scalar1, %scalar2
ret float %sum
}
define float @__reduce_min_float(<8 x float>) nounwind readnone alwaysinline {
reduce8(float, @__min_varying_float, @__min_uniform_float)
}
define float @__reduce_max_float(<8 x float>) nounwind readnone alwaysinline {
reduce8(float, @__max_varying_float, @__max_uniform_float)
}
reduce_equal(8)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; horizontal int32 ops
define <8 x i32> @__add_varying_int32(<8 x i32>,
<8 x i32>) nounwind readnone alwaysinline {
%s = add <8 x i32> %0, %1
ret <8 x i32> %s
}
define i32 @__add_uniform_int32(i32, i32) nounwind readnone alwaysinline {
%s = add i32 %0, %1
ret i32 %s
}
define i32 @__reduce_add_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__add_varying_int32, @__add_uniform_int32)
}
define i32 @__reduce_min_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__min_varying_int32, @__min_uniform_int32)
}
define i32 @__reduce_max_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__max_varying_int32, @__max_uniform_int32)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; horizontal uint32 ops
define i32 @__reduce_add_uint32(<8 x i32> %v) nounwind readnone alwaysinline {
%r = call i32 @__reduce_add_int32(<8 x i32> %v)
ret i32 %r
}
define i32 @__reduce_min_uint32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__min_varying_uint32, @__min_uniform_uint32)
}
define i32 @__reduce_max_uint32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__max_varying_uint32, @__max_uniform_uint32)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; horizontal double ops
declare <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double>, <4 x double>) nounwind readnone
define double @__reduce_add_double(<8 x double>) nounwind readonly alwaysinline {
%v0 = shufflevector <8 x double> %0, <8 x double> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%v1 = shufflevector <8 x double> %0, <8 x double> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%sum0 = call <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double> %v0, <4 x double> %v1)
%sum1 = call <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double> %sum0, <4 x double> %sum0)
%final0 = extractelement <4 x double> %sum1, i32 0
%final1 = extractelement <4 x double> %sum1, i32 2
%sum = fadd double %final0, %final1
ret double %sum
}
define double @__reduce_min_double(<8 x double>) nounwind readnone alwaysinline {
reduce8(double, @__min_varying_double, @__min_uniform_double)
}
define double @__reduce_max_double(<8 x double>) nounwind readnone alwaysinline {
reduce8(double, @__max_varying_double, @__max_uniform_double)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; horizontal int64 ops
define <8 x i64> @__add_varying_int64(<8 x i64>,
<8 x i64>) nounwind readnone alwaysinline {
%s = add <8 x i64> %0, %1
ret <8 x i64> %s
}
define i64 @__add_uniform_int64(i64, i64) nounwind readnone alwaysinline {
%s = add i64 %0, %1
ret i64 %s
}
define i64 @__reduce_add_int64(<8 x i64>) nounwind readnone alwaysinline {
reduce8(i64, @__add_varying_int64, @__add_uniform_int64)
}
define i64 @__reduce_min_int64(<8 x i64>) nounwind readnone alwaysinline {
reduce8(i64, @__min_varying_int64, @__min_uniform_int64)
}
define i64 @__reduce_max_int64(<8 x i64>) nounwind readnone alwaysinline {
reduce8(i64, @__max_varying_int64, @__max_uniform_int64)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; horizontal uint64 ops
define i64 @__reduce_add_uint64(<8 x i64> %v) nounwind readnone alwaysinline {
%r = call i64 @__reduce_add_int64(<8 x i64> %v)
ret i64 %r
}
define i64 @__reduce_min_uint64(<8 x i64>) nounwind readnone alwaysinline {
reduce8(i64, @__min_varying_uint64, @__min_uniform_uint64)
}
define i64 @__reduce_max_uint64(<8 x i64>) nounwind readnone alwaysinline {
reduce8(i64, @__max_varying_uint64, @__max_uniform_uint64)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unaligned loads/loads+broadcasts
load_and_broadcast(8, i8, 8)
load_and_broadcast(8, i16, 16)
load_and_broadcast(8, i32, 32)
load_and_broadcast(8, i64, 64)
; no masked load instruction for i8 and i16 types??
load_masked(8, i8, 8, 1)
load_masked(8, i16, 16, 2)
declare <8 x float> @llvm.x86.avx.maskload.ps.256(i8 *, <8 x float> %mask)
declare <4 x double> @llvm.x86.avx.maskload.pd.256(i8 *, <4 x double> %mask)
define <8 x i32> @__load_masked_32(i8 *, <8 x i32> %mask) nounwind alwaysinline {
%floatmask = bitcast <8 x i32> %mask to <8 x float>
%floatval = call <8 x float> @llvm.x86.avx.maskload.ps.256(i8 * %0, <8 x float> %floatmask)
%retval = bitcast <8 x float> %floatval to <8 x i32>
ret <8 x i32> %retval
}
define <8 x i64> @__load_masked_64(i8 *, <8 x i32> %mask) nounwind alwaysinline {
; double up masks, bitcast to doubles
%mask0 = shufflevector <8 x i32> %mask, <8 x i32> undef,
<8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 2, i32 2, i32 3, i32 3>
%mask1 = shufflevector <8 x i32> %mask, <8 x i32> undef,
<8 x i32> <i32 4, i32 4, i32 5, i32 5, i32 6, i32 6, i32 7, i32 7>
%mask0d = bitcast <8 x i32> %mask0 to <4 x double>
%mask1d = bitcast <8 x i32> %mask1 to <4 x double>
%val0d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %0, <4 x double> %mask0d)
%ptr1 = getelementptr i8 * %0, i32 32
%val1d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %ptr1, <4 x double> %mask1d)
%vald = shufflevector <4 x double> %val0d, <4 x double> %val1d,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%val = bitcast <8 x double> %vald to <8 x i64>
ret <8 x i64> %val
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; masked store
; FIXME: there is no AVX instruction for these, but we could be clever
; by packing the bits down and setting the last 3/4 or half, respectively,
; of the mask to zero... Not sure if this would be a win in the end
gen_masked_store(8, i8, 8)
gen_masked_store(8, i16, 16)
; note that mask is the 2nd parameter, not the 3rd one!!
declare void @llvm.x86.avx.maskstore.ps.256(i8 *, <8 x float>, <8 x float>)
declare void @llvm.x86.avx.maskstore.pd.256(i8 *, <4 x double>, <4 x double>)
define void @__masked_store_32(<8 x i32>* nocapture, <8 x i32>,
<8 x i32>) nounwind alwaysinline {
%ptr = bitcast <8 x i32> * %0 to i8 *
%val = bitcast <8 x i32> %1 to <8 x float>
%mask = bitcast <8 x i32> %2 to <8 x float>
call void @llvm.x86.avx.maskstore.ps.256(i8 * %ptr, <8 x float> %mask, <8 x float> %val)
ret void
}
define void @__masked_store_64(<8 x i64>* nocapture, <8 x i64>,
<8 x i32> %mask) nounwind alwaysinline {
%ptr = bitcast <8 x i64> * %0 to i8 *
%val = bitcast <8 x i64> %1 to <8 x double>
%mask0 = shufflevector <8 x i32> %mask, <8 x i32> undef,
<8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 2, i32 2, i32 3, i32 3>
%mask1 = shufflevector <8 x i32> %mask, <8 x i32> undef,
<8 x i32> <i32 4, i32 4, i32 5, i32 5, i32 6, i32 6, i32 7, i32 7>
%mask0d = bitcast <8 x i32> %mask0 to <4 x double>
%mask1d = bitcast <8 x i32> %mask1 to <4 x double>
%val0 = shufflevector <8 x double> %val, <8 x double> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%val1 = shufflevector <8 x double> %val, <8 x double> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr, <4 x double> %mask0d, <4 x double> %val0)
%ptr1 = getelementptr i8 * %ptr, i32 32
call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr1, <4 x double> %mask1d, <4 x double> %val1)
ret void
}
masked_store_blend_8_16_by_8()
declare <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float>, <8 x float>,
<8 x float>) nounwind readnone
define void @__masked_store_blend_32(<8 x i32>* nocapture, <8 x i32>,
<8 x i32>) nounwind alwaysinline {
%mask_as_float = bitcast <8 x i32> %2 to <8 x float>
%oldValue = load <8 x i32>* %0, align 4
%oldAsFloat = bitcast <8 x i32> %oldValue to <8 x float>
%newAsFloat = bitcast <8 x i32> %1 to <8 x float>
%blend = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %oldAsFloat,
<8 x float> %newAsFloat,
<8 x float> %mask_as_float)
%blendAsInt = bitcast <8 x float> %blend to <8 x i32>
store <8 x i32> %blendAsInt, <8 x i32>* %0, align 4
ret void
}
define void @__masked_store_blend_64(<8 x i64>* nocapture %ptr, <8 x i64> %new,
<8 x i32> %i32mask) nounwind alwaysinline {
%oldValue = load <8 x i64>* %ptr, align 8
%mask = bitcast <8 x i32> %i32mask to <8 x float>
; Do 4x64-bit blends by doing two <8 x i32> blends, where the <8 x i32> values
; are actually bitcast <4 x i64> values
;
; set up the first four 64-bit values
%old01 = shufflevector <8 x i64> %oldValue, <8 x i64> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%old01f = bitcast <4 x i64> %old01 to <8 x float>
%new01 = shufflevector <8 x i64> %new, <8 x i64> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%new01f = bitcast <4 x i64> %new01 to <8 x float>
; compute mask--note that the indices are all doubled-up
%mask01 = shufflevector <8 x float> %mask, <8 x float> undef,
<8 x i32> <i32 0, i32 0, i32 1, i32 1,
i32 2, i32 2, i32 3, i32 3>
; and blend them
%result01f = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %old01f,
<8 x float> %new01f,
<8 x float> %mask01)
%result01 = bitcast <8 x float> %result01f to <4 x i64>
; and again
%old23 = shufflevector <8 x i64> %oldValue, <8 x i64> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%old23f = bitcast <4 x i64> %old23 to <8 x float>
%new23 = shufflevector <8 x i64> %new, <8 x i64> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%new23f = bitcast <4 x i64> %new23 to <8 x float>
; compute mask--note that the values are doubled-up...
%mask23 = shufflevector <8 x float> %mask, <8 x float> undef,
<8 x i32> <i32 4, i32 4, i32 5, i32 5,
i32 6, i32 6, i32 7, i32 7>
; and blend them
%result23f = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %old23f,
<8 x float> %new23f,
<8 x float> %mask23)
%result23 = bitcast <8 x float> %result23f to <4 x i64>
; reconstruct the final <8 x i64> vector
%final = shufflevector <4 x i64> %result01, <4 x i64> %result23,
<8 x i32> <i32 0, i32 1, i32 2, i32 3,
i32 4, i32 5, i32 6, i32 7>
store <8 x i64> %final, <8 x i64> * %ptr, align 8
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; gather/scatter
gen_gather(8, i8)
gen_gather(8, i16)
gen_gather(8, i32)
gen_gather(8, i64)
gen_scatter(8, i8)
gen_scatter(8, i16)
gen_scatter(8, i32)
gen_scatter(8, i64)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision sqrt
declare <4 x double> @llvm.x86.avx.sqrt.pd.256(<4 x double>) nounwind readnone
define <8 x double> @__sqrt_varying_double(<8 x double>) nounwind alwaysinline {
unary4to8(ret, double, @llvm.x86.avx.sqrt.pd.256, %0)
ret <8 x double> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision min/max
declare <4 x double> @llvm.x86.avx.max.pd.256(<4 x double>, <4 x double>) nounwind readnone
declare <4 x double> @llvm.x86.avx.min.pd.256(<4 x double>, <4 x double>) nounwind readnone
define <8 x double> @__min_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
binary4to8(ret, double, @llvm.x86.avx.min.pd.256, %0, %1)
ret <8 x double> %ret
}
define <8 x double> @__max_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
binary4to8(ret, double, @llvm.x86.avx.max.pd.256, %0, %1)
ret <8 x double> %ret
}

View File

@@ -31,7 +31,7 @@
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file stdlib-c.c
/** @file builtins-c.c
@brief Standard library function implementations written in C.
This file provides C implementations of various functions that can be
@@ -51,8 +51,13 @@
*/
#ifndef _MSC_VER
#include <unistd.h>
#endif // !_MSC_VER
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
typedef int Bool;
@@ -128,6 +133,8 @@ void __do_print(const char *format, const char *types, int width, int mask,
case 'V': PRINT_VECTOR("%llu", unsigned long long);
case 'd': PRINT_SCALAR("%f", double);
case 'D': PRINT_VECTOR("%f", double);
case 'p': PRINT_SCALAR("%p", void *);
case 'P': PRINT_VECTOR("%p", void *);
default:
printf("UNKNOWN TYPE ");
putchar(*types);
@@ -139,3 +146,28 @@ void __do_print(const char *format, const char *types, int width, int mask,
}
fflush(stdout);
}
int __num_cores() {
#ifdef _MSC_VER
// This is quite a hack. Including all of windows.h to get this definition
// pulls in a bunch of stuff that leads to undefined symbols at link time.
// So we don't #include <windows.h> but instead have the equivalent declarations
// here. Presumably this struct declaration won't be changing in the future
// anyway...
struct SYSTEM_INFO {
int pad0[2];
void *pad1[2];
int *pad2;
int dwNumberOfProcessors;
int pad3[3];
};
struct SYSTEM_INFO sysInfo;
extern void __stdcall GetSystemInfo(struct SYSTEM_INFO *);
GetSystemInfo(&sysInfo);
return sysInfo.dwNumberOfProcessors;
#else
return sysconf(_SC_NPROCESSORS_ONLN);
#endif // !_MSC_VER
}

123
builtins-dispatch.ll Normal file
View File

@@ -0,0 +1,123 @@
;; Copyright (c) 2011, Intel Corporation
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;;
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;;
;; * Neither the name of Intel Corporation nor the names of its
;; contributors may be used to endorse or promote products derived from
;; this software without specific prior written permission.
;;
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;; This file defines various functions that are used when generating the
;; the "dispatch" object/assembly file that has entrypoints for each
;; exported function in a module that dispatch to the best available
;; variant of that function that will run on the system's CPU.
;; Stores the best target ISA that the system on which we're actually
;; running supports. -1 represents "uninitialized", otherwise this value
;; should correspond to one of the enumerant values of Target::ISA from
;; ispc.h.
@__system_best_isa = internal global i32 -1
declare void @abort() noreturn
;; The below is the result of running "clang -O2 -emit-llvm -c -o -" on the
;; following code... Specifically, __get_system_isa should return a value
;; corresponding to one of the Target::ISA enumerant values that gives the
;; most capable ISA that the curremt system can run.
;;
;; #ifdef _MSC_VER
;; extern void __stdcall __cpuid(int info[4], int infoType);
;; #else
;; static void __cpuid(int info[4], int infoType) {
;; __asm__ __volatile__ ("cpuid"
;; : "=a" (info[0]), "=b" (info[1]), "=c" (info[2]), "=d" (info[3])
;; : "0" (infoType));
;; }
;; #endif
;;
;; int32_t __get_system_isa() {
;; int info[4];
;; __cpuid(info, 1);
;; /* NOTE: the values returned below must be the same as the
;; corresponding enumerant values in Target::ISA. */
;; if ((info[2] & (1 << 28)) != 0)
;; return 2; // AVX
;; else if ((info[2] & (1 << 19)) != 0)
;; return 1; // SSE4
;; else if ((info[3] & (1 << 26)) != 0)
;; return 0; // SSE2
;; else
;; abort();
;; }
%0 = type { i32, i32, i32, i32 }
define i32 @__get_system_isa() nounwind ssp {
%1 = tail call %0 asm sideeffect "cpuid", "={ax},={bx},={cx},={dx},0,~{dirflag},~{fpsr},~{flags}"(i32 1) nounwind
%2 = extractvalue %0 %1, 2
%3 = extractvalue %0 %1, 3
%4 = and i32 %2, 268435456
%5 = icmp eq i32 %4, 0
br i1 %5, label %6, label %13
; <label>:6 ; preds = %0
%7 = and i32 %2, 524288
%8 = icmp eq i32 %7, 0
br i1 %8, label %9, label %13
; <label>:9 ; preds = %6
%10 = and i32 %3, 67108864
%11 = icmp eq i32 %10, 0
br i1 %11, label %12, label %13
; <label>:12 ; preds = %9
tail call void @abort() noreturn nounwind
unreachable
; <label>:13 ; preds = %9, %6, %0
%.0 = phi i32 [ 2, %0 ], [ 1, %6 ], [ 0, %9 ]
ret i32 %.0
}
;; This function is called by each of the dispatch functions we generate;
;; it sets @__system_best_isa if it is unset.
define void @__set_system_isa() {
entry:
%bi = load i32* @__system_best_isa
%unset = icmp eq i32 %bi, -1
br i1 %unset, label %set_system_isa, label %done
set_system_isa:
%bival = call i32 @__get_system_isa()
store i32 %bival, i32* @__system_best_isa
ret void
done:
ret void
}

266
builtins-sse2-common.ll Normal file
View File

@@ -0,0 +1,266 @@
;; Copyright (c) 2010-2011, Intel Corporation
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;;
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;;
;; * Neither the name of Intel Corporation nor the names of its
;; contributors may be used to endorse or promote products derived from
;; this software without specific prior written permission.
;;
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rcp
declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone
define float @__rcp_uniform_float(float) nounwind readonly alwaysinline {
; do the rcpss call
%vecval = insertelement <4 x float> undef, float %0, i32 0
%call = call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %vecval)
%scall = extractelement <4 x float> %call, i32 0
; do one N-R iteration to improve precision, as above
%v_iv = fmul float %0, %scall
%two_minus = fsub float 2., %v_iv
%iv_mul = fmul float %scall, %two_minus
ret float %iv_mul
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; rsqrt
declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone
define float @__rsqrt_uniform_float(float) nounwind readonly alwaysinline {
; uniform float is = extract(__rsqrt_u(v), 0);
%v = insertelement <4 x float> undef, float %0, i32 0
%vis = call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %v)
%is = extractelement <4 x float> %vis, i32 0
; Newton-Raphson iteration to improve precision
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul float %0, %is
%v_is_is = fmul float %v_is, %is
%three_sub = fsub float 3., %v_is_is
%is_mul = fmul float %is, %three_sub
%half_scale = fmul float 0.5, %is_mul
ret float %half_scale
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; sqrt
declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone
define float @__sqrt_uniform_float(float) nounwind readonly alwaysinline {
sse_unary_scalar(ret, 4, float, @llvm.x86.sse.sqrt.ss, %0)
ret float %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; fast math mode
declare void @llvm.x86.sse.stmxcsr(i8 *) nounwind
declare void @llvm.x86.sse.ldmxcsr(i8 *) nounwind
define void @__fastmath() nounwind alwaysinline {
%ptr = alloca i32
%ptr8 = bitcast i32 * %ptr to i8 *
call void @llvm.x86.sse.stmxcsr(i8 * %ptr8)
%oldval = load i32 *%ptr
; turn on DAZ (64)/FTZ (32768) -> 32832
%update = or i32 %oldval, 32832
store i32 %update, i32 *%ptr
call void @llvm.x86.sse.ldmxcsr(i8 * %ptr8)
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; float min/max
declare <4 x float> @llvm.x86.sse.max.ss(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.min.ss(<4 x float>, <4 x float>) nounwind readnone
define float @__max_uniform_float(float, float) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.max.ss, %0, %1)
ret float %ret
}
define float @__min_uniform_float(float, float) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.min.ss, %0, %1)
ret float %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision sqrt
declare <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double>) nounwind readnone
define double @__sqrt_uniform_double(double) nounwind alwaysinline {
sse_unary_scalar(ret, 2, double, @llvm.x86.sse2.sqrt.sd, %0)
ret double %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision min/max
declare <2 x double> @llvm.x86.sse2.max.sd(<2 x double>, <2 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.min.sd(<2 x double>, <2 x double>) nounwind readnone
define double @__min_uniform_double(double, double) nounwind readnone {
sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.min.sd, %0, %1)
ret double %ret
}
define double @__max_uniform_double(double, double) nounwind readnone {
sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.max.sd, %0, %1)
ret double %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding
;;
;; There are not any rounding instructions in SSE2, so we have to emulate
;; the functionality with multiple instructions...
; The code for __round_* is the result of compiling the following source
; code.
;
; export float Round(float x) {
; unsigned int sign = signbits(x);
; unsigned int ix = intbits(x);
; ix ^= sign;
; x = floatbits(ix);
; x += 0x1.0p23f;
; x -= 0x1.0p23f;
; ix = intbits(x);
; ix ^= sign;
; x = floatbits(ix);
; return x;
;}
define float @__round_uniform_float(float) nounwind readonly alwaysinline {
%float_to_int_bitcast.i.i.i.i = bitcast float %0 to i32
%bitop.i.i = and i32 %float_to_int_bitcast.i.i.i.i, -2147483648
%bitop.i = xor i32 %bitop.i.i, %float_to_int_bitcast.i.i.i.i
%int_to_float_bitcast.i.i40.i = bitcast i32 %bitop.i to float
%binop.i = fadd float %int_to_float_bitcast.i.i40.i, 8.388608e+06
%binop21.i = fadd float %binop.i, -8.388608e+06
%float_to_int_bitcast.i.i.i = bitcast float %binop21.i to i32
%bitop31.i = xor i32 %float_to_int_bitcast.i.i.i, %bitop.i.i
%int_to_float_bitcast.i.i.i = bitcast i32 %bitop31.i to float
ret float %int_to_float_bitcast.i.i.i
}
;; Similarly, for implementations of the __floor* functions below, we have the
;; bitcode from compiling the following source code...
;export float Floor(float x) {
; float y = Round(x);
; unsigned int cmp = y > x ? 0xffffffff : 0;
; float delta = -1.f;
; unsigned int idelta = intbits(delta);
; idelta &= cmp;
; delta = floatbits(idelta);
; return y + delta;
;}
define float @__floor_uniform_float(float) nounwind readonly alwaysinline {
%calltmp.i = tail call float @__round_uniform_float(float %0) nounwind
%bincmp.i = fcmp ogt float %calltmp.i, %0
%selectexpr.i = sext i1 %bincmp.i to i32
%bitop.i = and i32 %selectexpr.i, -1082130432
%int_to_float_bitcast.i.i.i = bitcast i32 %bitop.i to float
%binop.i = fadd float %calltmp.i, %int_to_float_bitcast.i.i.i
ret float %binop.i
}
;; And here is the code we compiled to get the __ceil* functions below
;
;export uniform float Ceil(uniform float x) {
; uniform float y = Round(x);
; uniform int yltx = y < x ? 0xffffffff : 0;
; uniform float delta = 1.f;
; uniform int idelta = intbits(delta);
; idelta &= yltx;
; delta = floatbits(idelta);
; return y + delta;
;}
define float @__ceil_uniform_float(float) nounwind readonly alwaysinline {
%calltmp.i = tail call float @__round_uniform_float(float %0) nounwind
%bincmp.i = fcmp olt float %calltmp.i, %0
%selectexpr.i = sext i1 %bincmp.i to i32
%bitop.i = and i32 %selectexpr.i, 1065353216
%int_to_float_bitcast.i.i.i = bitcast i32 %bitop.i to float
%binop.i = fadd float %calltmp.i, %int_to_float_bitcast.i.i.i
ret float %binop.i
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding doubles
declare double @round(double)
declare double @floor(double)
declare double @ceil(double)
define double @__round_uniform_double(double) nounwind readonly alwaysinline {
%r = call double @round(double %0)
ret double %r
}
define double @__floor_uniform_double(double) nounwind readonly alwaysinline {
%r = call double @floor(double %0)
ret double %r
}
define double @__ceil_uniform_double(double) nounwind readonly alwaysinline {
%r = call double @ceil(double %0)
ret double %r
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops / reductions
declare i32 @llvm.ctpop.i32(i32)
declare i64 @llvm.ctpop.i64(i64)
define i32 @__popcnt_int32(i32) nounwind readonly alwaysinline {
%val = call i32 @llvm.ctpop.i32(i32 %0)
ret i32 %val
}
define i64 @__popcnt_int64(i64) nounwind readnone alwaysinline {
%val = call i64 @llvm.ctpop.i64(i64 %0)
ret i64 %val
}

631
builtins-sse2-x2.ll Normal file
View File

@@ -0,0 +1,631 @@
;; Copyright (c) 2010-2011, Intel Corporation
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;;
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;;
;; * Neither the name of Intel Corporation nor the names of its
;; contributors may be used to endorse or promote products derived from
;; this software without specific prior written permission.
;;
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;; This file defines the target for "double-pumped" SSE2, i.e. running
;; with 8-wide vectors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; standard 8-wide definitions from m4 macros
stdlib_core(8)
packed_load_and_store(8)
scans(8)
int64minmax(8)
include(`builtins-sse2-common.ll')
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rcp
declare <4 x float> @llvm.x86.sse.rcp.ps(<4 x float>) nounwind readnone
define <8 x float> @__rcp_varying_float(<8 x float>) nounwind readonly alwaysinline {
; float iv = __rcp_v(v);
; return iv * (2. - v * iv);
unary4to8(call, float, @llvm.x86.sse.rcp.ps, %0)
; do one N-R iteration
%v_iv = fmul <8 x float> %0, %call
%two_minus = fsub <8 x float> <float 2., float 2., float 2., float 2.,
float 2., float 2., float 2., float 2.>, %v_iv
%iv_mul = fmul <8 x float> %call, %two_minus
ret <8 x float> %iv_mul
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rsqrt
declare <4 x float> @llvm.x86.sse.rsqrt.ps(<4 x float>) nounwind readnone
define <8 x float> @__rsqrt_varying_float(<8 x float> %v) nounwind readonly alwaysinline {
; float is = __rsqrt_v(v);
unary4to8(is, float, @llvm.x86.sse.rsqrt.ps, %v)
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul <8 x float> %v, %is
%v_is_is = fmul <8 x float> %v_is, %is
%three_sub = fsub <8 x float> <float 3., float 3., float 3., float 3.,
float 3., float 3., float 3., float 3.>, %v_is_is
%is_mul = fmul <8 x float> %is, %three_sub
%half_scale = fmul <8 x float> <float 0.5, float 0.5, float 0.5, float 0.5,
float 0.5, float 0.5, float 0.5, float 0.5>, %is_mul
ret <8 x float> %half_scale
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; sqrt
declare <4 x float> @llvm.x86.sse.sqrt.ps(<4 x float>) nounwind readnone
define <8 x float> @__sqrt_varying_float(<8 x float>) nounwind readonly alwaysinline {
unary4to8(call, float, @llvm.x86.sse.sqrt.ps, %0)
ret <8 x float> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; svml stuff
declare <4 x float> @__svml_sinf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_cosf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_sincosf4(<4 x float> *, <4 x float>) nounwind readnone
declare <4 x float> @__svml_tanf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_atanf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_atan2f4(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @__svml_expf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_logf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_powf4(<4 x float>, <4 x float>) nounwind readnone
define <8 x float> @__svml_sin(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_sinf4, %0)
ret <8 x float> %ret
}
define <8 x float> @__svml_cos(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_cosf4, %0)
ret <8 x float> %ret
}
define void @__svml_sincos(<8 x float>, <8 x float> *,
<8 x float> *) nounwind readnone alwaysinline {
; call svml_sincosf4 two times with the two 4-wide sub-vectors
%a = shufflevector <8 x float> %0, <8 x float> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%b = shufflevector <8 x float> %0, <8 x float> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%cospa = alloca <4 x float>
%sa = call <4 x float> @__svml_sincosf4(<4 x float> * %cospa, <4 x float> %a)
%cospb = alloca <4 x float>
%sb = call <4 x float> @__svml_sincosf4(<4 x float> * %cospb, <4 x float> %b)
%sin = shufflevector <4 x float> %sa, <4 x float> %sb,
<8 x i32> <i32 0, i32 1, i32 2, i32 3,
i32 4, i32 5, i32 6, i32 7>
store <8 x float> %sin, <8 x float> * %1
%cosa = load <4 x float> * %cospa
%cosb = load <4 x float> * %cospb
%cos = shufflevector <4 x float> %cosa, <4 x float> %cosb,
<8 x i32> <i32 0, i32 1, i32 2, i32 3,
i32 4, i32 5, i32 6, i32 7>
store <8 x float> %cos, <8 x float> * %2
ret void
}
define <8 x float> @__svml_tan(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_tanf4, %0)
ret <8 x float> %ret
}
define <8 x float> @__svml_atan(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_atanf4, %0)
ret <8 x float> %ret
}
define <8 x float> @__svml_atan2(<8 x float>,
<8 x float>) nounwind readnone alwaysinline {
binary4to8(ret, float, @__svml_atan2f4, %0, %1)
ret <8 x float> %ret
}
define <8 x float> @__svml_exp(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_expf4, %0)
ret <8 x float> %ret
}
define <8 x float> @__svml_log(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_logf4, %0)
ret <8 x float> %ret
}
define <8 x float> @__svml_pow(<8 x float>,
<8 x float>) nounwind readnone alwaysinline {
binary4to8(ret, float, @__svml_powf4, %0, %1)
ret <8 x float> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; float min/max
declare <4 x float> @llvm.x86.sse.max.ps(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.min.ps(<4 x float>, <4 x float>) nounwind readnone
define <8 x float> @__max_varying_float(<8 x float>, <8 x float>) nounwind readonly alwaysinline {
binary4to8(call, float, @llvm.x86.sse.max.ps, %0, %1)
ret <8 x float> %call
}
define <8 x float> @__min_varying_float(<8 x float>, <8 x float>) nounwind readonly alwaysinline {
binary4to8(call, float, @llvm.x86.sse.min.ps, %0, %1)
ret <8 x float> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; min/max
; There is no blend instruction with SSE2, so we simulate it with bit
; operations on i32s. For these two vselect functions, for each
; vector element, if the mask is on, we return the corresponding value
; from %1, and otherwise return the value from %0.
define <8 x i32> @__vselect_i32(<8 x i32>, <8 x i32> ,
<8 x i32> %mask) nounwind readnone alwaysinline {
%notmask = xor <8 x i32> %mask, <i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1>
%cleared_old = and <8 x i32> %0, %notmask
%masked_new = and <8 x i32> %1, %mask
%new = or <8 x i32> %cleared_old, %masked_new
ret <8 x i32> %new
}
define <8 x float> @__vselect_float(<8 x float>, <8 x float>,
<8 x i32> %mask) nounwind readnone alwaysinline {
%v0 = bitcast <8 x float> %0 to <8 x i32>
%v1 = bitcast <8 x float> %1 to <8 x i32>
%r = call <8 x i32> @__vselect_i32(<8 x i32> %v0, <8 x i32> %v1, <8 x i32> %mask)
%rf = bitcast <8 x i32> %r to <8 x float>
ret <8 x float> %rf
}
; To do vector integer min and max, we do the vector compare and then sign
; extend the i1 vector result to an i32 mask. The __vselect does the
; rest...
define <8 x i32> @__min_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
%c = icmp slt <8 x i32> %0, %1
%mask = sext <8 x i1> %c to <8 x i32>
%v = call <8 x i32> @__vselect_i32(<8 x i32> %1, <8 x i32> %0, <8 x i32> %mask)
ret <8 x i32> %v
}
define i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline {
%c = icmp slt i32 %0, %1
%r = select i1 %c, i32 %0, i32 %1
ret i32 %r
}
define <8 x i32> @__max_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
%c = icmp sgt <8 x i32> %0, %1
%mask = sext <8 x i1> %c to <8 x i32>
%v = call <8 x i32> @__vselect_i32(<8 x i32> %1, <8 x i32> %0, <8 x i32> %mask)
ret <8 x i32> %v
}
define i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline {
%c = icmp sgt i32 %0, %1
%r = select i1 %c, i32 %0, i32 %1
ret i32 %r
}
; The functions for unsigned ints are similar, just with unsigned
; comparison functions...
define <8 x i32> @__min_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
%c = icmp ult <8 x i32> %0, %1
%mask = sext <8 x i1> %c to <8 x i32>
%v = call <8 x i32> @__vselect_i32(<8 x i32> %1, <8 x i32> %0, <8 x i32> %mask)
ret <8 x i32> %v
}
define i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
%c = icmp ult i32 %0, %1
%r = select i1 %c, i32 %0, i32 %1
ret i32 %r
}
define <8 x i32> @__max_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
%c = icmp ugt <8 x i32> %0, %1
%mask = sext <8 x i1> %c to <8 x i32>
%v = call <8 x i32> @__vselect_i32(<8 x i32> %1, <8 x i32> %0, <8 x i32> %mask)
ret <8 x i32> %v
}
define i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
%c = icmp ugt i32 %0, %1
%r = select i1 %c, i32 %0, i32 %1
ret i32 %r
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops / reductions
declare i32 @llvm.x86.sse.movmsk.ps(<4 x float>) nounwind readnone
define i32 @__movmsk(<8 x i32>) nounwind readnone alwaysinline {
; first do two 4-wide movmsk calls
%floatmask = bitcast <8 x i32> %0 to <8 x float>
%m0 = shufflevector <8 x float> %floatmask, <8 x float> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%v0 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m0) nounwind readnone
%m1 = shufflevector <8 x float> %floatmask, <8 x float> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%v1 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m1) nounwind readnone
; and shift the first one over by 4 before ORing it with the value
; of the second one
%v1s = shl i32 %v1, 4
%v = or i32 %v0, %v1s
ret i32 %v
}
define <4 x float> @__vec4_add_float(<4 x float> %v0,
<4 x float> %v1) nounwind readnone alwaysinline {
%v = fadd <4 x float> %v0, %v1
ret <4 x float> %v
}
define float @__add_float(float, float) nounwind readnone alwaysinline {
%v = fadd float %0, %1
ret float %v
}
define float @__reduce_add_float(<8 x float>) nounwind readnone alwaysinline {
reduce8by4(float, @__vec4_add_float, @__add_float)
}
define float @__reduce_min_float(<8 x float>) nounwind readnone alwaysinline {
reduce8(float, @__min_varying_float, @__min_uniform_float)
}
define float @__reduce_max_float(<8 x float>) nounwind readnone alwaysinline {
reduce8(float, @__max_varying_float, @__max_uniform_float)
}
; helper function for reduce_add_int32
define <4 x i32> @__vec4_add_int32(<4 x i32> %v0,
<4 x i32> %v1) nounwind readnone alwaysinline {
%v = add <4 x i32> %v0, %v1
ret <4 x i32> %v
}
; helper function for reduce_add_int32
define i32 @__add_int32(i32, i32) nounwind readnone alwaysinline {
%v = add i32 %0, %1
ret i32 %v
}
define i32 @__reduce_add_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8by4(i32, @__vec4_add_int32, @__add_int32)
}
define i32 @__reduce_min_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__min_varying_int32, @__min_uniform_int32)
}
define i32 @__reduce_max_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__max_varying_int32, @__max_uniform_int32)
}
define i32 @__reduce_add_uint32(<8 x i32> %v) nounwind readnone alwaysinline {
%r = call i32 @__reduce_add_int32(<8 x i32> %v)
ret i32 %r
}
define i32 @__reduce_min_uint32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__min_varying_uint32, @__min_uniform_uint32)
}
define i32 @__reduce_max_uint32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__max_varying_uint32, @__max_uniform_uint32)
}
define <4 x double> @__add_varying_double(<4 x double>,
<4 x double>) nounwind readnone alwaysinline {
%r = fadd <4 x double> %0, %1
ret <4 x double> %r
}
define double @__add_uniform_double(double, double) nounwind readnone alwaysinline {
%r = fadd double %0, %1
ret double %r
}
define double @__reduce_add_double(<8 x double>) nounwind readnone {
reduce8by4(double, @__add_varying_double, @__add_uniform_double)
}
define double @__reduce_min_double(<8 x double>) nounwind readnone {
reduce8(double, @__min_varying_double, @__min_uniform_double)
}
define double @__reduce_max_double(<8 x double>) nounwind readnone {
reduce8(double, @__max_varying_double, @__max_uniform_double)
}
define <4 x i64> @__add_varying_int64(<4 x i64>,
<4 x i64>) nounwind readnone alwaysinline {
%r = add <4 x i64> %0, %1
ret <4 x i64> %r
}
define i64 @__add_uniform_int64(i64, i64) nounwind readnone alwaysinline {
%r = add i64 %0, %1
ret i64 %r
}
define i64 @__reduce_add_int64(<8 x i64>) nounwind readnone {
reduce8by4(i64, @__add_varying_int64, @__add_uniform_int64)
}
define i64 @__reduce_min_int64(<8 x i64>) nounwind readnone {
reduce8(i64, @__min_varying_int64, @__min_uniform_int64)
}
define i64 @__reduce_max_int64(<8 x i64>) nounwind readnone {
reduce8(i64, @__max_varying_int64, @__max_uniform_int64)
}
define i64 @__reduce_min_uint64(<8 x i64>) nounwind readnone {
reduce8(i64, @__min_varying_uint64, @__min_uniform_uint64)
}
define i64 @__reduce_max_uint64(<8 x i64>) nounwind readnone {
reduce8(i64, @__max_varying_uint64, @__max_uniform_uint64)
}
reduce_equal(8)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unaligned loads/loads+broadcasts
load_and_broadcast(8, i8, 8)
load_and_broadcast(8, i16, 16)
load_and_broadcast(8, i32, 32)
load_and_broadcast(8, i64, 64)
load_masked(8, i8, 8, 1)
load_masked(8, i16, 16, 2)
load_masked(8, i32, 32, 4)
load_masked(8, i64, 64, 8)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; gather/scatter
gen_gather(8, i8)
gen_gather(8, i16)
gen_gather(8, i32)
gen_gather(8, i64)
gen_scatter(8, i8)
gen_scatter(8, i16)
gen_scatter(8, i32)
gen_scatter(8, i64)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; float rounding
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding
;;
;; There are not any rounding instructions in SSE2, so we have to emulate
;; the functionality with multiple instructions...
; The code for __round_* is the result of compiling the following source
; code.
;
; export float Round(float x) {
; unsigned int sign = signbits(x);
; unsigned int ix = intbits(x);
; ix ^= sign;
; x = floatbits(ix);
; x += 0x1.0p23f;
; x -= 0x1.0p23f;
; ix = intbits(x);
; ix ^= sign;
; x = floatbits(ix);
; return x;
;}
define <8 x float> @__round_varying_float(<8 x float>) nounwind readonly alwaysinline {
%float_to_int_bitcast.i.i.i.i = bitcast <8 x float> %0 to <8 x i32>
%bitop.i.i = and <8 x i32> %float_to_int_bitcast.i.i.i.i, <i32 -2147483648, i32 -2147483648, i32 -2147483648, i32 -2147483648, i32 -2147483648, i32 -2147483648, i32 -2147483648, i32 -2147483648>
%bitop.i = xor <8 x i32> %float_to_int_bitcast.i.i.i.i, %bitop.i.i
%int_to_float_bitcast.i.i40.i = bitcast <8 x i32> %bitop.i to <8 x float>
%binop.i = fadd <8 x float> %int_to_float_bitcast.i.i40.i, <float 8.388608e+06, float 8.388608e+06, float 8.388608e+06, float 8.388608e+06, float 8.388608e+06, float 8.388608e+06, float 8.388608e+06, float 8.388608e+06>
%binop21.i = fadd <8 x float> %binop.i, <float -8.388608e+06, float -8.388608e+06, float -8.388608e+06, float -8.388608e+06, float -8.388608e+06, float -8.388608e+06, float -8.388608e+06, float -8.388608e+06>
%float_to_int_bitcast.i.i.i = bitcast <8 x float> %binop21.i to <8 x i32>
%bitop31.i = xor <8 x i32> %float_to_int_bitcast.i.i.i, %bitop.i.i
%int_to_float_bitcast.i.i.i = bitcast <8 x i32> %bitop31.i to <8 x float>
ret <8 x float> %int_to_float_bitcast.i.i.i
}
;; Similarly, for implementations of the __floor* functions below, we have the
;; bitcode from compiling the following source code...
;export float Floor(float x) {
; float y = Round(x);
; unsigned int cmp = y > x ? 0xffffffff : 0;
; float delta = -1.f;
; unsigned int idelta = intbits(delta);
; idelta &= cmp;
; delta = floatbits(idelta);
; return y + delta;
;}
define <8 x float> @__floor_varying_float(<8 x float>) nounwind readonly alwaysinline {
%calltmp.i = tail call <8 x float> @__round_varying_float(<8 x float> %0) nounwind
%bincmp.i = fcmp ogt <8 x float> %calltmp.i, %0
%val_to_boolvec32.i = sext <8 x i1> %bincmp.i to <8 x i32>
%bitop.i = and <8 x i32> %val_to_boolvec32.i, <i32 -1082130432, i32 -1082130432, i32 -1082130432, i32 -1082130432, i32 -1082130432, i32 -1082130432, i32 -1082130432, i32 -1082130432>
%int_to_float_bitcast.i.i.i = bitcast <8 x i32> %bitop.i to <8 x float>
%binop.i = fadd <8 x float> %calltmp.i, %int_to_float_bitcast.i.i.i
ret <8 x float> %binop.i
}
;; And here is the code we compiled to get the __ceil* functions below
;
;export uniform float Ceil(uniform float x) {
; uniform float y = Round(x);
; uniform int yltx = y < x ? 0xffffffff : 0;
; uniform float delta = 1.f;
; uniform int idelta = intbits(delta);
; idelta &= yltx;
; delta = floatbits(idelta);
; return y + delta;
;}
define <8 x float> @__ceil_varying_float(<8 x float>) nounwind readonly alwaysinline {
%calltmp.i = tail call <8 x float> @__round_varying_float(<8 x float> %0) nounwind
%bincmp.i = fcmp olt <8 x float> %calltmp.i, %0
%val_to_boolvec32.i = sext <8 x i1> %bincmp.i to <8 x i32>
%bitop.i = and <8 x i32> %val_to_boolvec32.i, <i32 1065353216, i32 1065353216, i32 1065353216, i32 1065353216, i32 1065353216, i32 1065353216, i32 1065353216, i32 1065353216>
%int_to_float_bitcast.i.i.i = bitcast <8 x i32> %bitop.i to <8 x float>
%binop.i = fadd <8 x float> %calltmp.i, %int_to_float_bitcast.i.i.i
ret <8 x float> %binop.i
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding doubles
define <8 x double> @__round_varying_double(<8 x double>) nounwind readonly alwaysinline {
unary1to8(double, @round)
}
define <8 x double> @__floor_varying_double(<8 x double>) nounwind readonly alwaysinline {
unary1to8(double, @floor)
}
define <8 x double> @__ceil_varying_double(<8 x double>) nounwind readonly alwaysinline {
unary1to8(double, @ceil)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; masked store
gen_masked_store(8, i8, 8)
gen_masked_store(8, i16, 16)
gen_masked_store(8, i32, 32)
gen_masked_store(8, i64, 64)
masked_store_blend_8_16_by_8()
define void @__masked_store_blend_32(<8 x i32>* nocapture, <8 x i32>,
<8 x i32> %mask) nounwind alwaysinline {
%val = load <8 x i32> * %0, align 4
%newval = call <8 x i32> @__vselect_i32(<8 x i32> %val, <8 x i32> %1, <8 x i32> %mask)
store <8 x i32> %newval, <8 x i32> * %0, align 4
ret void
}
define void @__masked_store_blend_64(<8 x i64>* nocapture %ptr, <8 x i64> %new,
<8 x i32> %mask) nounwind alwaysinline {
%oldValue = load <8 x i64>* %ptr, align 8
; Do 8x64-bit blends by doing two <8 x i32> blends, where the <8 x i32> values
; are actually bitcast <2 x i64> values
;
; set up the first two 64-bit values
%old0123 = shufflevector <8 x i64> %oldValue, <8 x i64> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%old0123f = bitcast <4 x i64> %old0123 to <8 x float>
%new0123 = shufflevector <8 x i64> %new, <8 x i64> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%new0123f = bitcast <4 x i64> %new0123 to <8 x float>
; compute mask--note that the indices are doubled-up
%mask0123 = shufflevector <8 x i32> %mask, <8 x i32> undef,
<8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 2, i32 2, i32 3, i32 3>
; and blend the first 4 values
%result0123f = call <8 x float> @__vselect_float(<8 x float> %old0123f, <8 x float> %new0123f,
<8 x i32> %mask0123)
%result0123 = bitcast <8 x float> %result0123f to <4 x i64>
; and again
%old4567 = shufflevector <8 x i64> %oldValue, <8 x i64> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%old4567f = bitcast <4 x i64> %old4567 to <8 x float>
%new4567 = shufflevector <8 x i64> %new, <8 x i64> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%new4567f = bitcast <4 x i64> %new4567 to <8 x float>
; compute mask--note that the values are doubled-up
%mask4567 = shufflevector <8 x i32> %mask, <8 x i32> undef,
<8 x i32> <i32 4, i32 4, i32 5, i32 5, i32 6, i32 6, i32 7, i32 7>
; and blend the two of the values
%result4567f = call <8 x float> @__vselect_float(<8 x float> %old4567f, <8 x float> %new4567f,
<8 x i32> %mask4567)
%result4567 = bitcast <8 x float> %result4567f to <4 x i64>
; reconstruct the final <8 x i64> vector
%final = shufflevector <4 x i64> %result0123, <4 x i64> %result4567,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
store <8 x i64> %final, <8 x i64> * %ptr, align 8
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision sqrt
declare <2 x double> @llvm.x86.sse2.sqrt.pd(<2 x double>) nounwind readnone
define <8 x double> @__sqrt_varying_double(<8 x double>) nounwind alwaysinline {
unary2to8(ret, double, @llvm.x86.sse2.sqrt.pd, %0)
ret <8 x double> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision float min/max
declare <2 x double> @llvm.x86.sse2.max.pd(<2 x double>, <2 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.min.pd(<2 x double>, <2 x double>) nounwind readnone
define <8 x double> @__min_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
binary2to8(ret, double, @llvm.x86.sse2.min.pd, %0, %1)
ret <8 x double> %ret
}
define <8 x double> @__max_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
binary2to8(ret, double, @llvm.x86.sse2.max.pd, %0, %1)
ret <8 x double> %ret
}

573
builtins-sse2.ll Normal file
View File

@@ -0,0 +1,573 @@
;; Copyright (c) 2010-2011, Intel Corporation
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;;
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;;
;; * Neither the name of Intel Corporation nor the names of its
;; contributors may be used to endorse or promote products derived from
;; this software without specific prior written permission.
;;
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Define the standard library builtins for the SSE2 target
; Define some basics for a 4-wide target
stdlib_core(4)
packed_load_and_store(4)
scans(4)
int64minmax(4)
include(`builtins-sse2-common.ll')
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding
;;
;; There are not any rounding instructions in SSE2, so we have to emulate
;; the functionality with multiple instructions...
; The code for __round_* is the result of compiling the following source
; code.
;
; export float Round(float x) {
; unsigned int sign = signbits(x);
; unsigned int ix = intbits(x);
; ix ^= sign;
; x = floatbits(ix);
; x += 0x1.0p23f;
; x -= 0x1.0p23f;
; ix = intbits(x);
; ix ^= sign;
; x = floatbits(ix);
; return x;
;}
define <4 x float> @__round_varying_float(<4 x float>) nounwind readonly alwaysinline {
%float_to_int_bitcast.i.i.i.i = bitcast <4 x float> %0 to <4 x i32>
%bitop.i.i = and <4 x i32> %float_to_int_bitcast.i.i.i.i, <i32 -2147483648, i32 -2147483648, i32 -2147483648, i32 -2147483648>
%bitop.i = xor <4 x i32> %float_to_int_bitcast.i.i.i.i, %bitop.i.i
%int_to_float_bitcast.i.i40.i = bitcast <4 x i32> %bitop.i to <4 x float>
%binop.i = fadd <4 x float> %int_to_float_bitcast.i.i40.i, <float 8.388608e+06, float 8.388608e+06, float 8.388608e+06, float 8.388608e+06>
%binop21.i = fadd <4 x float> %binop.i, <float -8.388608e+06, float -8.388608e+06, float -8.388608e+06, float -8.388608e+06>
%float_to_int_bitcast.i.i.i = bitcast <4 x float> %binop21.i to <4 x i32>
%bitop31.i = xor <4 x i32> %float_to_int_bitcast.i.i.i, %bitop.i.i
%int_to_float_bitcast.i.i.i = bitcast <4 x i32> %bitop31.i to <4 x float>
ret <4 x float> %int_to_float_bitcast.i.i.i
}
;; Similarly, for implementations of the __floor* functions below, we have the
;; bitcode from compiling the following source code...
;export float Floor(float x) {
; float y = Round(x);
; unsigned int cmp = y > x ? 0xffffffff : 0;
; float delta = -1.f;
; unsigned int idelta = intbits(delta);
; idelta &= cmp;
; delta = floatbits(idelta);
; return y + delta;
;}
define <4 x float> @__floor_varying_float(<4 x float>) nounwind readonly alwaysinline {
%calltmp.i = tail call <4 x float> @__round_varying_float(<4 x float> %0) nounwind
%bincmp.i = fcmp ogt <4 x float> %calltmp.i, %0
%val_to_boolvec32.i = sext <4 x i1> %bincmp.i to <4 x i32>
%bitop.i = and <4 x i32> %val_to_boolvec32.i, <i32 -1082130432, i32 -1082130432, i32 -1082130432, i32 -1082130432>
%int_to_float_bitcast.i.i.i = bitcast <4 x i32> %bitop.i to <4 x float>
%binop.i = fadd <4 x float> %calltmp.i, %int_to_float_bitcast.i.i.i
ret <4 x float> %binop.i
}
;; And here is the code we compiled to get the __ceil* functions below
;
;export uniform float Ceil(uniform float x) {
; uniform float y = Round(x);
; uniform int yltx = y < x ? 0xffffffff : 0;
; uniform float delta = 1.f;
; uniform int idelta = intbits(delta);
; idelta &= yltx;
; delta = floatbits(idelta);
; return y + delta;
;}
define <4 x float> @__ceil_varying_float(<4 x float>) nounwind readonly alwaysinline {
%calltmp.i = tail call <4 x float> @__round_varying_float(<4 x float> %0) nounwind
%bincmp.i = fcmp olt <4 x float> %calltmp.i, %0
%val_to_boolvec32.i = sext <4 x i1> %bincmp.i to <4 x i32>
%bitop.i = and <4 x i32> %val_to_boolvec32.i, <i32 1065353216, i32 1065353216, i32 1065353216, i32 1065353216>
%int_to_float_bitcast.i.i.i = bitcast <4 x i32> %bitop.i to <4 x float>
%binop.i = fadd <4 x float> %calltmp.i, %int_to_float_bitcast.i.i.i
ret <4 x float> %binop.i
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding doubles
define <4 x double> @__round_varying_double(<4 x double>) nounwind readonly alwaysinline {
unary1to4(double, @round)
}
define <4 x double> @__floor_varying_double(<4 x double>) nounwind readonly alwaysinline {
unary1to4(double, @floor)
}
define <4 x double> @__ceil_varying_double(<4 x double>) nounwind readonly alwaysinline {
unary1to4(double, @ceil)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; min/max
; There is no blend instruction with SSE2, so we simulate it with bit
; operations on i32s. For these two vselect functions, for each
; vector element, if the mask is on, we return the corresponding value
; from %1, and otherwise return the value from %0.
define <4 x i32> @__vselect_i32(<4 x i32>, <4 x i32> ,
<4 x i32> %mask) nounwind readnone alwaysinline {
%notmask = xor <4 x i32> %mask, <i32 -1, i32 -1, i32 -1, i32 -1>
%cleared_old = and <4 x i32> %0, %notmask
%masked_new = and <4 x i32> %1, %mask
%new = or <4 x i32> %cleared_old, %masked_new
ret <4 x i32> %new
}
define <4 x float> @__vselect_float(<4 x float>, <4 x float>,
<4 x i32> %mask) nounwind readnone alwaysinline {
%v0 = bitcast <4 x float> %0 to <4 x i32>
%v1 = bitcast <4 x float> %1 to <4 x i32>
%r = call <4 x i32> @__vselect_i32(<4 x i32> %v0, <4 x i32> %v1, <4 x i32> %mask)
%rf = bitcast <4 x i32> %r to <4 x float>
ret <4 x float> %rf
}
; To do vector integer min and max, we do the vector compare and then sign
; extend the i1 vector result to an i32 mask. The __vselect does the
; rest...
define <4 x i32> @__min_varying_int32(<4 x i32>, <4 x i32>) nounwind readonly alwaysinline {
%c = icmp slt <4 x i32> %0, %1
%mask = sext <4 x i1> %c to <4 x i32>
%v = call <4 x i32> @__vselect_i32(<4 x i32> %1, <4 x i32> %0, <4 x i32> %mask)
ret <4 x i32> %v
}
define i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline {
%c = icmp slt i32 %0, %1
%r = select i1 %c, i32 %0, i32 %1
ret i32 %r
}
define <4 x i32> @__max_varying_int32(<4 x i32>, <4 x i32>) nounwind readonly alwaysinline {
%c = icmp sgt <4 x i32> %0, %1
%mask = sext <4 x i1> %c to <4 x i32>
%v = call <4 x i32> @__vselect_i32(<4 x i32> %1, <4 x i32> %0, <4 x i32> %mask)
ret <4 x i32> %v
}
define i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline {
%c = icmp sgt i32 %0, %1
%r = select i1 %c, i32 %0, i32 %1
ret i32 %r
}
; The functions for unsigned ints are similar, just with unsigned
; comparison functions...
define <4 x i32> @__min_varying_uint32(<4 x i32>, <4 x i32>) nounwind readonly alwaysinline {
%c = icmp ult <4 x i32> %0, %1
%mask = sext <4 x i1> %c to <4 x i32>
%v = call <4 x i32> @__vselect_i32(<4 x i32> %1, <4 x i32> %0, <4 x i32> %mask)
ret <4 x i32> %v
}
define i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
%c = icmp ult i32 %0, %1
%r = select i1 %c, i32 %0, i32 %1
ret i32 %r
}
define <4 x i32> @__max_varying_uint32(<4 x i32>, <4 x i32>) nounwind readonly alwaysinline {
%c = icmp ugt <4 x i32> %0, %1
%mask = sext <4 x i1> %c to <4 x i32>
%v = call <4 x i32> @__vselect_i32(<4 x i32> %1, <4 x i32> %0, <4 x i32> %mask)
ret <4 x i32> %v
}
define i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
%c = icmp ugt i32 %0, %1
%r = select i1 %c, i32 %0, i32 %1
ret i32 %r
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops / reductions
declare i32 @llvm.x86.sse.movmsk.ps(<4 x float>) nounwind readnone
define i32 @__movmsk(<4 x i32>) nounwind readnone alwaysinline {
%floatmask = bitcast <4 x i32> %0 to <4 x float>
%v = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %floatmask) nounwind readnone
ret i32 %v
}
define float @__reduce_add_float(<4 x float> %v) nounwind readonly alwaysinline {
%v1 = shufflevector <4 x float> %v, <4 x float> undef,
<4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%m1 = fadd <4 x float> %v1, %v
%m1a = extractelement <4 x float> %m1, i32 0
%m1b = extractelement <4 x float> %m1, i32 1
%sum = fadd float %m1a, %m1b
ret float %sum
}
define float @__reduce_min_float(<4 x float>) nounwind readnone {
reduce4(float, @__min_varying_float, @__min_uniform_float)
}
define float @__reduce_max_float(<4 x float>) nounwind readnone {
reduce4(float, @__max_varying_float, @__max_uniform_float)
}
define i32 @__reduce_add_int32(<4 x i32> %v) nounwind readnone {
%v1 = shufflevector <4 x i32> %v, <4 x i32> undef,
<4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%m1 = add <4 x i32> %v1, %v
%m1a = extractelement <4 x i32> %m1, i32 0
%m1b = extractelement <4 x i32> %m1, i32 1
%sum = add i32 %m1a, %m1b
ret i32 %sum
}
define i32 @__reduce_min_int32(<4 x i32>) nounwind readnone {
reduce4(i32, @__min_varying_int32, @__min_uniform_int32)
}
define i32 @__reduce_max_int32(<4 x i32>) nounwind readnone {
reduce4(i32, @__max_varying_int32, @__max_uniform_int32)
}
define i32 @__reduce_add_uint32(<4 x i32> %v) nounwind readnone {
%r = call i32 @__reduce_add_int32(<4 x i32> %v)
ret i32 %r
}
define i32 @__reduce_min_uint32(<4 x i32>) nounwind readnone {
reduce4(i32, @__min_varying_uint32, @__min_uniform_uint32)
}
define i32 @__reduce_max_uint32(<4 x i32>) nounwind readnone {
reduce4(i32, @__max_varying_uint32, @__max_uniform_uint32)
}
define double @__reduce_add_double(<4 x double>) nounwind readnone {
%v0 = shufflevector <4 x double> %0, <4 x double> undef,
<2 x i32> <i32 0, i32 1>
%v1 = shufflevector <4 x double> %0, <4 x double> undef,
<2 x i32> <i32 2, i32 3>
%sum = fadd <2 x double> %v0, %v1
%e0 = extractelement <2 x double> %sum, i32 0
%e1 = extractelement <2 x double> %sum, i32 1
%m = fadd double %e0, %e1
ret double %m
}
define double @__reduce_min_double(<4 x double>) nounwind readnone {
reduce4(double, @__min_varying_double, @__min_uniform_double)
}
define double @__reduce_max_double(<4 x double>) nounwind readnone {
reduce4(double, @__max_varying_double, @__max_uniform_double)
}
define i64 @__reduce_add_int64(<4 x i64>) nounwind readnone {
%v0 = shufflevector <4 x i64> %0, <4 x i64> undef,
<2 x i32> <i32 0, i32 1>
%v1 = shufflevector <4 x i64> %0, <4 x i64> undef,
<2 x i32> <i32 2, i32 3>
%sum = add <2 x i64> %v0, %v1
%e0 = extractelement <2 x i64> %sum, i32 0
%e1 = extractelement <2 x i64> %sum, i32 1
%m = add i64 %e0, %e1
ret i64 %m
}
define i64 @__reduce_min_int64(<4 x i64>) nounwind readnone {
reduce4(i64, @__min_varying_int64, @__min_uniform_int64)
}
define i64 @__reduce_max_int64(<4 x i64>) nounwind readnone {
reduce4(i64, @__max_varying_int64, @__max_uniform_int64)
}
define i64 @__reduce_min_uint64(<4 x i64>) nounwind readnone {
reduce4(i64, @__min_varying_uint64, @__min_uniform_uint64)
}
define i64 @__reduce_max_uint64(<4 x i64>) nounwind readnone {
reduce4(i64, @__max_varying_uint64, @__max_uniform_uint64)
}
reduce_equal(4)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; masked store
define void @__masked_store_blend_32(<4 x i32>* nocapture, <4 x i32>,
<4 x i32> %mask) nounwind alwaysinline {
%val = load <4 x i32> * %0, align 4
%newval = call <4 x i32> @__vselect_i32(<4 x i32> %val, <4 x i32> %1, <4 x i32> %mask)
store <4 x i32> %newval, <4 x i32> * %0, align 4
ret void
}
define void @__masked_store_blend_64(<4 x i64>* nocapture %ptr, <4 x i64> %new,
<4 x i32> %mask) nounwind alwaysinline {
%oldValue = load <4 x i64>* %ptr, align 8
; Do 4x64-bit blends by doing two <4 x i32> blends, where the <4 x i32> values
; are actually bitcast <2 x i64> values
;
; set up the first two 64-bit values
%old01 = shufflevector <4 x i64> %oldValue, <4 x i64> undef,
<2 x i32> <i32 0, i32 1>
%old01f = bitcast <2 x i64> %old01 to <4 x float>
%new01 = shufflevector <4 x i64> %new, <4 x i64> undef,
<2 x i32> <i32 0, i32 1>
%new01f = bitcast <2 x i64> %new01 to <4 x float>
; compute mask--note that the indices 0 and 1 are doubled-up
%mask01 = shufflevector <4 x i32> %mask, <4 x i32> undef,
<4 x i32> <i32 0, i32 0, i32 1, i32 1>
; and blend the two of the values
%result01f = call <4 x float> @__vselect_float(<4 x float> %old01f, <4 x float> %new01f, <4 x i32> %mask01)
%result01 = bitcast <4 x float> %result01f to <2 x i64>
; and again
%old23 = shufflevector <4 x i64> %oldValue, <4 x i64> undef,
<2 x i32> <i32 2, i32 3>
%old23f = bitcast <2 x i64> %old23 to <4 x float>
%new23 = shufflevector <4 x i64> %new, <4 x i64> undef,
<2 x i32> <i32 2, i32 3>
%new23f = bitcast <2 x i64> %new23 to <4 x float>
; compute mask--note that the values 2 and 3 are doubled-up
%mask23 = shufflevector <4 x i32> %mask, <4 x i32> undef,
<4 x i32> <i32 2, i32 2, i32 3, i32 3>
; and blend the two of the values
%result23f = call <4 x float> @__vselect_float(<4 x float> %old23f, <4 x float> %new23f, <4 x i32> %mask23)
%result23 = bitcast <4 x float> %result23f to <2 x i64>
; reconstruct the final <4 x i64> vector
%final = shufflevector <2 x i64> %result01, <2 x i64> %result23,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
store <4 x i64> %final, <4 x i64> * %ptr, align 8
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rcp
declare <4 x float> @llvm.x86.sse.rcp.ps(<4 x float>) nounwind readnone
define <4 x float> @__rcp_varying_float(<4 x float>) nounwind readonly alwaysinline {
%call = call <4 x float> @llvm.x86.sse.rcp.ps(<4 x float> %0)
; do one N-R iteration to improve precision
; float iv = __rcp_v(v);
; return iv * (2. - v * iv);
%v_iv = fmul <4 x float> %0, %call
%two_minus = fsub <4 x float> <float 2., float 2., float 2., float 2.>, %v_iv
%iv_mul = fmul <4 x float> %call, %two_minus
ret <4 x float> %iv_mul
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; rsqrt
declare <4 x float> @llvm.x86.sse.rsqrt.ps(<4 x float>) nounwind readnone
define <4 x float> @__rsqrt_varying_float(<4 x float> %v) nounwind readonly alwaysinline {
; float is = __rsqrt_v(v);
%is = call <4 x float> @llvm.x86.sse.rsqrt.ps(<4 x float> %v)
; Newton-Raphson iteration to improve precision
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul <4 x float> %v, %is
%v_is_is = fmul <4 x float> %v_is, %is
%three_sub = fsub <4 x float> <float 3., float 3., float 3., float 3.>, %v_is_is
%is_mul = fmul <4 x float> %is, %three_sub
%half_scale = fmul <4 x float> <float 0.5, float 0.5, float 0.5, float 0.5>, %is_mul
ret <4 x float> %half_scale
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; sqrt
declare <4 x float> @llvm.x86.sse.sqrt.ps(<4 x float>) nounwind readnone
define <4 x float> @__sqrt_varying_float(<4 x float>) nounwind readonly alwaysinline {
%call = call <4 x float> @llvm.x86.sse.sqrt.ps(<4 x float> %0)
ret <4 x float> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; svml stuff
declare <4 x float> @__svml_sinf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_cosf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_sincosf4(<4 x float> *, <4 x float>) nounwind readnone
declare <4 x float> @__svml_tanf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_atanf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_atan2f4(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @__svml_expf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_logf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_powf4(<4 x float>, <4 x float>) nounwind readnone
define <4 x float> @__svml_sin(<4 x float>) nounwind readnone alwaysinline {
%ret = call <4 x float> @__svml_sinf4(<4 x float> %0)
ret <4 x float> %ret
}
define <4 x float> @__svml_cos(<4 x float>) nounwind readnone alwaysinline {
%ret = call <4 x float> @__svml_cosf4(<4 x float> %0)
ret <4 x float> %ret
}
define void @__svml_sincos(<4 x float>, <4 x float> *, <4 x float> *) nounwind readnone alwaysinline {
%s = call <4 x float> @__svml_sincosf4(<4 x float> * %2, <4 x float> %0)
store <4 x float> %s, <4 x float> * %1
ret void
}
define <4 x float> @__svml_tan(<4 x float>) nounwind readnone alwaysinline {
%ret = call <4 x float> @__svml_tanf4(<4 x float> %0)
ret <4 x float> %ret
}
define <4 x float> @__svml_atan(<4 x float>) nounwind readnone alwaysinline {
%ret = call <4 x float> @__svml_atanf4(<4 x float> %0)
ret <4 x float> %ret
}
define <4 x float> @__svml_atan2(<4 x float>, <4 x float>) nounwind readnone alwaysinline {
%ret = call <4 x float> @__svml_atan2f4(<4 x float> %0, <4 x float> %1)
ret <4 x float> %ret
}
define <4 x float> @__svml_exp(<4 x float>) nounwind readnone alwaysinline {
%ret = call <4 x float> @__svml_expf4(<4 x float> %0)
ret <4 x float> %ret
}
define <4 x float> @__svml_log(<4 x float>) nounwind readnone alwaysinline {
%ret = call <4 x float> @__svml_logf4(<4 x float> %0)
ret <4 x float> %ret
}
define <4 x float> @__svml_pow(<4 x float>, <4 x float>) nounwind readnone alwaysinline {
%ret = call <4 x float> @__svml_powf4(<4 x float> %0, <4 x float> %1)
ret <4 x float> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; float min/max
declare <4 x float> @llvm.x86.sse.max.ps(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.min.ps(<4 x float>, <4 x float>) nounwind readnone
define <4 x float> @__max_varying_float(<4 x float>, <4 x float>) nounwind readonly alwaysinline {
%call = call <4 x float> @llvm.x86.sse.max.ps(<4 x float> %0, <4 x float> %1)
ret <4 x float> %call
}
define <4 x float> @__min_varying_float(<4 x float>, <4 x float>) nounwind readonly alwaysinline {
%call = call <4 x float> @llvm.x86.sse.min.ps(<4 x float> %0, <4 x float> %1)
ret <4 x float> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision sqrt
declare <2 x double> @llvm.x86.sse2.sqrt.pd(<2 x double>) nounwind readnone
define <4 x double> @__sqrt_varying_double(<4 x double>) nounwind alwaysinline {
unary2to4(ret, double, @llvm.x86.sse2.sqrt.pd, %0)
ret <4 x double> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision min/max
declare <2 x double> @llvm.x86.sse2.max.pd(<2 x double>, <2 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.min.pd(<2 x double>, <2 x double>) nounwind readnone
define <4 x double> @__min_varying_double(<4 x double>, <4 x double>) nounwind readnone {
binary2to4(ret, double, @llvm.x86.sse2.min.pd, %0, %1)
ret <4 x double> %ret
}
define <4 x double> @__max_varying_double(<4 x double>, <4 x double>) nounwind readnone {
binary2to4(ret, double, @llvm.x86.sse2.max.pd, %0, %1)
ret <4 x double> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; masked store
masked_store_blend_8_16_by_4()
gen_masked_store(4, i8, 8)
gen_masked_store(4, i16, 16)
gen_masked_store(4, i32, 32)
gen_masked_store(4, i64, 64)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unaligned loads/loads+broadcasts
load_and_broadcast(4, i8, 8)
load_and_broadcast(4, i16, 16)
load_and_broadcast(4, i32, 32)
load_and_broadcast(4, i64, 64)
load_masked(4, i8, 8, 1)
load_masked(4, i16, 16, 2)
load_masked(4, i32, 32, 4)
load_masked(4, i64, 64, 8)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; gather/scatter
; define these with the macros from stdlib.m4
gen_gather(4, i8)
gen_gather(4, i16)
gen_gather(4, i32)
gen_gather(4, i64)
gen_scatter(4, i8)
gen_scatter(4, i16)
gen_scatter(4, i32)
gen_scatter(4, i64)

271
builtins-sse4-common.ll Normal file
View File

@@ -0,0 +1,271 @@
;; Copyright (c) 2010-2011, Intel Corporation
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;;
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;;
;; * Neither the name of Intel Corporation nor the names of its
;; contributors may be used to endorse or promote products derived from
;; this software without specific prior written permission.
;;
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding floats
declare <4 x float> @llvm.x86.sse41.round.ss(<4 x float>, <4 x float>, i32) nounwind readnone
define float @__round_uniform_float(float) nounwind readonly alwaysinline {
; roundss, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
; the roundss intrinsic is a total mess--docs say:
;
; __m128 _mm_round_ss (__m128 a, __m128 b, const int c)
;
; b is a 128-bit parameter. The lowest 32 bits are the result of the rounding function
; on b0. The higher order 96 bits are copied directly from input parameter a. The
; return value is described by the following equations:
;
; r0 = RND(b0)
; r1 = a1
; r2 = a2
; r3 = a3
;
; It doesn't matter what we pass as a, since we only need the r0 value
; here. So we pass the same register for both. Further, only the 0th
; element of the b parameter matters
%xi = insertelement <4 x float> undef, float %0, i32 0
%xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 8)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
define float @__floor_uniform_float(float) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <4 x float> undef, float %0, i32 0
; roundps, round down 0b01 | don't signal precision exceptions 0b1010 = 9
%xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 9)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
define float @__ceil_uniform_float(float) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <4 x float> undef, float %0, i32 0
; roundps, round up 0b10 | don't signal precision exceptions 0b1010 = 10
%xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 10)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding doubles
declare <2 x double> @llvm.x86.sse41.round.sd(<2 x double>, <2 x double>, i32) nounwind readnone
define double @__round_uniform_double(double) nounwind readonly alwaysinline {
%xi = insertelement <2 x double> undef, double %0, i32 0
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 8)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
define double @__floor_uniform_double(double) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <2 x double> undef, double %0, i32 0
; roundpd, round down 0b01 | don't signal precision exceptions 0b1001 = 9
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 9)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
define double @__ceil_uniform_double(double) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <2 x double> undef, double %0, i32 0
; roundps, round up 0b10 | don't signal precision exceptions 0b1010 = 10
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 10)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rcp
declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone
define float @__rcp_uniform_float(float) nounwind readonly alwaysinline {
; do the rcpss call
%vecval = insertelement <4 x float> undef, float %0, i32 0
%call = call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %vecval)
%scall = extractelement <4 x float> %call, i32 0
; do one N-R iteration to improve precision, as above
%v_iv = fmul float %0, %scall
%two_minus = fsub float 2., %v_iv
%iv_mul = fmul float %scall, %two_minus
ret float %iv_mul
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; rsqrt
declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone
define float @__rsqrt_uniform_float(float) nounwind readonly alwaysinline {
; uniform float is = extract(__rsqrt_u(v), 0);
%v = insertelement <4 x float> undef, float %0, i32 0
%vis = call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %v)
%is = extractelement <4 x float> %vis, i32 0
; Newton-Raphson iteration to improve precision
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul float %0, %is
%v_is_is = fmul float %v_is, %is
%three_sub = fsub float 3., %v_is_is
%is_mul = fmul float %is, %three_sub
%half_scale = fmul float 0.5, %is_mul
ret float %half_scale
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; sqrt
declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone
define float @__sqrt_uniform_float(float) nounwind readonly alwaysinline {
sse_unary_scalar(ret, 4, float, @llvm.x86.sse.sqrt.ss, %0)
ret float %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; fast math mode
declare void @llvm.x86.sse.stmxcsr(i8 *) nounwind
declare void @llvm.x86.sse.ldmxcsr(i8 *) nounwind
define void @__fastmath() nounwind alwaysinline {
%ptr = alloca i32
%ptr8 = bitcast i32 * %ptr to i8 *
call void @llvm.x86.sse.stmxcsr(i8 * %ptr8)
%oldval = load i32 *%ptr
; turn on DAZ (64)/FTZ (32768) -> 32832
%update = or i32 %oldval, 32832
store i32 %update, i32 *%ptr
call void @llvm.x86.sse.ldmxcsr(i8 * %ptr8)
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; float min/max
declare <4 x float> @llvm.x86.sse.max.ss(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.min.ss(<4 x float>, <4 x float>) nounwind readnone
define float @__max_uniform_float(float, float) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.max.ss, %0, %1)
ret float %ret
}
define float @__min_uniform_float(float, float) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.min.ss, %0, %1)
ret float %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision sqrt
declare <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double>) nounwind readnone
define double @__sqrt_uniform_double(double) nounwind alwaysinline {
sse_unary_scalar(ret, 2, double, @llvm.x86.sse2.sqrt.sd, %0)
ret double %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision min/max
declare <2 x double> @llvm.x86.sse2.max.sd(<2 x double>, <2 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.min.sd(<2 x double>, <2 x double>) nounwind readnone
define double @__min_uniform_double(double, double) nounwind readnone {
sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.min.sd, %0, %1)
ret double %ret
}
define double @__max_uniform_double(double, double) nounwind readnone {
sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.max.sd, %0, %1)
ret double %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; int32 min/max
declare <4 x i32> @llvm.x86.sse41.pminsd(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.x86.sse41.pmaxsd(<4 x i32>, <4 x i32>) nounwind readnone
define i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminsd, %0, %1)
ret i32 %ret
}
define i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxsd, %0, %1)
ret i32 %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; unsigned int min/max
declare <4 x i32> @llvm.x86.sse41.pminud(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.x86.sse41.pmaxud(<4 x i32>, <4 x i32>) nounwind readnone
define i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminud, %0, %1)
ret i32 %ret
}
define i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxud, %0, %1)
ret i32 %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops / reductions
declare i32 @llvm.ctpop.i32(i32) nounwind readnone
define i32 @__popcnt_int32(i32) nounwind readonly alwaysinline {
%call = call i32 @llvm.ctpop.i32(i32 %0)
ret i32 %call
}
declare i64 @llvm.ctpop.i64(i64) nounwind readnone
define i64 @__popcnt_int64(i64) nounwind readonly alwaysinline {
%call = call i64 @llvm.ctpop.i64(i64 %0)
ret i64 %call
}

View File

@@ -38,15 +38,17 @@
stdlib_core(8)
packed_load_and_store(8)
int8_16(8)
scans(8)
int64minmax(8)
include(`builtins-sse4-common.ll')
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rcp
declare <4 x float> @llvm.x86.sse.rcp.ps(<4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone
define internal <8 x float> @__rcp_varying_float(<8 x float>) nounwind readonly alwaysinline {
define <8 x float> @__rcp_varying_float(<8 x float>) nounwind readonly alwaysinline {
; float iv = __rcp_v(v);
; return iv * (2. - v * iv);
@@ -59,27 +61,12 @@ define internal <8 x float> @__rcp_varying_float(<8 x float>) nounwind readonly
ret <8 x float> %iv_mul
}
define internal float @__rcp_uniform_float(float) nounwind readonly alwaysinline {
; uniform float iv = extract(__rcp_u(v), 0);
; return iv * (2. - v * iv);
%vecval = insertelement <4 x float> undef, float %0, i32 0
%call = call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %vecval)
%scall = extractelement <4 x float> %call, i32 0
; do one N-R iteration
%v_iv = fmul float %0, %scall
%two_minus = fsub float 2., %v_iv
%iv_mul = fmul float %scall, %two_minus
ret float %iv_mul
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rsqrt
declare <4 x float> @llvm.x86.sse.rsqrt.ps(<4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone
define internal <8 x float> @__rsqrt_varying_float(<8 x float> %v) nounwind readonly alwaysinline {
define <8 x float> @__rsqrt_varying_float(<8 x float> %v) nounwind readonly alwaysinline {
; float is = __rsqrt_v(v);
unary4to8(is, float, @llvm.x86.sse.rsqrt.ps, %v)
; return 0.5 * is * (3. - (v * is) * is);
@@ -93,56 +80,16 @@ define internal <8 x float> @__rsqrt_varying_float(<8 x float> %v) nounwind read
ret <8 x float> %half_scale
}
define internal float @__rsqrt_uniform_float(float) nounwind readonly alwaysinline {
; uniform float is = extract(__rsqrt_u(v), 0);
%v = insertelement <4 x float> undef, float %0, i32 0
%vis = call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %v)
%is = extractelement <4 x float> %vis, i32 0
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul float %0, %is
%v_is_is = fmul float %v_is, %is
%three_sub = fsub float 3., %v_is_is
%is_mul = fmul float %is, %three_sub
%half_scale = fmul float 0.5, %is_mul
ret float %half_scale
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; sqrt
declare <4 x float> @llvm.x86.sse.sqrt.ps(<4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone
define internal <8 x float> @__sqrt_varying_float(<8 x float>) nounwind readonly alwaysinline {
define <8 x float> @__sqrt_varying_float(<8 x float>) nounwind readonly alwaysinline {
unary4to8(call, float, @llvm.x86.sse.sqrt.ps, %0)
ret <8 x float> %call
}
define internal float @__sqrt_uniform_float(float) nounwind readonly alwaysinline {
sse_unary_scalar(ret, 4, float, @llvm.x86.sse.sqrt.ss, %0)
ret float %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; fast math
declare void @llvm.x86.sse.stmxcsr(i32 *) nounwind
declare void @llvm.x86.sse.ldmxcsr(i32 *) nounwind
define internal void @__fastmath() nounwind alwaysinline {
%ptr = alloca i32
call void @llvm.x86.sse.stmxcsr(i32 * %ptr)
%oldval = load i32 *%ptr
; turn on DAZ (64)/FTZ (32768) -> 32832
%update = or i32 %oldval, 32832
store i32 %update, i32 *%ptr
call void @llvm.x86.sse.ldmxcsr(i32 * %ptr)
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; svml stuff
@@ -157,17 +104,17 @@ declare <4 x float> @__svml_logf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_powf4(<4 x float>, <4 x float>) nounwind readnone
define internal <8 x float> @__svml_sin(<8 x float>) nounwind readnone alwaysinline {
define <8 x float> @__svml_sin(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_sinf4, %0)
ret <8 x float> %ret
}
define internal <8 x float> @__svml_cos(<8 x float>) nounwind readnone alwaysinline {
define <8 x float> @__svml_cos(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_cosf4, %0)
ret <8 x float> %ret
}
define internal void @__svml_sincos(<8 x float>, <8 x float> *,
define void @__svml_sincos(<8 x float>, <8 x float> *,
<8 x float> *) nounwind readnone alwaysinline {
; call svml_sincosf4 two times with the two 4-wide sub-vectors
%a = shufflevector <8 x float> %0, <8 x float> undef,
@@ -196,33 +143,33 @@ define internal void @__svml_sincos(<8 x float>, <8 x float> *,
ret void
}
define internal <8 x float> @__svml_tan(<8 x float>) nounwind readnone alwaysinline {
define <8 x float> @__svml_tan(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_tanf4, %0)
ret <8 x float> %ret
}
define internal <8 x float> @__svml_atan(<8 x float>) nounwind readnone alwaysinline {
define <8 x float> @__svml_atan(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_atanf4, %0)
ret <8 x float> %ret
}
define internal <8 x float> @__svml_atan2(<8 x float>,
define <8 x float> @__svml_atan2(<8 x float>,
<8 x float>) nounwind readnone alwaysinline {
binary4to8(ret, float, @__svml_atan2f4, %0, %1)
ret <8 x float> %ret
}
define internal <8 x float> @__svml_exp(<8 x float>) nounwind readnone alwaysinline {
define <8 x float> @__svml_exp(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_expf4, %0)
ret <8 x float> %ret
}
define internal <8 x float> @__svml_log(<8 x float>) nounwind readnone alwaysinline {
define <8 x float> @__svml_log(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_logf4, %0)
ret <8 x float> %ret
}
define internal <8 x float> @__svml_pow(<8 x float>,
define <8 x float> @__svml_pow(<8 x float>,
<8 x float>) nounwind readnone alwaysinline {
binary4to8(ret, float, @__svml_powf4, %0, %1)
ret <8 x float> %ret
@@ -233,91 +180,52 @@ define internal <8 x float> @__svml_pow(<8 x float>,
;; float min/max
declare <4 x float> @llvm.x86.sse.max.ps(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.max.ss(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.min.ps(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.min.ss(<4 x float>, <4 x float>) nounwind readnone
define internal <8 x float> @__max_varying_float(<8 x float>, <8 x float>) nounwind readonly alwaysinline {
define <8 x float> @__max_varying_float(<8 x float>, <8 x float>) nounwind readonly alwaysinline {
binary4to8(call, float, @llvm.x86.sse.max.ps, %0, %1)
ret <8 x float> %call
}
define internal float @__max_uniform_float(float, float) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.max.ss, %0, %1)
ret float %ret
}
define internal <8 x float> @__min_varying_float(<8 x float>, <8 x float>) nounwind readonly alwaysinline {
define <8 x float> @__min_varying_float(<8 x float>, <8 x float>) nounwind readonly alwaysinline {
binary4to8(call, float, @llvm.x86.sse.min.ps, %0, %1)
ret <8 x float> %call
}
define internal float @__min_uniform_float(float, float) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.min.ss, %0, %1)
ret float %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; int min/max
;; int32 min/max
declare <4 x i32> @llvm.x86.sse41.pminsd(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.x86.sse41.pmaxsd(<4 x i32>, <4 x i32>) nounwind readnone
define internal <8 x i32> @__min_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
define <8 x i32> @__min_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
binary4to8(call, i32, @llvm.x86.sse41.pminsd, %0, %1)
ret <8 x i32> %call
}
define internal i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminsd, %0, %1)
ret i32 %ret
}
define internal <8 x i32> @__max_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
define <8 x i32> @__max_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
binary4to8(call, i32, @llvm.x86.sse41.pmaxsd, %0, %1)
ret <8 x i32> %call
}
define internal i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxsd, %0, %1)
ret i32 %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; unsigned int min/max
declare <4 x i32> @llvm.x86.sse41.pminud(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.x86.sse41.pmaxud(<4 x i32>, <4 x i32>) nounwind readnone
define internal <8 x i32> @__min_varying_uint32(<8 x i32>,
define <8 x i32> @__min_varying_uint32(<8 x i32>,
<8 x i32>) nounwind readonly alwaysinline {
binary4to8(call, i32, @llvm.x86.sse41.pminud, %0, %1)
ret <8 x i32> %call
}
define internal i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminud, %0, %1)
ret i32 %ret
}
define internal <8 x i32> @__max_varying_uint32(<8 x i32>,
define <8 x i32> @__max_varying_uint32(<8 x i32>,
<8 x i32>) nounwind readonly alwaysinline {
binary4to8(call, i32, @llvm.x86.sse41.pmaxud, %0, %1)
ret <8 x i32> %call
}
define internal i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxud, %0, %1)
ret i32 %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops / reductions
declare i32 @llvm.x86.sse.movmsk.ps(<4 x float>) nounwind readnone
define internal i32 @__movmsk(<8 x i32>) nounwind readnone alwaysinline {
define i32 @__movmsk(<8 x i32>) nounwind readnone alwaysinline {
; first do two 4-wide movmsk calls
%floatmask = bitcast <8 x i32> %0 to <8 x float>
%m0 = shufflevector <8 x float> %floatmask, <8 x float> undef,
@@ -334,211 +242,179 @@ define internal i32 @__movmsk(<8 x i32>) nounwind readnone alwaysinline {
ret i32 %v
}
define internal float @__reduce_min_float(<8 x float>) nounwind readnone alwaysinline {
define float @__reduce_min_float(<8 x float>) nounwind readnone alwaysinline {
reduce8by4(float, @llvm.x86.sse.min.ps, @__min_uniform_float)
}
define internal float @__reduce_max_float(<8 x float>) nounwind readnone alwaysinline {
define float @__reduce_max_float(<8 x float>) nounwind readnone alwaysinline {
reduce8by4(float, @llvm.x86.sse.max.ps, @__max_uniform_float)
}
; helper function for reduce_add_int32
define internal <4 x i32> @__vec4_add_int32(<4 x i32> %v0,
define <4 x i32> @__vec4_add_int32(<4 x i32> %v0,
<4 x i32> %v1) nounwind readnone alwaysinline {
%v = add <4 x i32> %v0, %v1
ret <4 x i32> %v
}
; helper function for reduce_add_int32
define internal i32 @__add_int32(i32, i32) nounwind readnone alwaysinline {
define i32 @__add_int32(i32, i32) nounwind readnone alwaysinline {
%v = add i32 %0, %1
ret i32 %v
}
define internal i32 @__reduce_add_int32(<8 x i32>) nounwind readnone alwaysinline {
define i32 @__reduce_add_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8by4(i32, @__vec4_add_int32, @__add_int32)
}
define internal i32 @__reduce_min_int32(<8 x i32>) nounwind readnone alwaysinline {
define i32 @__reduce_min_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8by4(i32, @llvm.x86.sse41.pminsd, @__min_uniform_int32)
}
define internal i32 @__reduce_max_int32(<8 x i32>) nounwind readnone alwaysinline {
define i32 @__reduce_max_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8by4(i32, @llvm.x86.sse41.pmaxsd, @__max_uniform_int32)
}
define internal i32 @__reduce_add_uint32(<8 x i32> %v) nounwind readnone alwaysinline {
define i32 @__reduce_add_uint32(<8 x i32> %v) nounwind readnone alwaysinline {
%r = call i32 @__reduce_add_int32(<8 x i32> %v)
ret i32 %r
}
define internal i32 @__reduce_min_uint32(<8 x i32>) nounwind readnone alwaysinline {
define i32 @__reduce_min_uint32(<8 x i32>) nounwind readnone alwaysinline {
reduce8by4(i32, @llvm.x86.sse41.pminud, @__min_uniform_uint32)
}
define internal i32 @__reduce_max_uint32(<8 x i32>) nounwind readnone alwaysinline {
define i32 @__reduce_max_uint32(<8 x i32>) nounwind readnone alwaysinline {
reduce8by4(i32, @llvm.x86.sse41.pmaxud, @__max_uniform_uint32)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; masked store
define void @__masked_store_32(<8 x i32>* nocapture, <8 x i32>,
<8 x i32>) nounwind alwaysinline {
per_lane(8, <8 x i32> %2, `
; compute address for this one
%ptr_ID = getelementptr <8 x i32> * %0, i32 0, i32 LANE
%storeval_ID = extractelement <8 x i32> %1, i32 LANE
store i32 %storeval_ID, i32 * %ptr_ID')
ret void
define <4 x double> @__add_varying_double(<4 x double>,
<4 x double>) nounwind readnone alwaysinline {
%r = fadd <4 x double> %0, %1
ret <4 x double> %r
}
define void @__masked_store_64(<8 x i64>* nocapture, <8 x i64>,
<8 x i32>) nounwind alwaysinline {
per_lane(8, <8 x i32> %2, `
; compute address for this one
%ptr_ID = getelementptr <8 x i64> * %0, i32 0, i32 LANE
%storeval_ID = extractelement <8 x i64> %1, i32 LANE
store i64 %storeval_ID, i64 * %ptr_ID')
ret void
define double @__add_uniform_double(double, double) nounwind readnone alwaysinline {
%r = fadd double %0, %1
ret double %r
}
define double @__reduce_add_double(<8 x double>) nounwind readnone {
reduce8by4(double, @__add_varying_double, @__add_uniform_double)
}
define double @__reduce_min_double(<8 x double>) nounwind readnone {
reduce8(double, @__min_varying_double, @__min_uniform_double)
}
define double @__reduce_max_double(<8 x double>) nounwind readnone {
reduce8(double, @__max_varying_double, @__max_uniform_double)
}
define <4 x i64> @__add_varying_int64(<4 x i64>,
<4 x i64>) nounwind readnone alwaysinline {
%r = add <4 x i64> %0, %1
ret <4 x i64> %r
}
define i64 @__add_uniform_int64(i64, i64) nounwind readnone alwaysinline {
%r = add i64 %0, %1
ret i64 %r
}
define i64 @__reduce_add_int64(<8 x i64>) nounwind readnone {
reduce8by4(i64, @__add_varying_int64, @__add_uniform_int64)
}
define i64 @__reduce_min_int64(<8 x i64>) nounwind readnone {
reduce8(i64, @__min_varying_int64, @__min_uniform_int64)
}
define i64 @__reduce_max_int64(<8 x i64>) nounwind readnone {
reduce8(i64, @__max_varying_int64, @__max_uniform_int64)
}
define i64 @__reduce_min_uint64(<8 x i64>) nounwind readnone {
reduce8(i64, @__min_varying_uint64, @__min_uniform_uint64)
}
define i64 @__reduce_max_uint64(<8 x i64>) nounwind readnone {
reduce8(i64, @__max_varying_uint64, @__max_uniform_uint64)
}
reduce_equal(8)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unaligned loads/loads+broadcasts
; FIXME: I think this and the next one need to verify that the mask isn't
; all off before doing the load!!! (See e.g. stdlib-sse.ll)
load_and_broadcast(8, i8, 8)
load_and_broadcast(8, i16, 16)
load_and_broadcast(8, i32, 32)
load_and_broadcast(8, i64, 64)
define <8 x i32> @__load_and_broadcast_32(i8 *, <8 x i32> %mask) nounwind alwaysinline {
%ptr = bitcast i8 * %0 to i32 *
%val = load i32 * %ptr
%ret0 = insertelement <8 x i32> undef, i32 %val, i32 0
%ret1 = insertelement <8 x i32> %ret0, i32 %val, i32 1
%ret2 = insertelement <8 x i32> %ret1, i32 %val, i32 2
%ret3 = insertelement <8 x i32> %ret2, i32 %val, i32 3
%ret4 = insertelement <8 x i32> %ret3, i32 %val, i32 4
%ret5 = insertelement <8 x i32> %ret4, i32 %val, i32 5
%ret6 = insertelement <8 x i32> %ret5, i32 %val, i32 6
%ret7 = insertelement <8 x i32> %ret6, i32 %val, i32 7
ret <8 x i32> %ret7
}
define <8 x i64> @__load_and_broadcast_64(i8 *, <8 x i32> %mask) nounwind alwaysinline {
%ptr = bitcast i8 * %0 to i64 *
%val = load i64 * %ptr
%ret0 = insertelement <8 x i64> undef, i64 %val, i32 0
%ret1 = insertelement <8 x i64> %ret0, i64 %val, i32 1
%ret2 = insertelement <8 x i64> %ret1, i64 %val, i32 2
%ret3 = insertelement <8 x i64> %ret2, i64 %val, i32 3
%ret4 = insertelement <8 x i64> %ret3, i64 %val, i32 4
%ret5 = insertelement <8 x i64> %ret4, i64 %val, i32 5
%ret6 = insertelement <8 x i64> %ret5, i64 %val, i32 6
%ret7 = insertelement <8 x i64> %ret6, i64 %val, i32 7
ret <8 x i64> %ret7
}
define <8 x i32> @__load_masked_32(i8 *, <8 x i32> %mask) nounwind alwaysinline {
%ptr = bitcast i8 * %0 to <8 x i32> *
%val = load <8 x i32> * %ptr, align 4
ret <8 x i32> %val
}
define <8 x i64> @__load_masked_64(i8 *, <8 x i32> %mask) nounwind alwaysinline {
%ptr = bitcast i8 * %0 to <8 x i64> *
%val = load <8 x i64> * %ptr, align 8
ret <8 x i64> %val
}
load_masked(8, i8, 8, 1)
load_masked(8, i16, 16, 2)
load_masked(8, i32, 32, 4)
load_masked(8, i64, 64, 8)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; gather/scatter
gen_gather(8, i8)
gen_gather(8, i16)
gen_gather(8, i32)
gen_gather(8, i64)
gen_scatter(8, i8)
gen_scatter(8, i16)
gen_scatter(8, i32)
gen_scatter(8, i64)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; math
;; float rounding
declare <4 x float> @llvm.x86.sse41.round.ps(<4 x float>, i32) nounwind readnone
declare <4 x float> @llvm.x86.sse41.round.ss(<4 x float>, <4 x float>, i32) nounwind readnone
define internal <8 x float> @__round_varying_float(<8 x float>) nounwind readonly alwaysinline {
define <8 x float> @__round_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
round4to8(%0, 8)
}
define internal float @__round_uniform_float(float) nounwind readonly alwaysinline {
; roundss, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
; the roundss intrinsic is a total mess--docs say:
;
; __m128 _mm_round_ss (__m128 a, __m128 b, const int c)
;
; b is a 128-bit parameter. The lowest 32 bits are the result of the rounding function
; on b0. The higher order 96 bits are copied directly from input parameter a. The
; return value is described by the following equations:
;
; r0 = RND(b0)
; r1 = a1
; r2 = a2
; r3 = a3
;
; It doesn't matter what we pass as a, since we only need the r0 value
; here. So we pass the same register for both.
%xi = insertelement <4 x float> undef, float %0, i32 0
%xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 8)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
define internal <8 x float> @__floor_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round down 0b01 | don't signal precision exceptions 0b1000 = 9
define <8 x float> @__floor_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round down 0b01 | don't signal precision exceptions 0b1001 = 9
round4to8(%0, 9)
}
define internal float @__floor_uniform_float(float) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <4 x float> undef, float %0, i32 0
; roundps, round down 0b01 | don't signal precision exceptions 0b1000 = 9
%xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 9)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
define internal <8 x float> @__ceil_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10
define <8 x float> @__ceil_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round up 0b10 | don't signal precision exceptions 0b1010 = 10
round4to8(%0, 10)
}
define internal float @__ceil_uniform_float(float) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <4 x float> undef, float %0, i32 0
; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10
%xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 10)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding doubles
declare <2 x double> @llvm.x86.sse41.round.pd(<2 x double>, i32) nounwind readnone
define <8 x double> @__round_varying_double(<8 x double>) nounwind readonly alwaysinline {
round2to8double(%0, 8)
}
define <8 x double> @__floor_varying_double(<8 x double>) nounwind readonly alwaysinline {
; roundpd, round down 0b01 | don't signal precision exceptions 0b1001 = 9
round2to8double(%0, 9)
}
define <8 x double> @__ceil_varying_double(<8 x double>) nounwind readonly alwaysinline {
; roundpd, round up 0b10 | don't signal precision exceptions 0b1010 = 10
round2to8double(%0, 10)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops / reductions
declare i32 @llvm.ctpop.i32(i32) nounwind readnone
define internal i32 @__popcnt(i32) nounwind readonly alwaysinline {
%call = call i32 @llvm.ctpop.i32(i32 %0)
ret i32 %call
}
declare <4 x float> @llvm.x86.sse3.hadd.ps(<4 x float>, <4 x float>) nounwind readnone
define internal float @__reduce_add_float(<8 x float>) nounwind readonly alwaysinline {
define float @__reduce_add_float(<8 x float>) nounwind readonly alwaysinline {
%a = shufflevector <8 x float> %0, <8 x float> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%b = shufflevector <8 x float> %0, <8 x float> undef,
@@ -555,6 +431,13 @@ define internal float @__reduce_add_float(<8 x float>) nounwind readonly alwaysi
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; masked store
gen_masked_store(8, i8, 8)
gen_masked_store(8, i16, 16)
gen_masked_store(8, i32, 32)
gen_masked_store(8, i64, 64)
masked_store_blend_8_16_by_8()
declare <4 x float> @llvm.x86.sse41.blendvps(<4 x float>, <4 x float>,
<4 x float>) nounwind readnone
@@ -566,7 +449,7 @@ define void @__masked_store_blend_32(<8 x i32>* nocapture, <8 x i32>,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%mask_b = shufflevector <8 x float> %mask_as_float, <8 x float> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%oldValue = load <8 x i32>* %0
%oldValue = load <8 x i32>* %0, align 4
%oldAsFloat = bitcast <8 x i32> %oldValue to <8 x float>
%newAsFloat = bitcast <8 x i32> %1 to <8 x float>
%old_a = shufflevector <8 x float> %oldAsFloat, <8 x float> undef,
@@ -584,7 +467,7 @@ define void @__masked_store_blend_32(<8 x i32>* nocapture, <8 x i32>,
%blend = shufflevector <4 x float> %blend_a, <4 x float> %blend_b,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%blendAsInt = bitcast <8 x float> %blend to <8 x i32>
store <8 x i32> %blendAsInt, <8 x i32>* %0
store <8 x i32> %blendAsInt, <8 x i32>* %0, align 4
ret void
}
@@ -595,7 +478,7 @@ define void @__masked_store_blend_64(<8 x i64>* nocapture %ptr, <8 x i64> %new,
%mask_as_float = bitcast <8 x i32> %mask to <8 x float>
%old = load <8 x i64>* %ptr
%old = load <8 x i64>* %ptr, align 8
; set up the first two 64-bit values
%old01 = shufflevector <8 x i64> %old, <8 x i64> undef, <2 x i32> <i32 0, i32 1>
@@ -651,7 +534,7 @@ define void @__masked_store_blend_64(<8 x i64>* nocapture %ptr, <8 x i64> %new,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%final = shufflevector <4 x i64> %final0123, <4 x i64> %final4567,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
store <8 x i64> %final, <8 x i64> * %ptr
store <8 x i64> %final, <8 x i64> * %ptr, align 8
ret void
}
@@ -660,44 +543,24 @@ define void @__masked_store_blend_64(<8 x i64>* nocapture %ptr, <8 x i64> %new,
;; double precision sqrt
declare <2 x double> @llvm.x86.sse2.sqrt.pd(<2 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double>) nounwind readnone
define internal <8 x double> @__sqrt_varying_double(<8 x double>) nounwind alwaysinline {
define <8 x double> @__sqrt_varying_double(<8 x double>) nounwind alwaysinline {
unary2to8(ret, double, @llvm.x86.sse2.sqrt.pd, %0)
ret <8 x double> %ret
}
define internal double @__sqrt_uniform_double(double) nounwind alwaysinline {
sse_unary_scalar(ret, 2, double, @llvm.x86.sse2.sqrt.pd, %0)
ret double %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision float min/max
declare <2 x double> @llvm.x86.sse2.max.pd(<2 x double>, <2 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.max.sd(<2 x double>, <2 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.min.pd(<2 x double>, <2 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.min.sd(<2 x double>, <2 x double>) nounwind readnone
define internal <8 x double> @__min_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
define <8 x double> @__min_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
binary2to8(ret, double, @llvm.x86.sse2.min.pd, %0, %1)
ret <8 x double> %ret
}
define internal double @__min_uniform_double(double, double) nounwind readnone alwaysinline {
sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.min.pd, %0, %1)
ret double %ret
}
define internal <8 x double> @__max_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
define <8 x double> @__max_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
binary2to8(ret, double, @llvm.x86.sse2.max.pd, %0, %1)
ret <8 x double> %ret
}
define internal double @__max_uniform_double(double, double) nounwind readnone alwaysinline {
sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.max.pd, %0, %1)
ret double %ret
}

472
builtins-sse4.ll Normal file
View File

@@ -0,0 +1,472 @@
;; Copyright (c) 2010-2011, Intel Corporation
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;;
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;;
;; * Neither the name of Intel Corporation nor the names of its
;; contributors may be used to endorse or promote products derived from
;; this software without specific prior written permission.
;;
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Define common 4-wide stuff
stdlib_core(4)
packed_load_and_store(4)
scans(4)
int64minmax(4)
include(`builtins-sse4-common.ll')
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rcp
declare <4 x float> @llvm.x86.sse.rcp.ps(<4 x float>) nounwind readnone
define <4 x float> @__rcp_varying_float(<4 x float>) nounwind readonly alwaysinline {
%call = call <4 x float> @llvm.x86.sse.rcp.ps(<4 x float> %0)
; do one N-R iteration to improve precision
; float iv = __rcp_v(v);
; return iv * (2. - v * iv);
%v_iv = fmul <4 x float> %0, %call
%two_minus = fsub <4 x float> <float 2., float 2., float 2., float 2.>, %v_iv
%iv_mul = fmul <4 x float> %call, %two_minus
ret <4 x float> %iv_mul
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; rsqrt
declare <4 x float> @llvm.x86.sse.rsqrt.ps(<4 x float>) nounwind readnone
define <4 x float> @__rsqrt_varying_float(<4 x float> %v) nounwind readonly alwaysinline {
; float is = __rsqrt_v(v);
%is = call <4 x float> @llvm.x86.sse.rsqrt.ps(<4 x float> %v)
; Newton-Raphson iteration to improve precision
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul <4 x float> %v, %is
%v_is_is = fmul <4 x float> %v_is, %is
%three_sub = fsub <4 x float> <float 3., float 3., float 3., float 3.>, %v_is_is
%is_mul = fmul <4 x float> %is, %three_sub
%half_scale = fmul <4 x float> <float 0.5, float 0.5, float 0.5, float 0.5>, %is_mul
ret <4 x float> %half_scale
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; sqrt
declare <4 x float> @llvm.x86.sse.sqrt.ps(<4 x float>) nounwind readnone
define <4 x float> @__sqrt_varying_float(<4 x float>) nounwind readonly alwaysinline {
%call = call <4 x float> @llvm.x86.sse.sqrt.ps(<4 x float> %0)
ret <4 x float> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision sqrt
declare <2 x double> @llvm.x86.sse2.sqrt.pd(<2 x double>) nounwind readnone
define <4 x double> @__sqrt_varying_double(<4 x double>) nounwind alwaysinline {
unary2to4(ret, double, @llvm.x86.sse2.sqrt.pd, %0)
ret <4 x double> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding floats
declare <4 x float> @llvm.x86.sse41.round.ps(<4 x float>, i32) nounwind readnone
define <4 x float> @__round_varying_float(<4 x float>) nounwind readonly alwaysinline {
; roundps, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
%call = call <4 x float> @llvm.x86.sse41.round.ps(<4 x float> %0, i32 8)
ret <4 x float> %call
}
define <4 x float> @__floor_varying_float(<4 x float>) nounwind readonly alwaysinline {
; roundps, round down 0b01 | don't signal precision exceptions 0b1001 = 9
%call = call <4 x float> @llvm.x86.sse41.round.ps(<4 x float> %0, i32 9)
ret <4 x float> %call
}
define <4 x float> @__ceil_varying_float(<4 x float>) nounwind readonly alwaysinline {
; roundps, round up 0b10 | don't signal precision exceptions 0b1010 = 10
%call = call <4 x float> @llvm.x86.sse41.round.ps(<4 x float> %0, i32 10)
ret <4 x float> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding doubles
declare <2 x double> @llvm.x86.sse41.round.pd(<2 x double>, i32) nounwind readnone
define <4 x double> @__round_varying_double(<4 x double>) nounwind readonly alwaysinline {
round2to4double(%0, 8)
}
define <4 x double> @__floor_varying_double(<4 x double>) nounwind readonly alwaysinline {
; roundpd, round down 0b01 | don't signal precision exceptions 0b1001 = 9
round2to4double(%0, 9)
}
define <4 x double> @__ceil_varying_double(<4 x double>) nounwind readonly alwaysinline {
; roundpd, round up 0b10 | don't signal precision exceptions 0b1010 = 10
round2to4double(%0, 10)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; float min/max
declare <4 x float> @llvm.x86.sse.max.ps(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.min.ps(<4 x float>, <4 x float>) nounwind readnone
define <4 x float> @__max_varying_float(<4 x float>, <4 x float>) nounwind readonly alwaysinline {
%call = call <4 x float> @llvm.x86.sse.max.ps(<4 x float> %0, <4 x float> %1)
ret <4 x float> %call
}
define <4 x float> @__min_varying_float(<4 x float>, <4 x float>) nounwind readonly alwaysinline {
%call = call <4 x float> @llvm.x86.sse.min.ps(<4 x float> %0, <4 x float> %1)
ret <4 x float> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; int32 min/max
define <4 x i32> @__min_varying_int32(<4 x i32>, <4 x i32>) nounwind readonly alwaysinline {
%call = call <4 x i32> @llvm.x86.sse41.pminsd(<4 x i32> %0, <4 x i32> %1)
ret <4 x i32> %call
}
define <4 x i32> @__max_varying_int32(<4 x i32>, <4 x i32>) nounwind readonly alwaysinline {
%call = call <4 x i32> @llvm.x86.sse41.pmaxsd(<4 x i32> %0, <4 x i32> %1)
ret <4 x i32> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; unsigned int min/max
define <4 x i32> @__min_varying_uint32(<4 x i32>, <4 x i32>) nounwind readonly alwaysinline {
%call = call <4 x i32> @llvm.x86.sse41.pminud(<4 x i32> %0, <4 x i32> %1)
ret <4 x i32> %call
}
define <4 x i32> @__max_varying_uint32(<4 x i32>, <4 x i32>) nounwind readonly alwaysinline {
%call = call <4 x i32> @llvm.x86.sse41.pmaxud(<4 x i32> %0, <4 x i32> %1)
ret <4 x i32> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision min/max
declare <2 x double> @llvm.x86.sse2.max.pd(<2 x double>, <2 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.min.pd(<2 x double>, <2 x double>) nounwind readnone
define <4 x double> @__min_varying_double(<4 x double>, <4 x double>) nounwind readnone {
binary2to4(ret, double, @llvm.x86.sse2.min.pd, %0, %1)
ret <4 x double> %ret
}
define <4 x double> @__max_varying_double(<4 x double>, <4 x double>) nounwind readnone {
binary2to4(ret, double, @llvm.x86.sse2.max.pd, %0, %1)
ret <4 x double> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; svml stuff
declare <4 x float> @__svml_sinf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_cosf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_sincosf4(<4 x float> *, <4 x float>) nounwind readnone
declare <4 x float> @__svml_tanf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_atanf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_atan2f4(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @__svml_expf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_logf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_powf4(<4 x float>, <4 x float>) nounwind readnone
define <4 x float> @__svml_sin(<4 x float>) nounwind readnone alwaysinline {
%ret = call <4 x float> @__svml_sinf4(<4 x float> %0)
ret <4 x float> %ret
}
define <4 x float> @__svml_cos(<4 x float>) nounwind readnone alwaysinline {
%ret = call <4 x float> @__svml_cosf4(<4 x float> %0)
ret <4 x float> %ret
}
define void @__svml_sincos(<4 x float>, <4 x float> *, <4 x float> *) nounwind readnone alwaysinline {
%s = call <4 x float> @__svml_sincosf4(<4 x float> * %2, <4 x float> %0)
store <4 x float> %s, <4 x float> * %1
ret void
}
define <4 x float> @__svml_tan(<4 x float>) nounwind readnone alwaysinline {
%ret = call <4 x float> @__svml_tanf4(<4 x float> %0)
ret <4 x float> %ret
}
define <4 x float> @__svml_atan(<4 x float>) nounwind readnone alwaysinline {
%ret = call <4 x float> @__svml_atanf4(<4 x float> %0)
ret <4 x float> %ret
}
define <4 x float> @__svml_atan2(<4 x float>, <4 x float>) nounwind readnone alwaysinline {
%ret = call <4 x float> @__svml_atan2f4(<4 x float> %0, <4 x float> %1)
ret <4 x float> %ret
}
define <4 x float> @__svml_exp(<4 x float>) nounwind readnone alwaysinline {
%ret = call <4 x float> @__svml_expf4(<4 x float> %0)
ret <4 x float> %ret
}
define <4 x float> @__svml_log(<4 x float>) nounwind readnone alwaysinline {
%ret = call <4 x float> @__svml_logf4(<4 x float> %0)
ret <4 x float> %ret
}
define <4 x float> @__svml_pow(<4 x float>, <4 x float>) nounwind readnone alwaysinline {
%ret = call <4 x float> @__svml_powf4(<4 x float> %0, <4 x float> %1)
ret <4 x float> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops / reductions
declare i32 @llvm.x86.sse.movmsk.ps(<4 x float>) nounwind readnone
define i32 @__movmsk(<4 x i32>) nounwind readnone alwaysinline {
%floatmask = bitcast <4 x i32> %0 to <4 x float>
%v = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %floatmask) nounwind readnone
ret i32 %v
}
declare <4 x float> @llvm.x86.sse3.hadd.ps(<4 x float>, <4 x float>) nounwind readnone
define float @__reduce_add_float(<4 x float>) nounwind readonly alwaysinline {
%v1 = call <4 x float> @llvm.x86.sse3.hadd.ps(<4 x float> %0, <4 x float> %0)
%v2 = call <4 x float> @llvm.x86.sse3.hadd.ps(<4 x float> %v1, <4 x float> %v1)
%scalar = extractelement <4 x float> %v2, i32 0
ret float %scalar
}
define float @__reduce_min_float(<4 x float>) nounwind readnone {
reduce4(float, @__min_varying_float, @__min_uniform_float)
}
define float @__reduce_max_float(<4 x float>) nounwind readnone {
reduce4(float, @__max_varying_float, @__max_uniform_float)
}
define i32 @__reduce_add_int32(<4 x i32> %v) nounwind readnone {
%v1 = shufflevector <4 x i32> %v, <4 x i32> undef,
<4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%m1 = add <4 x i32> %v1, %v
%m1a = extractelement <4 x i32> %m1, i32 0
%m1b = extractelement <4 x i32> %m1, i32 1
%sum = add i32 %m1a, %m1b
ret i32 %sum
}
define i32 @__reduce_min_int32(<4 x i32>) nounwind readnone {
reduce4(i32, @__min_varying_int32, @__min_uniform_int32)
}
define i32 @__reduce_max_int32(<4 x i32>) nounwind readnone {
reduce4(i32, @__max_varying_int32, @__max_uniform_int32)
}
define i32 @__reduce_add_uint32(<4 x i32> %v) nounwind readnone {
%r = call i32 @__reduce_add_int32(<4 x i32> %v)
ret i32 %r
}
define i32 @__reduce_min_uint32(<4 x i32>) nounwind readnone {
reduce4(i32, @__min_varying_uint32, @__min_uniform_uint32)
}
define i32 @__reduce_max_uint32(<4 x i32>) nounwind readnone {
reduce4(i32, @__max_varying_uint32, @__max_uniform_uint32)
}
define double @__reduce_add_double(<4 x double>) nounwind readnone {
%v0 = shufflevector <4 x double> %0, <4 x double> undef,
<2 x i32> <i32 0, i32 1>
%v1 = shufflevector <4 x double> %0, <4 x double> undef,
<2 x i32> <i32 2, i32 3>
%sum = fadd <2 x double> %v0, %v1
%e0 = extractelement <2 x double> %sum, i32 0
%e1 = extractelement <2 x double> %sum, i32 1
%m = fadd double %e0, %e1
ret double %m
}
define double @__reduce_min_double(<4 x double>) nounwind readnone {
reduce4(double, @__min_varying_double, @__min_uniform_double)
}
define double @__reduce_max_double(<4 x double>) nounwind readnone {
reduce4(double, @__max_varying_double, @__max_uniform_double)
}
define i64 @__reduce_add_int64(<4 x i64>) nounwind readnone {
%v0 = shufflevector <4 x i64> %0, <4 x i64> undef,
<2 x i32> <i32 0, i32 1>
%v1 = shufflevector <4 x i64> %0, <4 x i64> undef,
<2 x i32> <i32 2, i32 3>
%sum = add <2 x i64> %v0, %v1
%e0 = extractelement <2 x i64> %sum, i32 0
%e1 = extractelement <2 x i64> %sum, i32 1
%m = add i64 %e0, %e1
ret i64 %m
}
define i64 @__reduce_min_int64(<4 x i64>) nounwind readnone {
reduce4(i64, @__min_varying_int64, @__min_uniform_int64)
}
define i64 @__reduce_max_int64(<4 x i64>) nounwind readnone {
reduce4(i64, @__max_varying_int64, @__max_uniform_int64)
}
define i64 @__reduce_min_uint64(<4 x i64>) nounwind readnone {
reduce4(i64, @__min_varying_uint64, @__min_uniform_uint64)
}
define i64 @__reduce_max_uint64(<4 x i64>) nounwind readnone {
reduce4(i64, @__max_varying_uint64, @__max_uniform_uint64)
}
reduce_equal(4)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; masked store
declare <4 x float> @llvm.x86.sse41.blendvps(<4 x float>, <4 x float>,
<4 x float>) nounwind readnone
define void @__masked_store_blend_32(<4 x i32>* nocapture, <4 x i32>,
<4 x i32> %mask) nounwind alwaysinline {
%mask_as_float = bitcast <4 x i32> %mask to <4 x float>
%oldValue = load <4 x i32>* %0, align 4
%oldAsFloat = bitcast <4 x i32> %oldValue to <4 x float>
%newAsFloat = bitcast <4 x i32> %1 to <4 x float>
%blend = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %oldAsFloat,
<4 x float> %newAsFloat,
<4 x float> %mask_as_float)
%blendAsInt = bitcast <4 x float> %blend to <4 x i32>
store <4 x i32> %blendAsInt, <4 x i32>* %0, align 4
ret void
}
define void @__masked_store_blend_64(<4 x i64>* nocapture %ptr, <4 x i64> %new,
<4 x i32> %i32mask) nounwind alwaysinline {
%oldValue = load <4 x i64>* %ptr, align 8
%mask = bitcast <4 x i32> %i32mask to <4 x float>
; Do 4x64-bit blends by doing two <4 x i32> blends, where the <4 x i32> values
; are actually bitcast <2 x i64> values
;
; set up the first two 64-bit values
%old01 = shufflevector <4 x i64> %oldValue, <4 x i64> undef,
<2 x i32> <i32 0, i32 1>
%old01f = bitcast <2 x i64> %old01 to <4 x float>
%new01 = shufflevector <4 x i64> %new, <4 x i64> undef,
<2 x i32> <i32 0, i32 1>
%new01f = bitcast <2 x i64> %new01 to <4 x float>
; compute mask--note that the indices 0 and 1 are doubled-up
%mask01 = shufflevector <4 x float> %mask, <4 x float> undef,
<4 x i32> <i32 0, i32 0, i32 1, i32 1>
; and blend the two of the values
%result01f = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %old01f,
<4 x float> %new01f,
<4 x float> %mask01)
%result01 = bitcast <4 x float> %result01f to <2 x i64>
; and again
%old23 = shufflevector <4 x i64> %oldValue, <4 x i64> undef,
<2 x i32> <i32 2, i32 3>
%old23f = bitcast <2 x i64> %old23 to <4 x float>
%new23 = shufflevector <4 x i64> %new, <4 x i64> undef,
<2 x i32> <i32 2, i32 3>
%new23f = bitcast <2 x i64> %new23 to <4 x float>
; compute mask--note that the values 2 and 3 are doubled-up
%mask23 = shufflevector <4 x float> %mask, <4 x float> undef,
<4 x i32> <i32 2, i32 2, i32 3, i32 3>
; and blend the two of the values
%result23f = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %old23f,
<4 x float> %new23f,
<4 x float> %mask23)
%result23 = bitcast <4 x float> %result23f to <2 x i64>
; reconstruct the final <4 x i64> vector
%final = shufflevector <2 x i64> %result01, <2 x i64> %result23,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
store <4 x i64> %final, <4 x i64> * %ptr, align 8
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; masked store
masked_store_blend_8_16_by_4()
gen_masked_store(4, i8, 8)
gen_masked_store(4, i16, 16)
gen_masked_store(4, i32, 32)
gen_masked_store(4, i64, 64)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unaligned loads/loads+broadcasts
load_and_broadcast(4, i8, 8)
load_and_broadcast(4, i16, 16)
load_and_broadcast(4, i32, 32)
load_and_broadcast(4, i64, 64)
load_masked(4, i8, 8, 1)
load_masked(4, i16, 16, 2)
load_masked(4, i32, 32, 4)
load_masked(4, i64, 64, 8)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; gather/scatter
; define these with the macros from stdlib.m4
gen_gather(4, i8)
gen_gather(4, i16)
gen_gather(4, i32)
gen_gather(4, i64)
gen_scatter(4, i8)
gen_scatter(4, i16)
gen_scatter(4, i32)
gen_scatter(4, i64)

File diff suppressed because it is too large Load Diff

View File

@@ -55,4 +55,7 @@
void DefineStdlib(SymbolTable *symbolTable, llvm::LLVMContext *ctx, llvm::Module *module,
bool includeStdlib);
void AddBitcodeToModule(const unsigned char *bitcode, int length,
llvm::Module *module, SymbolTable *symbolTable = NULL);
#endif // ISPC_STDLIB_H

2915
builtins.m4 Normal file

File diff suppressed because it is too large Load Diff

32
contrib/ispc.vim Normal file
View File

@@ -0,0 +1,32 @@
" Vim syntax file
" Language: ISPC
" Maintainer: Andreas Wendleder <andreas.wendleder@gmail.com>
" Last Change: 2011 Aug 3
" Quit when a syntax file was already loaded
if exists("b:current_syntax")
finish
endif
" Read the C syntax to start with
runtime! syntax/c.vim
unlet b:current_syntax
" New keywords
syn keyword ispcStatement cbreak ccontinue creturn launch print reference soa sync task
syn keyword ispcConditional cif
syn keyword ispcRepeat cdo cfor cwhile
syn keyword ispcBuiltin programCount programIndex
syn keyword ispcType export int8 int16 int32 int64
" Default highlighting
command -nargs=+ HiLink hi def link <args>
HiLink ispcStatement Statement
HiLink ispcConditional Conditional
HiLink ispcRepeat Repeat
HiLink ispcBuiltin Statement
HiLink ispcType Type
delcommand HiLink
let b:current_syntax = "ispc"

1782
ctx.cpp

File diff suppressed because it is too large Load Diff

231
ctx.h
View File

@@ -41,9 +41,7 @@
#include "ispc.h"
#include <llvm/InstrTypes.h>
#include <llvm/Instructions.h>
#ifndef LLVM_2_8
#include <llvm/Analysis/DIBuilder.h>
#endif
#include <llvm/Analysis/DebugInfo.h>
struct CFInfo;
@@ -59,17 +57,22 @@ struct CFInfo;
class FunctionEmitContext {
public:
/** Create a new FunctionEmitContext.
@param returnType The return type of the function
@param function LLVM function in the current module that corresponds
to the function
@param function The Function object representing the function
@param funSym Symbol that corresponds to the function
@param llvmFunction LLVM function in the current module that corresponds
to the function
@param firstStmtPos Source file position of the first statement in the
function
*/
FunctionEmitContext(const Type *returnType, llvm::Function *function, Symbol *funSym,
FunctionEmitContext(Function *function, Symbol *funSym,
llvm::Function *llvmFunction,
SourcePos firstStmtPos);
~FunctionEmitContext();
/** Returns the Function * corresponding to the function that we're
currently generating code for. */
const Function *GetFunction() const;
/** @name Current basic block management
@{
*/
@@ -83,20 +86,33 @@ public:
/** @name Mask management
@{
*/
/** Returns the current mask value */
llvm::Value *GetMask();
/** Returns the mask value at entry to the current function. */
llvm::Value *GetFunctionMask();
/** Returns the mask value corresponding to "varying" control flow
within the current function. (i.e. this doesn't include the effect
of the mask at function entry. */
llvm::Value *GetInternalMask();
/** Returns the complete current mask value--i.e. the logical AND of
the function entry mask and the internal mask. */
llvm::Value *GetFullMask();
/** Provides the alloca'd pointer to memory to store the full function
mask. This is only used to wire up the __mask builtin variable. */
void SetMaskPointer(llvm::Value *p);
/** Provides the value of the mask at function entry */
void SetEntryMask(llvm::Value *val);
void SetFunctionMask(llvm::Value *val);
/** Sets the mask to a new value */
void SetMask(llvm::Value *val);
/** Sets the internal mask to a new value */
void SetInternalMask(llvm::Value *val);
/** Sets the mask to (oldMask & val) */
void MaskAnd(llvm::Value *oldMask, llvm::Value *val);
/** Sets the internal mask to (oldMask & val) */
void SetInternalMaskAnd(llvm::Value *oldMask, llvm::Value *val);
/** Sets the mask to (oldMask & ~val) */
void MaskAndNot(llvm::Value *oldMask, llvm::Value *test);
/** Sets the internal mask to (oldMask & ~val) */
void SetInternalMaskAndNot(llvm::Value *oldMask, llvm::Value *test);
/** Emits a branch instruction to the basic block btrue if any of the
lanes of current mask are on and bfalse if none are on. */
@@ -115,9 +131,8 @@ public:
@{
*/
/** Notifies the FunctionEmitContext that we're starting emission of an
'if' statement with a uniform test. The value of the mask going
into the 'if' statement is provided in the oldMask parameter. */
void StartUniformIf(llvm::Value *oldMask);
'if' statement with a uniform test. */
void StartUniformIf();
/** Notifies the FunctionEmitContext that we're starting emission of an
'if' statement with a varying test. The value of the mask going
@@ -132,10 +147,9 @@ public:
for a loop. Basic blocks are provides for where 'break' and
'continue' statements should jump to (if all running lanes want to
break or continue), uniformControlFlow indicates whether the loop
condition is 'uniform', and oldMask provides the current mask going
into the loop. */
condition is 'uniform'. */
void StartLoop(llvm::BasicBlock *breakTarget, llvm::BasicBlock *continueTarget,
bool uniformControlFlow, llvm::Value *oldMask);
bool uniformControlFlow);
/** Informs FunctionEmitContext of the value of the mask at the start
of a loop body. */
@@ -145,6 +159,13 @@ public:
finished. */
void EndLoop();
/** Indicates that code generation for a 'foreach' or 'foreach_tiled'
loop is about to start. The provided basic block pointer indicates
where control flow should go if a 'continue' statement is executed
in the loop. */
void StartForeach(llvm::BasicBlock *continueTarget);
void EndForeach();
/** Emit code for a 'break' statement in a loop. If doCoherenceCheck
is true, then if we're in a 'varying' loop, code will be emitted to
see if all of the lanes want to break, in which case a jump to the
@@ -169,6 +190,8 @@ public:
flow */
int VaryingCFDepth() const;
bool InForeachLoop() const;
/** Called to generate code for 'return' statement; value is the
expression in the return statement (if non-NULL), and
doCoherenceCheck indicates whether instructions should be generated
@@ -210,16 +233,6 @@ public:
i32. */
llvm::Value *I1VecToBoolVec(llvm::Value *b);
/** Emit code to call the user-supplied ISPCMalloc function to
allocate space for an object of thee given type. Returns the
pointer value returned by the ISPCMalloc call. */
llvm::Value *EmitMalloc(const llvm::Type *ty);
/** Emit code to call the user-supplied ISPCFree function, passing it
the given pointer to storage previously allocated by an
EmitMalloc() call. */
void EmitFree(llvm::Value *ptr);
/** If the user has asked to compile the program with instrumentation,
this inserts a callback to the user-supplied instrumentation
function at the current point in the code. */
@@ -303,43 +316,60 @@ public:
llvm::CmpInst::Predicate pred,
llvm::Value *v0, llvm::Value *v1, const char *name = NULL);
llvm::Value *BitCastInst(llvm::Value *value, const llvm::Type *type,
/** Given a scalar value, return a vector of the same type (or an
array, for pointer types). */
llvm::Value *SmearUniform(llvm::Value *value, const char *name = NULL);
llvm::Value *BitCastInst(llvm::Value *value, LLVM_TYPE_CONST llvm::Type *type,
const char *name = NULL);
llvm::Instruction *PtrToIntInst(llvm::Value *value, const llvm::Type *type,
const char *name = NULL);
llvm::Instruction *IntToPtrInst(llvm::Value *value, const llvm::Type *type,
const char *name = NULL);
llvm::Instruction *TruncInst(llvm::Value *value, const llvm::Type *type,
llvm::Value *PtrToIntInst(llvm::Value *value, const char *name = NULL);
llvm::Value *PtrToIntInst(llvm::Value *value, LLVM_TYPE_CONST llvm::Type *type,
const char *name = NULL);
llvm::Value *IntToPtrInst(llvm::Value *value, LLVM_TYPE_CONST llvm::Type *type,
const char *name = NULL);
llvm::Instruction *TruncInst(llvm::Value *value, LLVM_TYPE_CONST llvm::Type *type,
const char *name = NULL);
llvm::Instruction *CastInst(llvm::Instruction::CastOps op, llvm::Value *value,
const llvm::Type *type, const char *name = NULL);
llvm::Instruction *FPCastInst(llvm::Value *value, const llvm::Type *type,
LLVM_TYPE_CONST llvm::Type *type, const char *name = NULL);
llvm::Instruction *FPCastInst(llvm::Value *value, LLVM_TYPE_CONST llvm::Type *type,
const char *name = NULL);
llvm::Instruction *SExtInst(llvm::Value *value, const llvm::Type *type,
llvm::Instruction *SExtInst(llvm::Value *value, LLVM_TYPE_CONST llvm::Type *type,
const char *name = NULL);
llvm::Instruction *ZExtInst(llvm::Value *value, const llvm::Type *type,
llvm::Instruction *ZExtInst(llvm::Value *value, LLVM_TYPE_CONST llvm::Type *type,
const char *name = NULL);
/** This GEP method is a generalization of the standard one in LLVM; it
supports both uniform and varying basePtr values (an array of
pointers) as well as uniform and varying index values (arrays of
indices). */
/** These GEP methods are generalizations of the standard ones in LLVM;
they support both uniform and varying basePtr values as well as
uniform and varying index values (arrays of indices). Varying base
pointers are expected to come in as vectors of i32/i64 (depending
on the target), since LLVM doesn't currently support vectors of
pointers. The underlying type of the base pointer must be provided
via the ptrType parameter */
llvm::Value *GetElementPtrInst(llvm::Value *basePtr, llvm::Value *index,
const Type *ptrType, const char *name = NULL);
llvm::Value *GetElementPtrInst(llvm::Value *basePtr, llvm::Value *index0,
llvm::Value *index1, const char *name = NULL);
/** This is a convenience method to generate a GEP instruction with
indices with values with known constant values as the ispc program
is being compiled. */
llvm::Value *GetElementPtrInst(llvm::Value *basePtr, int v0, int v1,
llvm::Value *index1, const Type *ptrType,
const char *name = NULL);
/** Load from the memory location(s) given by lvalue. The lvalue may
be varying, in which case this corresponds to a gather from the
multiple memory locations given by the array of pointer values
given by the lvalue. If the lvalue is not varying, then the type
parameter may be NULL. */
llvm::Value *LoadInst(llvm::Value *lvalue, const Type *type,
const char *name = NULL);
/** This method returns a new pointer that represents offsetting the
given base pointer to point at the given element number of the
structure type that the base pointer points to. (The provided
pointer must be a pointer to a structure type. The ptrType gives
the type of the pointer, though it may be NULL if the base pointer
is uniform. */
llvm::Value *AddElementOffset(llvm::Value *basePtr, int elementNum,
const Type *ptrType, const char *name = NULL);
/** Load from the memory location(s) given by lvalue, using the given
mask. The lvalue may be varying, in which case this corresponds to
a gather from the multiple memory locations given by the array of
pointer values given by the lvalue. If the lvalue is not varying,
then both the mask pointer and the type pointer may be NULL. */
llvm::Value *LoadInst(llvm::Value *ptr, llvm::Value *mask,
const Type *ptrType, const char *name = NULL);
llvm::Value *LoadInst(llvm::Value *ptr, const char *name = NULL);
/** Emits an alloca instruction to allocate stack storage for the given
type. If a non-zero alignment is specified, the object is also
@@ -347,21 +377,20 @@ public:
instruction is added at the start of the function in the entry
basic block; if it should be added to the current basic block, then
the atEntryBlock parameter should be false. */
llvm::Value *AllocaInst(const llvm::Type *llvmType, const char *name = NULL,
int align = 0, bool atEntryBlock = true);
llvm::Value *AllocaInst(LLVM_TYPE_CONST llvm::Type *llvmType,
const char *name = NULL, int align = 0,
bool atEntryBlock = true);
/** Standard store instruction; for this variant, the lvalue must be a
single pointer, not a varying lvalue. */
void StoreInst(llvm::Value *rvalue, llvm::Value *lvalue,
const char *name = NULL);
void StoreInst(llvm::Value *value, llvm::Value *ptr);
/** In this variant of StoreInst(), the lvalue may be varying. If so,
this corresponds to a scatter. Whether the lvalue is uniform of
varying, the given storeMask is used to mask the stores so that
they only execute for the active program instances. */
void StoreInst(llvm::Value *rvalue, llvm::Value *lvalue,
llvm::Value *storeMask, const Type *rvalueType,
const char *name = NULL);
void StoreInst(llvm::Value *value, llvm::Value *ptr,
llvm::Value *storeMask, const Type *ptrType);
void BranchInst(llvm::BasicBlock *block);
void BranchInst(llvm::BasicBlock *trueBlock, llvm::BasicBlock *falseBlock,
@@ -378,32 +407,45 @@ public:
llvm::Value *InsertInst(llvm::Value *v, llvm::Value *eltVal, int elt,
const char *name = NULL);
llvm::PHINode *PhiNode(const llvm::Type *type, int count, const char *name = NULL);
llvm::PHINode *PhiNode(LLVM_TYPE_CONST llvm::Type *type, int count,
const char *name = NULL);
llvm::Instruction *SelectInst(llvm::Value *test, llvm::Value *val0,
llvm::Value *val1, const char *name = NULL);
llvm::Instruction *CallInst(llvm::Function *func,
const std::vector<llvm::Value *> &args,
const char *name = NULL);
/** Emits IR to do a function call with the given arguments. If the
function type is a varying function pointer type, its full type
must be provided in funcType. funcType can be NULL if func is a
uniform function pointer. */
llvm::Value *CallInst(llvm::Value *func, const FunctionType *funcType,
const std::vector<llvm::Value *> &args,
const char *name = NULL);
/** This is a convenience method that issues a call instruction to a
function that takes just a single argument. */
llvm::Instruction *CallInst(llvm::Function *func, llvm::Value *arg,
const char *name = NULL);
llvm::Value *CallInst(llvm::Value *func, const FunctionType *funcType,
llvm::Value *arg, const char *name = NULL);
/** This is a convenience method that issues a call instruction to a
function that takes two arguments. */
llvm::Instruction *CallInst(llvm::Function *func, llvm::Value *arg0,
llvm::Value *arg1, const char *name = NULL);
llvm::Value *CallInst(llvm::Value *func, const FunctionType *funcType,
llvm::Value *arg0, llvm::Value *arg1,
const char *name = NULL);
/** Launch an asynchronous task to run the given function, passing it
he given argument values. */
llvm::Instruction *LaunchInst(llvm::Function *callee,
std::vector<llvm::Value *> &argVals);
llvm::Value *LaunchInst(llvm::Value *callee,
std::vector<llvm::Value *> &argVals,
llvm::Value *launchCount);
void SyncInst();
llvm::Instruction *ReturnInst();
/** @} */
private:
/** Pointer to the Function for which we're currently generating code. */
Function *function;
/** The basic block into which we add any alloca instructions that need
to go at the very start of the function. */
llvm::BasicBlock *allocaBlock;
@@ -413,8 +455,16 @@ private:
llvm::BasicBlock *bblock;
/** Pointer to stack-allocated memory that stores the current value of
the program mask. */
llvm::Value *maskPtr;
the full program mask. */
llvm::Value *fullMaskPointer;
/** Pointer to stack-allocated memory that stores the current value of
the program mask representing varying control flow within the
function. */
llvm::Value *internalMaskPointer;
/** Value of the program mask when the function starts execution. */
llvm::Value *functionMaskValue;
/** Current source file position; if debugging information is being
generated, this position is used to set file/line information for
@@ -425,12 +475,6 @@ private:
for error messages and debugging symbols. */
SourcePos funcStartPos;
/** Type of result that the current function returns. */
const Type *returnType;
/** Value of the program mask when the function starts execution. */
llvm::Value *entryMask;
/** If currently in a loop body, the value of the mask at the start of
the loop. */
llvm::Value *loopMask;
@@ -488,20 +532,29 @@ private:
/** True if a 'launch' statement has been encountered in the function. */
bool launchedTasks;
/** This is a pointer to a void * that is passed to the ISPCLaunch(),
ISPCAlloc(), and ISPCSync() routines as a handle to the group ot
tasks launched from the current function. */
llvm::Value *launchGroupHandlePtr;
llvm::Value *pointerVectorToVoidPointers(llvm::Value *value);
static void addGSMetadata(llvm::Instruction *inst, SourcePos pos);
static void addGSMetadata(llvm::Value *inst, SourcePos pos);
bool ifsInLoopAllUniform() const;
void jumpIfAllLoopLanesAreDone(llvm::BasicBlock *target);
llvm::Value *emitGatherCallback(llvm::Value *lvalue, llvm::Value *retPtr);
llvm::Value *applyVaryingGEP(llvm::Value *basePtr, llvm::Value *index,
const Type *ptrType);
void restoreMaskGivenReturns(llvm::Value *oldMask);
void scatter(llvm::Value *rvalue, llvm::Value *lvalue,
llvm::Value *maskPtr, const Type *rvalueType);
llvm::Value *gather(llvm::Value *lvalue, const Type *type,
void scatter(llvm::Value *value, llvm::Value *ptr, const Type *ptrType,
llvm::Value *mask);
void maskedStore(llvm::Value *value, llvm::Value *ptr, const Type *ptrType,
llvm::Value *mask);
llvm::Value *gather(llvm::Value *ptr, const Type *ptrType, llvm::Value *mask,
const char *name);
void maskedStore(llvm::Value *rvalue, llvm::Value *lvalue,
const Type *rvalueType, llvm::Value *maskPtr);
llvm::Value *addVaryingOffsetsIfNeeded(llvm::Value *ptr, const Type *ptrType);
};
#endif // ISPC_CTX_H

597
decl.cpp
View File

@@ -38,10 +38,59 @@
#include "decl.h"
#include "util.h"
#include "module.h"
#include "sym.h"
#include "type.h"
#include "stmt.h"
#include "expr.h"
#include <stdio.h>
#include <set>
/** Given a Type and a set of type qualifiers, apply the type qualifiers to
the type, returning the type that is the result.
*/
static const Type *
lApplyTypeQualifiers(int typeQualifiers, const Type *type, SourcePos pos) {
if (type == NULL)
return NULL;
if ((typeQualifiers & TYPEQUAL_UNSIGNED) != 0) {
if ((typeQualifiers & TYPEQUAL_SIGNED) != 0)
Error(pos, "Illegal to apply both \"signed\" and \"unsigned\" "
"qualifiers.");
const Type *unsignedType = type->GetAsUnsignedType();
if (unsignedType != NULL)
type = unsignedType;
else
Error(pos, "\"unsigned\" qualifier is illegal with \"%s\" type.",
type->GetString().c_str());
}
if ((typeQualifiers & TYPEQUAL_SIGNED) != 0 && type->IsIntType() == false)
Error(pos, "\"signed\" qualifier is illegal with non-integer type "
"\"%s\".", type->GetString().c_str());
if ((typeQualifiers & TYPEQUAL_CONST) != 0)
type = type->GetAsConstType();
if ((typeQualifiers & TYPEQUAL_UNIFORM) != 0)
type = type->GetAsUniformType();
else if ((typeQualifiers & TYPEQUAL_VARYING) != 0)
type = type->GetAsVaryingType();
else {
// otherwise, structs are uniform by default and everything
// else is varying by default
if (dynamic_cast<const StructType *>(type->GetBaseType()) != NULL)
type = type->GetAsUniformType();
else
type = type->GetAsVaryingType();
}
return type;
}
///////////////////////////////////////////////////////////////////////////
// DeclSpecs
@@ -49,29 +98,57 @@
DeclSpecs::DeclSpecs(const Type *t, StorageClass sc, int tq) {
baseType = t;
storageClass = sc;
typeQualifier = tq;
typeQualifiers = tq;
soaWidth = 0;
vectorSize = 0;
}
const Type *
DeclSpecs::GetBaseType(SourcePos pos) const {
const Type *bt = baseType;
if (vectorSize > 0) {
const AtomicType *atomicType = dynamic_cast<const AtomicType *>(bt);
if (atomicType == NULL) {
Error(pos, "Only atomic types (int, float, ...) are legal for vector "
"types.");
return NULL;
}
bt = new VectorType(atomicType, vectorSize);
}
return lApplyTypeQualifiers(typeQualifiers, bt, pos);
}
static const char *
lGetStorageClassName(StorageClass storageClass) {
switch (storageClass) {
case SC_NONE: return "";
case SC_EXTERN: return "extern";
case SC_EXTERN_C: return "extern \"C\"";
case SC_EXPORT: return "export";
case SC_STATIC: return "static";
case SC_TYPEDEF: return "typedef";
default: FATAL("Unhandled storage class in lGetStorageClassName");
return "";
}
}
void
DeclSpecs::Print() const {
if (storageClass == SC_EXTERN) printf("extern ");
if (storageClass == SC_EXTERN_C) printf("extern \"C\" ");
if (storageClass == SC_EXPORT) printf("export ");
if (storageClass == SC_STATIC) printf("static ");
if (storageClass == SC_TYPEDEF) printf("typedef ");
printf("%s ", lGetStorageClassName(storageClass));
if (soaWidth > 0) printf("soa<%d> ", soaWidth);
if (typeQualifier & TYPEQUAL_INLINE) printf("inline ");
if (typeQualifier & TYPEQUAL_CONST) printf("const ");
if (typeQualifier & TYPEQUAL_UNIFORM) printf("uniform ");
if (typeQualifier & TYPEQUAL_VARYING) printf("varying ");
if (typeQualifier & TYPEQUAL_TASK) printf("task ");
if (typeQualifier & TYPEQUAL_REFERENCE) printf("reference ");
if (typeQualifier & TYPEQUAL_UNSIGNED) printf("unsigned ");
if (typeQualifiers & TYPEQUAL_INLINE) printf("inline ");
if (typeQualifiers & TYPEQUAL_CONST) printf("const ");
if (typeQualifiers & TYPEQUAL_UNIFORM) printf("uniform ");
if (typeQualifiers & TYPEQUAL_VARYING) printf("varying ");
if (typeQualifiers & TYPEQUAL_TASK) printf("task ");
if (typeQualifiers & TYPEQUAL_SIGNED) printf("signed ");
if (typeQualifiers & TYPEQUAL_UNSIGNED) printf("unsigned ");
printf("%s", baseType->GetString().c_str());
@@ -82,34 +159,46 @@ DeclSpecs::Print() const {
///////////////////////////////////////////////////////////////////////////
// Declarator
Declarator::Declarator(Symbol *s, SourcePos p)
: pos(p) {
sym = s;
functionArgs = NULL;
isFunction = false;
Declarator::Declarator(DeclaratorKind dk, SourcePos p)
: pos(p), kind(dk) {
child = NULL;
typeQualifiers = 0;
arraySize = -1;
sym = NULL;
initExpr = NULL;
}
void
Declarator::AddArrayDimension(int size) {
assert(size > 0 || size == -1); // -1 -> unsized
arraySize.push_back(size);
Declarator::InitFromDeclSpecs(DeclSpecs *ds) {
const Type *t = GetType(ds);
Symbol *sym = GetSymbol();
if (sym != NULL) {
sym->type = t;
sym->storageClass = ds->storageClass;
}
}
void
Declarator::InitFromDeclSpecs(DeclSpecs *ds) {
sym->type = GetType(ds);
if (ds->storageClass == SC_STATIC)
sym->isStatic = true;
Symbol *
Declarator::GetSymbol() const {
// The symbol lives at the last child in the chain, so walk down there
// and return the one there.
const Declarator *d = this;
while (d->child != NULL)
d = d->child;
return d->sym;
}
void
Declarator::Print() const {
printf("%s", sym->name.c_str());
Symbol *sym = GetSymbol();
if (sym != NULL)
printf("%s", sym->name.c_str());
else
printf("(null symbol)");
if (initExpr != NULL) {
printf(" = (");
initExpr->Print();
@@ -119,188 +208,305 @@ Declarator::Print() const {
}
static const Type *
lGetType(const Declarator *decl, DeclSpecs *ds,
std::vector<int>::const_iterator arrayIter) {
if (arrayIter == decl->arraySize.end()) {
// If we don't have an array (or have processed all of the array
// dimensions in previous recursive calls), we can go ahead and
// figure out the final non-array type we have here.
const Type *type = ds->baseType;
if (type == NULL) {
Error(decl->pos, "Type not provided in variable declaration for variable \"%s\".",
decl->sym->name.c_str());
return NULL;
}
Symbol *
Declarator::GetFunctionInfo(DeclSpecs *ds, std::vector<Symbol *> *funArgs) {
const FunctionType *type =
dynamic_cast<const FunctionType *>(GetType(ds));
if (type == NULL)
return NULL;
// Account for 'unsigned' and 'const' qualifiers in the type
if ((ds->typeQualifier & TYPEQUAL_UNSIGNED) != 0) {
const Type *unsignedType = type->GetAsUnsignedType();
if (unsignedType != NULL)
type = unsignedType;
else
Error(decl->pos, "\"unsigned\" qualifier is illegal with \"%s\" type.",
type->GetString().c_str());
}
if ((ds->typeQualifier & TYPEQUAL_CONST) != 0)
type = type->GetAsConstType();
Symbol *declSym = GetSymbol();
assert(declSym != NULL);
if (ds->vectorSize > 0) {
const AtomicType *atomicType = dynamic_cast<const AtomicType *>(type);
if (atomicType == NULL) {
Error(decl->pos, "Only atomic types (int, float, ...) are legal for vector "
"types.");
return NULL;
}
type = new VectorType(atomicType, ds->vectorSize);
}
// Get the symbol for the function from the symbol table. (It should
// already have been added to the symbol table by AddGlobal() by the
// time we get here.)
Symbol *funSym = m->symbolTable->LookupFunction(declSym->name.c_str(), type);
if (funSym != NULL)
// May be NULL due to error earlier in compilation
funSym->pos = pos;
// if uniform/varying is specified explicitly, then go with that
if ((ds->typeQualifier & TYPEQUAL_UNIFORM) != 0)
return type->GetAsUniformType();
else if ((ds->typeQualifier & TYPEQUAL_VARYING) != 0)
return type->GetAsVaryingType();
else {
// otherwise, structs are uniform by default and everything
// else is varying by default
if (dynamic_cast<const StructType *>(type) != NULL)
return type->GetAsUniformType();
else
return type->GetAsVaryingType();
}
// Walk down to the declarator for the function. (We have to get past
// the stuff that specifies the function's return type before we get to
// the function's declarator.)
Declarator *d = this;
while (d != NULL && d->kind != DK_FUNCTION)
d = d->child;
assert(d != NULL);
for (unsigned int i = 0; i < d->functionParams.size(); ++i) {
Declaration *pdecl = d->functionParams[i];
assert(pdecl->declarators.size() == 1);
funArgs->push_back(pdecl->declarators[0]->GetSymbol());
}
else {
// Peel off one dimension of the array
int arraySize = *arrayIter;
++arrayIter;
// Get the type, not including the arraySize dimension peeled off
// above.
const Type *childType = lGetType(decl, ds, arrayIter);
int soaWidth = ds->soaWidth;
if (soaWidth == 0)
// If there's no "soa<n>" stuff going on, just return a regular
// array with the appropriate size
return new ArrayType(childType, arraySize == -1 ? 0 : arraySize);
else {
// Make sure we actually have an array of structs ..
const StructType *childStructType =
dynamic_cast<const StructType *>(childType);
if (childStructType == NULL) {
Error(decl->pos, "Illegal to provide soa<%d> qualifier with non-struct "
"type \"%s\".", soaWidth, childType->GetString().c_str());
return new ArrayType(childType, arraySize == -1 ? 0 : arraySize);
}
else if ((soaWidth & (soaWidth - 1)) != 0) {
Error(decl->pos, "soa<%d> width illegal. Value must be power of two.",
soaWidth);
return NULL;
}
else if (arraySize != -1 && (arraySize % soaWidth) != 0) {
Error(decl->pos, "soa<%d> width must evenly divide array size %d.",
soaWidth, arraySize);
return NULL;
}
return new SOAArrayType(childStructType, arraySize == -1 ? 0 : arraySize,
soaWidth);
}
}
return funSym;
}
const Type *
Declarator::GetType(DeclSpecs *ds) const {
bool hasUniformQual = ((ds->typeQualifier & TYPEQUAL_UNIFORM) != 0);
bool hasVaryingQual = ((ds->typeQualifier & TYPEQUAL_VARYING) != 0);
bool isTask = ((ds->typeQualifier & TYPEQUAL_TASK) != 0);
bool isReference = ((ds->typeQualifier & TYPEQUAL_REFERENCE) != 0);
Declarator::GetType(const Type *base, DeclSpecs *ds) const {
bool hasUniformQual = ((typeQualifiers & TYPEQUAL_UNIFORM) != 0);
bool hasVaryingQual = ((typeQualifiers & TYPEQUAL_VARYING) != 0);
bool isTask = ((typeQualifiers & TYPEQUAL_TASK) != 0);
bool isConst = ((typeQualifiers & TYPEQUAL_CONST) != 0);
if (hasUniformQual && hasVaryingQual) {
Error(pos, "Can't provide both \"uniform\" and \"varying\" qualifiers.");
return NULL;
}
if (kind != DK_FUNCTION && isTask)
Error(pos, "\"task\" qualifier illegal in variable declaration.");
if (isFunction) {
const Type *type = base;
switch (kind) {
case DK_BASE:
// All of the type qualifiers should be in the DeclSpecs for the
// base declarator
assert(typeQualifiers == 0);
assert(child == NULL);
return type;
case DK_POINTER:
type = new PointerType(type, hasUniformQual, isConst);
if (child != NULL)
return child->GetType(type, ds);
else
return type;
break;
case DK_REFERENCE:
if (hasUniformQual)
Error(pos, "\"uniform\" qualifier is illegal to apply to references.");
if (hasVaryingQual)
Error(pos, "\"varying\" qualifier is illegal to apply to references.");
if (isConst)
Error(pos, "\"const\" qualifier is to illegal apply to references.");
// The parser should disallow this already, but double check.
if (dynamic_cast<const ReferenceType *>(type) != NULL) {
Error(pos, "References to references are illegal.");
return NULL;
}
type = new ReferenceType(type);
if (child != NULL)
return child->GetType(type, ds);
else
return type;
break;
case DK_ARRAY:
type = new ArrayType(type, arraySize);
if (child)
return child->GetType(type, ds);
else
return type;
break;
case DK_FUNCTION: {
std::vector<const Type *> args;
std::vector<std::string> argNames;
if (functionArgs) {
// Loop over the function arguments and get names and types for
// each one in the args and argNames arrays
for (unsigned int i = 0; i < functionArgs->size(); ++i) {
Declaration *d = (*functionArgs)[i];
Symbol *sym;
if (d->declarators.size() == 0) {
// function declaration like foo(float), w/o a name for
// the parameter
char buf[32];
sprintf(buf, "__anon_parameter_%d", i);
sym = new Symbol(buf, pos);
Declarator *declarator = new Declarator(sym, sym->pos);
sym->type = declarator->GetType(ds);
d->declarators.push_back(declarator);
}
else {
assert(d->declarators.size() == 1);
sym = d->declarators[0]->sym;
}
std::vector<ConstExpr *> argDefaults;
std::vector<SourcePos> argPos;
// Arrays are passed by reference, so convert array
// parameters to be references here.
if (dynamic_cast<const ArrayType *>(sym->type) != NULL)
sym->type = new ReferenceType(sym->type, sym->type->IsConstType());
// Loop over the function arguments and store the names, types,
// default values (if any), and source file positions each one in
// the corresponding vector.
for (unsigned int i = 0; i < functionParams.size(); ++i) {
Declaration *d = functionParams[i];
args.push_back(sym->type);
argNames.push_back(sym->name);
char buf[32];
Symbol *sym;
if (d->declarators.size() == 0) {
// function declaration like foo(float), w/o a name for
// the parameter
sprintf(buf, "__anon_parameter_%d", i);
sym = new Symbol(buf, pos);
sym->type = d->declSpecs->GetBaseType(pos);
}
else {
sym = d->declarators[0]->GetSymbol();
if (sym == NULL) {
// Handle more complex anonymous declarations like
// float (float **).
sprintf(buf, "__anon_parameter_%d", i);
sym = new Symbol(buf, d->declarators[0]->pos);
sym->type = d->declarators[0]->GetType(d->declSpecs);
}
}
if (d->declSpecs->storageClass != SC_NONE)
Error(sym->pos, "Storage class \"%s\" is illegal in "
"function parameter declaration for parameter \"%s\".",
lGetStorageClassName(d->declSpecs->storageClass),
sym->name.c_str());
const ArrayType *at = dynamic_cast<const ArrayType *>(sym->type);
if (at != NULL) {
// As in C, arrays are passed to functions as pointers to
// their element type. We'll just immediately make this
// change now. (One shortcoming of losing the fact that
// the it was originally an array is that any warnings or
// errors later issued that print the function type will
// report this differently than it was originally declared
// in the function, but it's not clear that this is a
// significant problem.)
sym->type = PointerType::GetUniform(at->GetElementType());
// Make sure there are no unsized arrays (other than the
// first dimension) in function parameter lists.
at = dynamic_cast<const ArrayType *>(at->GetElementType());
while (at != NULL) {
if (at->GetElementCount() == 0)
Error(sym->pos, "Arrays with unsized dimensions in "
"dimensions after the first one are illegal in "
"function parameter lists.");
at = dynamic_cast<const ArrayType *>(at->GetElementType());
}
}
args.push_back(sym->type);
argNames.push_back(sym->name);
argPos.push_back(sym->pos);
ConstExpr *init = NULL;
if (d->declarators.size()) {
// Try to find an initializer expression; if there is one,
// it lives down to the base declarator.
Declarator *decl = d->declarators[0];
while (decl->child != NULL) {
assert(decl->initExpr == NULL);
decl = decl->child;
}
if (decl->initExpr != NULL &&
(decl->initExpr = decl->initExpr->TypeCheck()) != NULL &&
(decl->initExpr = decl->initExpr->Optimize()) != NULL &&
(init = dynamic_cast<ConstExpr *>(decl->initExpr)) == NULL) {
Error(decl->initExpr->pos, "Default value for parameter "
"\"%s\" must be a compile-time constant.",
sym->name.c_str());
}
}
argDefaults.push_back(init);
}
if (ds->baseType == NULL) {
Warning(pos, "No return type provided in declaration of function \"%s\". "
"Treating as \"void\".", sym->name.c_str());
ds->baseType = AtomicType::Void;
}
if (isReference) {
Error(pos, "Function return types can't be reference types.");
const Type *returnType = type;
if (returnType == NULL) {
Error(pos, "No return type provided in function declaration.");
return NULL;
}
const Type *returnType = lGetType(this, ds, arraySize.begin());
if (returnType == NULL)
bool isExported = ds && (ds->storageClass == SC_EXPORT);
bool isExternC = ds && (ds->storageClass == SC_EXTERN_C);
bool isTask = ds && ((ds->typeQualifiers & TYPEQUAL_TASK) != 0);
if (isExported && isTask) {
Error(pos, "Function can't have both \"task\" and \"export\" "
"qualifiers");
return NULL;
}
if (isExternC && isTask) {
Error(pos, "Function can't have both \"extern \"C\"\" and \"task\" "
"qualifiers");
return NULL;
}
if (isExternC && isExported) {
Error(pos, "Function can't have both \"extern \"C\"\" and \"export\" "
"qualifiers");
return NULL;
bool isExported = (ds->storageClass == SC_EXPORT);
bool isExternC = (ds->storageClass == SC_EXTERN_C);
return new FunctionType(returnType, args, pos, &argNames, isTask,
isExported, isExternC);
}
else {
if (isTask)
Error(pos, "\"task\" qualifier illegal in variable declaration \"%s\".",
sym->name.c_str());
const Type *type = lGetType(this, ds, arraySize.begin());
if (type != NULL && isReference) {
bool hasConstQual = ((ds->typeQualifier & TYPEQUAL_CONST) != 0);
type = new ReferenceType(type, hasConstQual);
}
return type;
Type *functionType =
new FunctionType(returnType, args, pos, argNames, argDefaults,
argPos, isTask, isExported, isExternC);
return child->GetType(functionType, ds);
}
default:
FATAL("Unexpected decl kind");
return NULL;
}
#if 0
// Make sure we actually have an array of structs ..
const StructType *childStructType =
dynamic_cast<const StructType *>(childType);
if (childStructType == NULL) {
Error(pos, "Illegal to provide soa<%d> qualifier with non-struct "
"type \"%s\".", soaWidth, childType->GetString().c_str());
return new ArrayType(childType, arraySize == -1 ? 0 : arraySize);
}
else if ((soaWidth & (soaWidth - 1)) != 0) {
Error(pos, "soa<%d> width illegal. Value must be power of two.",
soaWidth);
return NULL;
}
else if (arraySize != -1 && (arraySize % soaWidth) != 0) {
Error(pos, "soa<%d> width must evenly divide array size %d.",
soaWidth, arraySize);
return NULL;
}
return new SOAArrayType(childStructType, arraySize == -1 ? 0 : arraySize,
soaWidth);
#endif
}
const Type *
Declarator::GetType(DeclSpecs *ds) const {
const Type *baseType = ds->GetBaseType(pos);
const Type *type = GetType(baseType, ds);
return type;
}
///////////////////////////////////////////////////////////////////////////
// Declaration
void
Declaration::AddSymbols(SymbolTable *st) const {
assert(declSpecs->storageClass != SC_TYPEDEF);
Declaration::Declaration(DeclSpecs *ds, std::vector<Declarator *> *dlist) {
declSpecs = ds;
if (dlist != NULL)
declarators = *dlist;
for (unsigned int i = 0; i < declarators.size(); ++i)
if (declarators[i])
st->AddVariable(declarators[i]->sym);
if (declarators[i] != NULL)
declarators[i]->InitFromDeclSpecs(declSpecs);
}
Declaration::Declaration(DeclSpecs *ds, Declarator *d) {
declSpecs = ds;
if (d != NULL) {
d->InitFromDeclSpecs(ds);
declarators.push_back(d);
}
}
std::vector<VariableDeclaration>
Declaration::GetVariableDeclarations() const {
assert(declSpecs->storageClass != SC_TYPEDEF);
std::vector<VariableDeclaration> vars;
for (unsigned int i = 0; i < declarators.size(); ++i) {
if (declarators[i] == NULL)
continue;
Declarator *decl = declarators[i];
if (decl == NULL)
// Ignore earlier errors
continue;
Symbol *sym = decl->GetSymbol();
if (dynamic_cast<const FunctionType *>(sym->type) != NULL) {
// function declaration
m->symbolTable->AddFunction(sym);
}
else {
m->symbolTable->AddVariable(sym);
vars.push_back(VariableDeclaration(sym, decl->initExpr));
}
}
return vars;
}
@@ -318,31 +524,48 @@ Declaration::Print() const {
///////////////////////////////////////////////////////////////////////////
void
GetStructTypesAndNames(const std::vector<StructDeclaration *> &sd,
std::vector<const Type *> *elementTypes,
std::vector<std::string> *elementNames) {
GetStructTypesNamesPositions(const std::vector<StructDeclaration *> &sd,
std::vector<const Type *> *elementTypes,
std::vector<std::string> *elementNames,
std::vector<SourcePos> *elementPositions) {
std::set<std::string> seenNames;
for (unsigned int i = 0; i < sd.size(); ++i) {
const Type *type = sd[i]->type;
if (type == NULL)
continue;
// FIXME: making this fake little DeclSpecs here is really
// disgusting
DeclSpecs ds(type);
if (type->IsUniformType())
ds.typeQualifier |= TYPEQUAL_UNIFORM;
ds.typeQualifiers |= TYPEQUAL_UNIFORM;
else
ds.typeQualifier |= TYPEQUAL_VARYING;
ds.typeQualifiers |= TYPEQUAL_VARYING;
for (unsigned int j = 0; j < sd[i]->declarators->size(); ++j) {
Declarator *d = (*sd[i]->declarators)[j];
d->InitFromDeclSpecs(&ds);
// if it's an unsized array, make it a reference to an unsized
// array, so the caller can pass a pointer...
const ArrayType *at = dynamic_cast<const ArrayType *>(d->sym->type);
if (at && at->GetElementCount() == 0)
d->sym->type = new ReferenceType(d->sym->type, type->IsConstType());
Symbol *sym = d->GetSymbol();
elementTypes->push_back(d->sym->type);
elementNames->push_back(d->sym->name);
const ArrayType *arrayType =
dynamic_cast<const ArrayType *>(sym->type);
if (arrayType != NULL && arrayType->GetElementCount() == 0) {
Error(d->pos, "Unsized arrays aren't allowed in struct "
"definitions.");
elementTypes->push_back(NULL);
}
else
elementTypes->push_back(sym->type);
if (seenNames.find(sym->name) != seenNames.end())
Error(d->pos, "Struct member \"%s\" has same name as a "
"previously-declared member.", sym->name.c_str());
else
seenNames.insert(sym->name);
elementNames->push_back(sym->name);
elementPositions->push_back(sym->pos);
}
}
}

107
decl.h
View File

@@ -56,6 +56,11 @@
#include "ispc.h"
struct VariableDeclaration;
class Declaration;
class Declarator;
enum StorageClass {
SC_NONE,
SC_EXTERN,
@@ -74,7 +79,7 @@ enum StorageClass {
#define TYPEQUAL_UNIFORM (1<<1)
#define TYPEQUAL_VARYING (1<<2)
#define TYPEQUAL_TASK (1<<3)
#define TYPEQUAL_REFERENCE (1<<4)
#define TYPEQUAL_SIGNED (1<<4)
#define TYPEQUAL_UNSIGNED (1<<5)
#define TYPEQUAL_INLINE (1<<6)
@@ -92,15 +97,17 @@ public:
StorageClass storageClass;
/** Zero or more of the TYPEQUAL_* values, ANDed together. */
int typeQualifier;
int typeQualifiers;
/** The basic type provided in the declaration; this should be an
AtomicType, a StructType, or a VectorType; other types (like
AtomicType, EnumType, StructType, or VectorType; other types (like
ArrayTypes) will end up being created if a particular declaration
has an array size, etc.
*/
const Type *baseType;
const Type *GetBaseType(SourcePos pos) const;
/** If this is a declaration with a vector type, this gives the vector
width. For non-vector types, this is zero.
*/
@@ -113,6 +120,14 @@ public:
};
enum DeclaratorKind {
DK_BASE,
DK_POINTER,
DK_REFERENCE,
DK_ARRAY,
DK_FUNCTION
};
/** @brief Representation of the declaration of a single variable.
In conjunction with an instance of the DeclSpecs, this gives us
@@ -120,13 +135,7 @@ public:
*/
class Declarator {
public:
Declarator(Symbol *s, SourcePos p);
/** As the parser peels off array dimension declarations after the
symbol name, it calls this method to provide them to the
Declarator.
*/
void AddArrayDimension(int size);
Declarator(DeclaratorKind dk, SourcePos p);
/** Once a DeclSpecs instance is available, this method completes the
initialization of the Symbol, setting its Type accordingly.
@@ -134,21 +143,51 @@ public:
void InitFromDeclSpecs(DeclSpecs *ds);
/** Get the actual type of the combination of Declarator and the given
DeclSpecs */
DeclSpecs. If an explicit base type is provided, the declarator is
applied to that type; otherwise the base type from the DeclSpecs is
used. */
const Type *GetType(DeclSpecs *ds) const;
const Type *GetType(const Type *base, DeclSpecs *ds) const;
/** Returns the symbol corresponding to the function declared by this
declarator and symbols for its arguments in *args. */
Symbol *GetFunctionInfo(DeclSpecs *ds, std::vector<Symbol *> *args);
/** Returns the symbol associated with the declarator. */
Symbol *GetSymbol() const;
void Print() const;
/** Position of the declarator in the source program. */
const SourcePos pos;
/** The kind of this declarator; complex declarations are assembled as
a hierarchy of Declarators. (For example, a pointer to an int
would have a root declarator with kind DK_POINTER and with the
Declarator::child member pointing to a DK_BASE declarator for the
int). */
const DeclaratorKind kind;
/** Child pointer if needed; this can only be non-NULL if the
declarator's kind isn't DK_BASE. */
Declarator *child;
/** Type qualifiers provided with the declarator. */
int typeQualifiers;
/** For array declarators, this gives the declared size of the array.
Unsized arrays have arraySize == 0. */
int arraySize;
/** Symbol associated with the declarator. */
Symbol *sym;
/** If this declarator includes an array specification, the sizes of
the array dimensions are represented here.
*/
std::vector<int> arraySize;
/** Initialization expression for the variable. May be NULL. */
Expr *initExpr;
bool isFunction;
std::vector<Declaration *> *functionArgs;
/** For function declarations, this holds the Declaration *s for the
funciton's parameters. */
std::vector<Declaration *> functionParams;
};
@@ -157,27 +196,18 @@ public:
*/
class Declaration {
public:
Declaration(DeclSpecs *ds, std::vector<Declarator *> *dlist = NULL) {
declSpecs = ds;
if (dlist != NULL)
declarators = *dlist;
for (unsigned int i = 0; i < declarators.size(); ++i)
if (declarators[i] != NULL)
declarators[i]->InitFromDeclSpecs(declSpecs);
}
Declaration(DeclSpecs *ds, Declarator *d) {
declSpecs = ds;
if (d) {
d->InitFromDeclSpecs(ds);
declarators.push_back(d);
}
}
Declaration(DeclSpecs *ds, std::vector<Declarator *> *dlist = NULL);
Declaration(DeclSpecs *ds, Declarator *d);
/** Adds the symbols for the variables in the declaration to the symbol
table. */
void AddSymbols(SymbolTable *st) const;
void Print() const;
/** This method walks through all of the Declarators in a declaration
and returns a fully-initialized Symbol and (possibly) and
initialization expression for each one. (This allows the rest of
the system to not have to worry about the mess of the general
Declarator representation.) */
std::vector<VariableDeclaration> GetVariableDeclarations() const;
DeclSpecs *declSpecs;
std::vector<Declarator *> declarators;
};
@@ -196,8 +226,9 @@ struct StructDeclaration {
/** Given a set of StructDeclaration instances, this returns the types of
the elements of the corresponding struct and their names. */
extern void GetStructTypesAndNames(const std::vector<StructDeclaration *> &sd,
std::vector<const Type *> *elementTypes,
std::vector<std::string> *elementNames);
extern void GetStructTypesNamesPositions(const std::vector<StructDeclaration *> &sd,
std::vector<const Type *> *elementTypes,
std::vector<std::string> *elementNames,
std::vector<SourcePos> *elementPositions);
#endif // ISPC_DECL_H

301
docs/ReleaseNotes.txt Normal file
View File

@@ -0,0 +1,301 @@
=== v1.1.0 === (5 December 2011)
This is a major new release of the compiler, with significant additions to
language functionality and capabilities. It includes a number of small
language syntax changes that will require modification of existing
programs. These changes should generally be straightforward and all are
steps toward eliminating parts of ispc syntax that are incompatible with
C/C++. See
http://ispc.github.com/ispc.html#updating-ispc-programs-for-changes-in-ispc-1-1
for more information about these changes.
ispc now fully supports pointers, including pointer arithmetic, implicit
conversions of arrays to pointers, and all of the other capabilities of
pointers in C. See http://ispc.github.com/ispc.html#pointer-types for more
information about pointers in ispc and
http://ispc.github.com/ispc.html#function-pointer-types for information
about function pointers in ispc.
Reference types are now declared with C++ syntax (e.g. "const float &foo").
ispc now supports 64-bit addressing. For performance reasons, this
capability is disabled by default (even on 64-bit targets), but can be
enabled with a command-line flag:
http://ispc.github.com/ispc.html#selecting-32-or-64-bit-addressing.
This release features new parallel "foreach" statements, which make it
easier in many instances to map program instances to data for data-parallel
computation than the programIndex/programCount mechanism:
http://ispc.github.com/ispc.html#parallel-iteration-statements-foreach-and-foreach-tiled.
Finally, all of the system's documentation has been significantly revised.
The documentation of ispc's parallel execution model has been rewritten:
http://ispc.github.com/ispc.html#the-ispc-parallel-execution-model, and
there is now a more specific discussion of similarities and differences
between ispc and C/C++:
http://ispc.github.com/ispc.html#relationship-to-the-c-programming-language.
There is now a separate FAQ (http://ispc.github.com/faq.html), and a
Performance Guide (http://ispc.github.com/perfguide.html).
=== v1.0.12 === (20 October 2011)
This release includes a new "double-pumped" 8-wide target for SSE2,
"sse2-x2". Like the sse4-x2 and avx-x2 targets, this target may deliver
higher performance for some workloads than the regular sse2 target. (For
other workloads, it may be slower.)
The ispc language now includes an "assert()" statement. See
http://ispc.github.com/ispc.html#assertions for more information.
The compiler now sets a preprocessor #define based on the target ISA; for
example, ISPC_TARGET_SSE4 is defined for the sse4 targets, and so forth.
The standard library now provides high-performance routines for converting
between some "array of structures" and "structure of arrays" formats.
See
http://ispc.github.com/ispc.html#converting-between-array-of-structures-and-structure-of-arrays-layout
for more information.
Inline functions now have static linkage.
A number of improvements have been made to the optimization passes that
detect when gathers and scatters can be transformed into vector stores and
loads, respectively. In particular, these passes now handle variables that
are used as loop induction variables much better.
=== v1.0.11 === (6 October 2011)
The main new feature in this release is support for generating code for
multiple targets (e.g., SSE2, SSE4, and AVX) and having the compiled code
select the best variant at execution time. For more information, see
http://ispc.github.com/ispc.html#compiling-with-support-for-multiple-instruction-sets.
All of the examples now take advantage of the support for multiple
compilation targets; thus, if one has an AVX system, it's not necessary to
recompile the examples to use the AVX target.
Performance of the built-in task system that is used in the examples has
been improved.
Finally, the print() statement now works on OSX; it had been broken for the
last few releases.
=== v1.0.10 === (30 September 2011)
This release features an extensive new example showing the application of
ispc to a deferred shading algorithm for scenes with thousands of lights
(examples/deferred). This is an implementation of the algorithm that Johan
Andersson described at SIGGRAPH 2009 and was implemented by Andrew
Lauritzen and Jefferson Montgomery. The basic idea is that a pre-rendered
G-buffer is partitioned into tiles, and in each tile, the set of lights
that contribute to the tile is computed. Then, the pixels in the tile are
then shaded using those light sources. (See slides 19-29 of
http://s09.idav.ucdavis.edu/talks/04-JAndersson-ParallelFrostbite-Siggraph09.pdf
for more details on the algorithm.)
The mechanism for launching tasks from ispc code has been generalized to
allow multiple tasks to be launched with a single launch call (see
http://ispc.github.com/ispc.html#task-parallelism-language-syntax for more
information.)
A few new functions have been added to the standard library: num_cores()
returns the number of cores in the system's CPU, and variants of all of the
atomic operators that take 'uniform' values as parameters have been added.
=== v1.0.9 === (26 September 2011)
The binary release of v1.0.9 is the first that supports AVX code
generation. Two targets are provided: "avx", which runs with a
programCount of 8, and "avx-x2" which runs 16 program instances
simultaneously. (This binary is also built using the in-progress LLVM 3.0
development libraries, while previous ones have been built with the
released 2.9 version of LLVM.)
This release has no other significant changes beyond a number of small
bugfixes (https://github.com/ispc/ispc/issues/100,
https://github.com/ispc/ispc/issues/101, https://github.com/ispc/ispc/issues/103.)
=== v1.0.8 === (19 September 2011)
A number of improvements have been made to handling of 'if' statements in
the language:
- A bug was fixed where invalid memory could be incorrectly accessed even
if none of the running program instances wanted to execute the
corresponding instructions (https://github.com/ispc/ispc/issues/74).
- The code generated for 'if' statements is a bit simpler and thus more
efficient.
There is now '--pic' command-line argument that causes position-independent
code to be generated (Linux and OSX only).
A number of additional performance improvements:
- Loops are now unrolled by default; the --opt=disable-loop-unroll
command-line argument can be used to disable this behavior.
(https://github.com/ispc/ispc/issues/78)
- A few more cases where gathers/scatters could be determined at compile
time to actually access contiguous locations have been added.
(https://github.com/ispc/ispc/issues/79)
Finally, warnings are now issued (if possible) when it can be determined
at compile-time that an out-of-bounds array index is being used.
(https://github.com/ispc/ispc/issues/98).
=== v1.0.7 === (3 September 2011)
The various atomic_*_global() standard library functions are generally
substantially more efficient. They all previously issued one hardware
atomic instruction for each running program instance but now locally
compute a reduction over the operands and issue a single hardware atomic,
giving the same effect and results in the end (issue #57).
CPU/ISA target handling has been substantially improved. If no CPU is
specified, the host CPU type is used, not just a default of "nehalem". A
number of bugs were fixed that ensure that LLVM doesn't generate SSE>2
instructions when using the SSE2 target (fixes issue #82).
Shift rights of unsigned integer types use a logical shift right
instruction now, not an arithmetic shift right (fixed issue #88).
When emitting header files, 'extern' declarations of globals used in ispc
code are now outside of the ispc namespace. Fixes issue #64.
The stencil example has been modified to do runs with and without
parallelism.
Many other small bugfixes and improvements.
=== v1.0.6 === (17 August 2011)
Some additional cross-program instance operations have been added to the
standard library. reduce_equal() checks to see if the given value is the
same across all running program instances, and exclusive_scan_{and,or,and}()
computes a scan over the given value in the running program instances.
See the documentation of these new routines for more information:
http://ispc.github.com/ispc.html#cross-program-instance-operations.
The simple task system implementations used in the examples have been
improved. The Windows version no nlonger has a hard limit on the number of
tasks that can be launched, and all versions have less dynamic memory
allocation and less locking. More of the examples now have paths that also
measure performance using tasks along with SPMD vectorization.
Two new examples have been added: one that shows the implementation of a
ray-marching volume rendering algorithm, and one that shows a 3D stencil
computation, as might be done for PDE solutions.
Standard library routines to issue prefetches have been added. See the
documentation for more details: http://ispc.github.com/ispc.html#prefetches.
Fast versions of the float to half-precision float conversion routines have
been added. For more details, see:
http://ispc.github.com/ispc.html#conversions-to-and-from-half-precision-floats.
There is the usual set of small bug fixes. Notably, a number of details
related to handling 32 versus 64 bit targets have been fixed, which in turn
has fixed a bug related to tasks having incorrect values for pointers
passed to them.
=== v1.0.5 === (1 August 2011)
Multi-element vector swizzles are supported; for example, given a 3-wide
vector "foo", then expressions like "foo.zyx" and "foo.yz" can be used to
construct other short vectors. See
http://ispc.github.com/ispc.html#short-vector-types
for more details. (Thanks to Pete Couperus for implementing this code!).
int8 and int16 datatypes are now supported. It is still generally more
efficient to use int32 for intermediate computations, even if the in-memory
format is int8 or int16.
There are now standard library routines to convert to and from 'half'-format
floating-point values (half_to_float() and float_to_half()).
There is a new example with an implementation of Perlin's Noise function
(examples/noise). It shows a speedup of approximately 4.2x versus a C
implementation on OSX and a 2.9x speedup versus C on Windows.
=== v1.0.4 === (18 July 2011)
enums are now supported in ispc; see the section on enumeration types in
the documentation (http://ispc.github.com/ispc.html#enumeration-types) for
more informaiton.
bools are converted to integers with zero extension, not sign extension as
before (i.e. a 'true' bool converts to the value one, not 'all bits on'.)
For cases where sign extension is still desired, there is a
sign_extend(bool) function in the standard library.
Support for 64-bit types in the standard library is much more complete than
before.
64-bit integer constants are now supported by the parser.
Storage for parameters to tasks is now allocated dynamically on Windows,
rather than on the stack; with this fix, all tests now run correctly on
Windows.
There is now support for atomic swap and compare/exchange with float and
double types.
A number of additional small bugs have been fixed and a number of cases
where the compiler would crash given a malformed program have been fixed.
=== v1.0.3 === (4 July 2011)
ispc now has a bulit-in pre-processor (from LLVM's clang compiler).
(Thanks to Pete Couperus for this patch!) It is therefore no longer
necessary to use cl.exe for preprocessing on Windows; the MSVC proejct
files for the examples have been updated accordingly.
There is another variant of the shuffle() function int the standard
library: "<type> shuffle(<type> v0, <type> v1, int permute)", where the
permutation vector indexes over the concatenation of the two vectors
(e.g. the value 0 corresponds to the first element of v0, the value
2*programCount-1 corresponds to the last element of v1, etc.)
ispc now supports the usual range of atomic operations (add, subtract, min,
max, and, or, and xor) as well as atomic swap and atomic compare and
exchange. There is also a facility for inserting memory fences. See the
"Atomic Operations and Memory Fences" section of the user's guide
(http://ispc.github.com/ispc.html#atomic-operations-and-memory-fences) for
more information.
There are now both 'signed' and 'unsigned' variants of the standard library
functions like packed_load_active() that take references to arrays of
signed int32s and unsigned int32s respectively. (The
{load_from,store_to}_{int8,int16}() functions have similarly been augmented
to have both 'signed' and 'unsigned' variants.)
In initializer expressions with variable declarations, it is no longer
legal to initialize arrays and structs with single scalar values that then
initialize their members; they now must be initialized with initializer
lists in braces (or initialized after of the initializer with a loop over
array elements, etc.)
=== v1.0.2 === (1 July 2011)
Floating-point hexidecimal constants are now parsed correctly on Windows
(fixes issue #16).
SSE2 is now the default target if --cpu=atom is given in the command line
arguments and another target isn't explicitly specified.
The standard library now provides broadcast(), rotate(), and shuffle()
routines for efficient communication between program instances.
The MSVC solution files to build the examples on Windows now use
/fpmath:fast when building.
=== v1.0.1 === (24 June 2011)
ispc no longer requires that pointers to memory that are passed in to ispc
have alignment equal to the targets vector width; now alignment just has to
be the regular element alignment (e.g. 4 bytes for floats, etc.) This
change also fixed a number of cases where it previously incorrectly
generated aligned load/store instructions in cases where the address wasn't
actually aligned (even if the base address passed into ispc code was).
=== v1.0 === (21 June 2011)
Initial Release

View File

@@ -1,6 +1,12 @@
#!/bin/bash
rst2html ispc.txt > ispc.html
for i in ispc perfguide faq; do
rst2html.py --template=template.txt --link-stylesheet \
--stylesheet-path=css/style.css $i.txt > $i.html
done
rst2html.py --template=template-perf.txt --link-stylesheet \
--stylesheet-path=css/style.css perf.txt > perf.html
#rst2latex --section-numbering --documentclass=article --documentoptions=DIV=9,10pt,letterpaper ispc.txt > ispc.tex
#pdflatex ispc.tex

482
docs/faq.txt Normal file
View File

@@ -0,0 +1,482 @@
=============================================================
Intel® SPMD Program Compiler Frequently Asked Questions (FAQ)
=============================================================
This document includes a number of frequently (and not frequently) asked
questions about ispc, the Intel® SPMD Program Compiler. The source to this
document is in the file ``docs/faq.txt`` in the ``ispc`` source
distribution.
* Understanding ispc's Output
+ `How can I see the assembly language generated by ispc?`_
+ `How can I have the assembly output be printed using Intel assembly syntax?`_
+ `Why are there multiple versions of exported ispc functions in the assembly output?`_
+ `How can I more easily see gathers and scatters in generated assembly?`_
* Interoperability
+ `How can I supply an initial execution mask in the call from the application?`_
+ `How can I generate a single binary executable with support for multiple instruction sets?`_
+ `How can I determine at run-time which vector instruction set's instructions were selected to execute?`_
* Programming Techniques
+ `What primitives are there for communicating between SPMD program instances?`_
+ `How can a gang of program instances generate variable amounts of output efficiently?`_
+ `Is it possible to use ispc for explicit vector programming?`_
+ `How can I debug my ispc programs using Valgrind?`_
Understanding ispc's Output
===========================
How can I see the assembly language generated by ispc?
------------------------------------------------------
The ``--emit-asm`` flag causes assembly output to be generated. If the
``-o`` command-line flag is also supplied, the assembly is stored in the
given file, or printed to standard output if ``-`` is specified for the
filename. For example, given the simple ``ispc`` program:
::
export uniform int foo(uniform int a, uniform int b) {
return a+b;
}
If the SSE4 target is used, then the following assembly is printed:
::
_foo:
addl %esi, %edi
movl %edi, %eax
ret
How can I have the assembly output be printed using Intel assembly syntax?
--------------------------------------------------------------------------
The ``ispc`` compiler is currently only able to emit assembly with AT+T
syntax, where the destination operand is the last operand after an
instruction. If you'd prefer Intel assembly output, one option is to use
Agner Fog's ``objconv`` tool: have ``ispc`` emit a native object file and
then use ``objconv`` to disassemble it, specifying the assembler syntax
that you prefer. ``objconv`` `is available for download here`_.
.. _is available for download here: http://www.agner.org/optimize/#objconv
Why are there multiple versions of exported ispc functions in the assembly output?
----------------------------------------------------------------------------------
Two generations of all functions qualified with ``export`` are generated:
one of them is for being be called by other ``ispc`` functions, and the
other is to be called by the application. The application callable
function has the original function's name, while the ``ispc``-callable
function has a mangled name that encodes the types of the function's
parameters.
The crucial difference between these two functions is that the
application-callable function doesn't take a parameter encoding the current
execution mask, while ``ispc``-callable functions have a hidden mask
parameter. An implication of this difference is that the ``export``
function starts with the execution mask "all on". This allows a number of
improvements in the generated code, particularly on architectures that
don't have support for masked load and store instructions.
As an example, consider this short function, which loads a vector's worth
values from two arrays in memory, adds them, and writes the result to an
output array.
::
export void foo(uniform float a[], uniform float b[],
uniform float result[]) {
float aa = a[programIndex], bb = b[programIndex];
result[programIndex] = aa+bb;
}
Here is the assembly code for the application-callable instance of the
function.
::
_foo:
movups (%rsi), %xmm1
movups (%rdi), %xmm0
addps %xmm1, %xmm0
movups %xmm0, (%rdx)
ret
And here is the assembly code for the ``ispc``-callable instance of the
function.
::
"_foo___uptr<Uf>uptr<Uf>uptr<Uf>":
movmskps %xmm0, %eax
cmpl $15, %eax
je LBB0_3
testl %eax, %eax
jne LBB0_4
ret
LBB0_3:
movups (%rsi), %xmm1
movups (%rdi), %xmm0
addps %xmm1, %xmm0
movups %xmm0, (%rdx)
ret
LBB0_4:
####
#### Code elided; handle mixed mask case..
####
ret
There are a few things to notice in this code. First, the current program
mask is coming in via the ``%xmm0`` register and the initial few
instructions in the function essentially check to see if the mask is all on
or all off. If the mask is all on, the code at the label LBB0_3 executes;
it's the same as the code that was generated for ``_foo`` above. If the
mask is all off, then there's nothing to be done, and the function can
return immediately.
In the case of a mixed mask, a substantial amount of code is generated to
load from and then store to only the array elements that correspond to
program instances where the mask is on. (This code is elided below). This
general pattern of having two-code paths for the "all on" and "mixed" mask
cases is used in the code generated for almost all but the most simple
functions (where the overhead of the test isn't worthwhile.)
How can I more easily see gathers and scatters in generated assembly?
---------------------------------------------------------------------
Because CPU vector ISAs don't have native gather and scatter instructions,
these memory operations are turned into sequences of a series of
instructions in the code that ``ispc`` generates. In some cases, it can be
useful to see where gathers and scatters actually happen in code; there is
an otherwise undocumented command-line flag that provides this information.
Consider this simple program:
::
void set(uniform int a[], int value, int index) {
a[index] = value;
}
When compiled normally to the SSE4 target, this program generates this
extensive code sequence, which makes it more difficult to see what the
program is actually doing.
::
"_set___uptr<Ui>ii":
pmulld LCPI0_0(%rip), %xmm1
movmskps %xmm2, %eax
testb $1, %al
je LBB0_2
movd %xmm1, %ecx
movd %xmm0, (%rcx,%rdi)
LBB0_2:
testb $2, %al
je LBB0_4
pextrd $1, %xmm1, %ecx
pextrd $1, %xmm0, (%rcx,%rdi)
LBB0_4:
testb $4, %al
je LBB0_6
pextrd $2, %xmm1, %ecx
pextrd $2, %xmm0, (%rcx,%rdi)
LBB0_6:
testb $8, %al
je LBB0_8
pextrd $3, %xmm1, %eax
pextrd $3, %xmm0, (%rax,%rdi)
LBB0_8:
ret
If this program is compiled with the
``--opt=disable-handle-pseudo-memory-ops`` command-line flag, then the
scatter is left as an unresolved function call. The resulting program
won't link without unresolved symbols, but the assembly output is much
easier to understand:
::
"_set___uptr<Ui>ii":
movaps %xmm0, %xmm3
pmulld LCPI0_0(%rip), %xmm1
movdqa %xmm1, %xmm0
movaps %xmm3, %xmm1
jmp ___pseudo_scatter_base_offsets32_32 ## TAILCALL
Interoperability
================
How can I supply an initial execution mask in the call from the application?
----------------------------------------------------------------------------
Recall that when execution transitions from the application code to an
``ispc`` function, all of the program instances are initially executing.
In some cases, it may desired that only some of them are running, based on
a data-dependent condition computed in the application program. This
situation can easily be handled via an additional parameter from the
application.
As a simple example, consider a case where the application code has an
array of ``float`` values and we'd like the ``ispc`` code to update
just specific values in that array, where which of those values to be
updated has been determined by the application. In C++ code, we might
have:
::
int count = ...;
float *array = new float[count];
bool *shouldUpdate = new bool[count];
// initialize array and shouldUpdate
ispc_func(array, shouldUpdate, count);
Then, the ``ispc`` code could process this update as:
::
export void ispc_func(uniform float array[], uniform bool update[],
uniform int count) {
foreach (i = 0 ... count) {
cif (update[i] == true)
// update array[i+programIndex]...
}
}
(In this case a "coherent" if statement is likely to be worthwhile if the
``update`` array will tend to have sections that are either all-true or
all-false.)
How can I generate a single binary executable with support for multiple instruction sets?
-----------------------------------------------------------------------------------------
``ispc`` can also generate output that supports multiple target instruction
sets, also generating code that chooses the most appropriate one at runtime
if multiple targets are specified with the ``--target`` command-line
argument.
For example, if you run the command:
::
ispc foo.ispc -o foo.o --target=sse2,sse4-x2,avx-x2
Then four object files will be generated: ``foo_sse2.o``, ``foo_sse4.o``,
``foo_avx.o``, and ``foo.o``.[#]_ Link all of these into your executable, and
when you call a function in ``foo.ispc`` from your application code,
``ispc`` will determine which instruction sets are supported by the CPU the
code is running on and will call the most appropraite version of the
function available.
.. [#] Similarly, if you choose to generate assembly langauage output or
LLVM bitcode output, multiple versions of those files will be created.
In general, the version of the function that runs will be the one in the
most general instruction set that is supported by the system. If you only
compile SSE2 and SSE4 variants and run on a system that supports AVX, for
example, then the SSE4 variant will be executed. If the system doesn't
is not able to run any of the available variants of the function (for
example, trying to run a function that only has SSE4 and AVX variants on a
system that only supports SSE2), then the standard library ``abort()``
function will be called.
One subtlety is that all non-static global variables (if any) must have the
same size and layout with all of the targets used. For example, if you
have the global variables:
::
uniform int foo[2*programCount];
int bar;
and compile to both SSE2 and AVX targets, both of these variables will have
different sizes (the first due to program count having the value 4 for SSE2
and 8 for AVX, and the second due to ``varying`` types having different
numbers of elements with the two targets--essentially the same issue as the
first.) ``ispc`` issues an error in this case.
How can I determine at run-time which vector instruction set's instructions were selected to execute?
-----------------------------------------------------------------------------------------------------
``ispc`` doesn't provide any API that allows querying which vector ISA's
instructions are running when multi-target compilation was used. However,
this can be solved in "user space" by writing a small helper function.
Specifically, if you implement a function like this
::
export uniform int isa() {
#if defined(ISPC_TARGET_SSE2)
return 0;
#elif defined(ISPC_TARGET_SSE4)
return 1;
#elif defined(ISPC_TARGET_AVX)
return 2;
#else
return -1;
#endif
}
And then call it from your application code at runtime, it will return 0,
1, or 2, depending on which target's instructions are running.
The way this works is a little surprising, but it's a useful trick. Of
course the preprocessor ``#if`` checks are all compile-time only
operations. What's actually happening is that the function is compiled
multiple times, once for each target, with the appropriate ``ISPC_TARGET``
preprocessor symbol set. Then, a small dispatch function is generated for
the application to actually call. This dispatch function in turn calls the
appropriate version of the function based on the CPU of the system it's
executing on, which in turn returns the appropriate value.
In a similar fashion, it's possible to find out at run-time the value of
``programCount`` for the target that's actually being used.
::
export uniform int width() { return programCount; }
Programming Techniques
======================
What primitives are there for communicating between SPMD program instances?
---------------------------------------------------------------------------
The ``broadcast()``, ``rotate()``, and ``shuffle()`` standard library
routines provide a variety of mechanisms for the running program instances
to communicate values to each other during execution. Note that there's no
need to synchronize the program instances before communicating between
them, due to the synchronized execution model of gangs of program instances
in ``ispc``.
How can a gang of program instances generate variable amounts of output efficiently?
------------------------------------------------------------------------------------
It's not unusual to have a gang of program instances where each program
instance generates a variable amount of output (perhaps some generate no
output, some generate one output value, some generate many output values
and so forth), and where one would like to have the output densely packed
in an output array. The ``exclusive_scan_add()`` function from the
standard library is quite useful in this situation.
Consider the following function:
::
uniform int func(uniform float outArray[], ...) {
int numOut = ...; // figure out how many to be output
float outLocal[MAX_OUT]; // staging area
// each program instance in the gang puts its results in
// outLocal[0], ..., outLocal[numOut-1]
int startOffset = exclusive_scan_add(numOut);
for (int i = 0; i < numOut; ++i)
outArray[startOffset + i] = outLocal[i];
return reduce_add(numOut);
}
Here, each program instance has computed a number, ``numOut``, of values to
output, and has stored them in the ``outLocal`` array. Assume that four
program instances are running and that the first one wants to output one
value, the second two values, and the third and fourth three values each.
In this case, ``exclusive_scan_add()`` will return the values (0, 1, 3, 6)
to the four program instances, respectively.
The first program instance will then write its one result to
``outArray[0]``, the second will write its two values to ``outArray[1]``
and ``outArray[2]``, and so forth. The ``reduce_add()`` call at the end
returns the total number of values that all of the program instances have
written to the array.
FIXME: add discussion of foreach_active as an option here once that's in
Is it possible to use ispc for explicit vector programming?
-----------------------------------------------------------
The typical model for programming in ``ispc`` is an *implicit* parallel
model, where one writes a program that is apparently doing scalar
computation on values and the program is then vectorized to run in parallel
across the SIMD lanes of a processor. However, ``ispc`` also has some
support for explicit vector unit programming, where the vectorization is
explicit. Some computations may be more effectively described in the
explicit model rather than the implicit model.
This support is provided via ``uniform`` instances of short vectors
Specifically, if this short program
::
export uniform float<8> madd(uniform float<8> a, uniform float<8> b,
uniform float<8> c) {
return a + b * c;
}
is compiled with the AVX target, ``ispc`` generates the following assembly:
::
_madd:
vmulps %ymm2, %ymm1, %ymm1
vaddps %ymm0, %ymm1, %ymm0
ret
(And similarly, if compiled with a 4-wide SSE target, two ``mulps`` and two
``addps`` instructions are generated, and so forth.)
Note that ``ispc`` doesn't currently support control-flow based on
``uniform`` short vector types; it is thus not possible to write code like:
::
export uniform int<8> count(uniform float<8> a, uniform float<8> b) {
uniform int<8> sum = 0;
while (a++ < b)
++sum;
}
How can I debug my ispc programs using Valgrind?
------------------------------------------------
The `valgrind`_ memory checker is an extremely useful memory checker for
Linux and OSX; it detects a range of memory errors, including accessing
memory after it has been freed, accessing memory beyond the end of an
array, accessing uninitialized stack variables, and so forth.
In general, applications that use ``ispc`` code run with ``valgrind``
without modification and ``valgrind`` will detect the same range of memory
errors in ``ispc`` code that it does in C/C++ code.
.. _valgrind: http://valgrind.org
One issue to be aware of is that until recently, ``valgrind`` only
supported the SSE2 vector instructions; if you are using a version of
``valgrind`` older than the 3.7.0 release (5 November 2011), you should
compile your ``ispc`` programs with ``--target=sse2`` before running them
through ``valgrind``. (Note that if no target is specified, then ``ispc``
chooses a target based on the capabilities of the system you're running
``ispc`` on.) If you run an ``ispc`` program that uses instructions that
``valgrind`` doesn't support, you'll see an error message like:
::
vex amd64->IR: unhandled instruction bytes: 0xC5 0xFA 0x10 0x0 0xC5 0xFA 0x11 0x84
==46059== valgrind: Unrecognised instruction at address 0x100002707.
The just-released valgrind 3.7.0 adds support for the SSE4.2 instruction
set; if you're using that version (and your system supports SSE4.2), then
you can use ``--target=sse4`` when compiling to run with ``valgrind``.
Note that ``valgrind`` does not yet support programs that use the AVX
instruction set.

File diff suppressed because it is too large Load Diff

85
docs/perf.txt Normal file
View File

@@ -0,0 +1,85 @@
===========
Performance
===========
The SPMD programming model that ``ispc`` makes it easy to harness the
computational power available in SIMD vector units on modern CPUs, while
its basis in C makes it easy for programmers to adopt and use
productively. This page summarizes the performance of ``ispc`` with the
workloads in the ``examples/`` directory of the ``ispc`` distribution.
These results were measured on a 4-core Apple iMac with a 4-core 3.4GHz
Intel® Core-i7 processor using the Intel® AVX instruction set. The basis
for comparison is a reference C++ implementation compiled with gcc 4.2.1,
the version distributed with OS X 10.7.2. (The reference implementation is
also included in the ``examples/`` directory.)
.. list-table:: Performance of ``ispc`` with a variety of the workloads
from the ``examples/`` directory of the ``ispc`` distribution, compared
a reference C++ implementation compiled with gcc 4.2.1.
* - Workload
- ``ispc``, 1 core
- ``ispc``, 4 cores
* - `AOBench`_ (512 x 512 resolution)
- 3.99x
- 19.32x
* - `Binomial Options`_ (128k options)
- 7.94x
- 33.43x
* - `Black-Scholes Options`_ (128k options)
- 8.45x
- 32.48x
* - `Deferred Shading`_ (1280p)
- n/a
- 23.06x
* - `Mandelbrot Set`_
- 6.21x
- 19.90x
* - `Perlin Noise Function`_
- 5.37x
- n/a
* - `Ray Tracer`_ (Sponza dataset)
- 3.99x
- 19.32x
* - `3D Stencil`_
- 3.76x
- 13.79x
* - `Volume Rendering`_
- 3.11x
- 15.80x
.. _AOBench: https://github.com/ispc/ispc/tree/master/examples/aobench
.. _Binomial Options: https://github.com/ispc/ispc/tree/master/examples/options
.. _Black-Scholes Options: https://github.com/ispc/ispc/tree/master/examples/options
.. _Deferred Shading: https://github.com/ispc/ispc/tree/master/examples/deferred
.. _Mandelbrot Set: https://github.com/ispc/ispc/tree/master/examples/mandelbrot_tasks
.. _Ray Tracer: https://github.com/ispc/ispc/tree/master/examples/rt
.. _Perlin Noise Function: https://github.com/ispc/ispc/tree/master/examples/noise
.. _3D Stencil: https://github.com/ispc/ispc/tree/master/examples/stencil
.. _Volume Rendering: https://github.com/ispc/ispc/tree/master/examples/volume_rendering
The following table shows speedups for a number of the examples on a
2.40GHz, 40-core Intel® Xeon E7-8870 system with the Intel® SSE4
instruction set, running Microsoft Windows Server 2008 Enterprise. Here,
the serial C/C++ baseline code was compiled with MSVC 2010.
.. list-table:: Performance of ``ispc`` with a variety of the workloads
from the ``examples/`` directory of the ``ispc`` distribution, on
system with 40 CPU cores.
* - Workload
- ``ispc``, 40 cores
* - AOBench (2048 x 2048 resolution)
- 182.36x
* - Binomial Options (2m options)
- 63.85x
* - Black-Scholes Options (2m options)
- 83.97x
* - Ray Tracer (Sponza dataset)
- 195.67x
* - Volume Rendering
- 243.18x

714
docs/perfguide.txt Normal file
View File

@@ -0,0 +1,714 @@
==============================================
Intel® SPMD Program Compiler Performance Guide
==============================================
The SPMD programming model provided by ``ispc`` naturally delivers
excellent performance for many workloads thanks to efficient use of CPU
SIMD vector hardware. This guide provides more details about how to get
the most out of ``ispc`` in practice.
* `Key Concepts`_
+ `Efficient Iteration With "foreach"`_
+ `Improving Control Flow Coherence With "foreach_tiled"`_
+ `Using Coherent Control Flow Constructs`_
+ `Use "uniform" Whenever Appropriate`_
* `Tips and Techniques`_
+ `Understanding Gather and Scatter`_
+ `Avoid 64-bit Addressing Calculations When Possible`_
+ `Avoid Computation With 8 and 16-bit Integer Types`_
+ `Implementing Reductions Efficiently`_
+ `Using Low-level Vector Tricks`_
+ `The "Fast math" Option`_
+ `"inline" Aggressively`_
+ `Avoid The System Math Library`_
+ `Declare Variables In The Scope Where They're Used`_
+ `Instrumenting ISPC Programs To Understand Runtime Behavior`_
+ `Choosing A Target Vector Width`_
* `Disclaimer and Legal Information`_
* `Optimization Notice`_
Key Concepts
============
This section describes the four most important concepts to understand and
keep in mind when writing high-performance ``ispc`` programs. It assumes
good familiarity with the topics covered in the ``ispc`` `Users Guide`_.
.. _Users Guide: ispc.html
Efficient Iteration With "foreach"
----------------------------------
The ``foreach`` parallel iteration construct is semantically equivalent to
a regular ``for()`` loop, though it offers meaningful performance benefits.
(See the `documentation on "foreach" in the Users Guide`_ for a review of
its syntax and semantics.) As an example, consider this simple function
that iterates over some number of elements in an array, doing computation
on each one:
.. _documentation on "foreach" in the Users Guide: ispc.html#parallel-iteration-statements-foreach-and-foreach-tiled
::
export void foo(uniform int a[], uniform int count) {
for (int i = programIndex; i < count; i += programCount) {
// do some computation on a[i]
}
}
Depending on the specifics of the computation being performed, the code
generated for this function could likely be improved by modifying the code
so that the loop only goes as far through the data as is possible to pack
an entire gang of program instances with computation each time thorugh the
loop. Doing so enables the ``ispc`` compiler to generate more efficient
code for cases where it knows that the execution mask is "all on". Then,
an ``if`` statement at the end handles processing the ragged extra bits of
data that didn't fully fill a gang.
::
export void foo(uniform int a[], uniform int count) {
// First, just loop up to the point where all program instances
// in the gang will be active at the loop iteration start
uniform int countBase = count & ~(programCount-1);
for (uniform int i = 0; i < countBase; i += programCount) {
int index = i + programIndex;
// do some computation on a[index]
}
// Now handle the ragged extra bits at the end
if (countBase < count) {
int index = countBase + programIndex;
// do some computation on a[index]
}
}
While the performance of the above code will likely be better than the
first version of the function, the loop body code has been duplicated (or
has been forced to move into a separate utility function).
Using the ``foreach`` looping construct as below provides all of the
performance benefits of the second version of this function, with the
compactness of the first.
::
export void foo(uniform int a[], uniform int count) {
foreach (i = 0 ... count) {
// do some computation on a[i]
}
}
Improving Control Flow Coherence With "foreach_tiled"
-----------------------------------------------------
Depending on the computation being performed, ``foreach_tiled`` may give
better performance than ``foreach``. (See the `documentation in the Users
Guide`_ for the syntax and semantics of ``foreach_tiled``.) Given a
multi-dimensional iteration like:
.. _documentation in the Users Guide: ispc.html#parallel-iteration-statements-foreach-and-foreach-tiled
::
foreach (i = 0 ... width, j = 0 ... height) {
// do computation on element (i,j)
}
if the ``foreach`` statement is used, elements in the gang of program
instances will be mapped to values of ``i`` and ``j`` by taking spans of
``programCount`` elements across ``i`` with a single value of ``j``. For
example, the ``foreach`` statement above roughly corresponds to:
::
for (uniform int j = 0; j < height; ++j)
for (int i = 0; i < width; i += programCount) {
// do computation
}
When a multi-dimensional domain is being iterated over, ``foreach_tiled``
statement maps program instances to data in a way that tries to select
square n-dimensional segments of the domain. For example, on a compilation
target with 8-wide gangs of program instances, it generates code that
iterates over the domain the same way as the following code (though more
efficiently):
::
for (int j = programIndex/4; j < height; j += 2)
for (int i = programIndex%4; i < width; i += 4) {
// do computation
}
Thus, each gang of program instances operates on a 2x4 tile of the domain.
With higher-dimensional iteration and different gang sizes, a similar
mapping is performed--e.g. for 2D iteration with a 16-wide gang size, 4x4
tiles are iterated over; for 4D iteration with a 8-gang, 1x2x2x2 tiles are
processed, and so forth.
Performance benefit can come from using ``foreach_tiled`` in that it
essentially optimizes for the benefit of iterating over *compact* regions
of the domian (while ``foreach`` iterates over the domain in a way that
generally allows linear memory access.) There are two benefits from
processing compact regions of the domain.
First, it's often the case that the control flow coherence of the program
instances in the gang is improved; if data-dependent control flow decisions
are related to the values of the data in the domain being processed, and if
the data values have some coherence, iterating with compact regions will
improve control flow coherence.
Second, processing compact regions may mean that the data accessed by
program instances in the gang is be more coherent, leading to performance
benefits from better cache hit rates.
As a concrete example, for the ray tracer example in the ``ispc``
distribution (in the ``examples/rt`` directory), performance is 20% better
when the pixels are iterated over using ``foreach_tiled`` than ``foreach``,
because more coherent regions of the scene are accessed by the set of rays
in the gang of program instances.
Using Coherent Control Flow Constructs
--------------------------------------
Recall from the ``ispc`` Users Guide, in the `SPMD-on-SIMD Execution Model
section`_ that ``if`` statements with a ``uniform`` test compile to more
efficient code than ``if`` tests with varying tests. The coherent ``cif``
statement can provide many benefits of ``if`` with a uniform test in the
case where the test is actually varying.
.. _SPMD-on-SIMD Execution Model section: ispc.html#the-spmd-on-simd-execution-model
In this case, the code the compiler generates for the ``if``
test is along the lines of the following pseudo-code:
::
bool expr = /* evaluate cif condition */
if (all(expr)) {
// run "true" case of if test only
} else if (!any(expr)) {
// run "false" case of if test only
} else {
// run both true and false cases, updating mask appropriately
}
For ``if`` statements where the different running SPMD program instances
don't have coherent values for the boolean ``if`` test, using ``cif``
introduces some additional overhead from the ``all`` and ``any`` tests as
well as the corresponding branches. For cases where the program
instances often do compute the same boolean value, this overhead is
worthwhile. If the control flow is in fact usually incoherent, this
overhead only costs performance.
In a similar fashion, ``ispc`` provides ``cfor``, ``cwhile``, and ``cdo``
statements. These statements are semantically the same as the
corresponding non-"c"-prefixed functions.
Use "uniform" Whenever Appropriate
----------------------------------
For any variable that will always have the same value across all of the
program instances in a gang, declare the variable with the ``unfiorm``
qualifier. Doing so enables the ``ispc`` compiler to emit better code in
many different ways.
As a simple example, consider a ``for`` loop that always does the same
number of iterations:
::
for (int i = 0; i < 10; ++i)
// do something ten times
If this is written with ``i`` as a ``varying`` variable, as above, there's
additional overhead in the code generated for the loop as the compiler
emits instructions to handle the possibilty of not all program instances
following the same control flow path (as might be the case if the loop
limit, 10, was itself a ``varying`` value.)
If the above loop is instead written with ``i`` ``uniform``, as:
::
for (uniform int i = 0; i < 10; ++i)
// do something ten times
Then better code can be generated (and the loop possibly unrolled).
In some cases, the compiler may be able to detect simple cases like these,
but it's always best to provide the compiler with as much help as possible
to understand the actual form of your computation.
Tips and Techniques
===================
This section introduces a number of additional techniques that are worth
keeping in mind when writing ``ispc`` programs.
Understanding Gather and Scatter
--------------------------------
Memory reads and writes from the program instances in a gang that access
irregular memory locations (rather than a consecutive set of locations, or
a single location) can be relatively inefficient. As an example, consider
the "simple" array indexing calculation below:
::
int i = ....;
uniform float x[10] = { ... };
float f = x[i];
Since the index ``i`` is a varying value, the program instances in the gang
will in general be reading different locations in the array ``x``. Because
current CPUs have a "gather" instruction, the ``ispc`` compiler has to
serialize these memory reads, performing a separate memory load for each
running program instance, packing the result into ``f``. (The analogous
case happens for a write into ``x[i]``.)
In many cases, gathers like these are unavoidable; the program instances
just need to access incoherent memory locations. However, if the array
index ``i`` actually has the same value for all of the program instances or
if it represents an access to a consecutive set of array locations, much
more efficient load and store instructions can be generated instead of
gathers and scatters, respectively.
In many cases, the ``ispc`` compiler is able to deduce that the memory
locations accessed by a varying index are either all the same or are
uniform. For example, given:
::
uniform int x = ...;
int y = x;
return array[y];
The compiler is able to determine that all of the program instances are
loading from the same location, even though ``y`` is not a ``uniform``
variable. In this case, the compiler will transform this load to a regular
vector load, rather than a general gather.
Sometimes the running program instances will access a linear sequence of
memory locations; this happens most frequently when array indexing is done
based on the built-in ``programIndex`` variable. In many of these cases,
the compiler is also able to detect this case and then do a vector load.
For example, given:
::
for (int i = programIndex; i < count; i += programCount)
// process array[i];
Regular vector loads and stores are issued for accesses to ``array[i]``.
Both of these cases have been ones where the compiler is able to determine
statically that the index has the same value at compile-time. It's
often the case that this determination can't be made at compile time, but
this is often the case at run time. The ``reduce_equal()`` function from
the standard library can be used in this case; it checks to see if the
given value is the same across over all of the running program instances,
returning true and its ``uniform`` value if so.
The following function shows the use of ``reduce_equal()`` to check for an
equal index at execution time and then either do a scalar load and
broadcast or a general gather.
::
uniform float array[..] = { ... };
float value;
int i = ...;
uniform int ui;
if (reduce_equal(i, &ui) == true)
value = array[ui]; // scalar load + broadcast
else
value = array[i]; // gather
For a simple case like the one above, the overhead of doing the
``reduce_equal()`` check is likely not worthwhile compared to just always
doing a gather. In more complex cases, where a number of accesses are done
based on the index, it can be worth doing. See the example
``examples/volume_rendering`` in the ``ispc`` distribution for the use of
this technique in an instance where it is beneficial to performance.
Avoid 64-bit Addressing Calculations When Possible
--------------------------------------------------
Even when compiling to a 64-bit architecture target, ``ispc`` does many of
the addressing calculations in 32-bit precision by default--this behavior
can be overridden with the ``--addressing=64`` command-line argument. This
option should only be used if it's necessary to be able to address over 4GB
of memory in the ``ispc`` code, as it essentially doubles the cost of
memory addressing calculations in the generated code.
Avoid Computation With 8 and 16-bit Integer Types
-------------------------------------------------
The code generated for 8 and 16-bit integer types is generally not as
efficient as the code generated for 32-bit integer types. It is generally
worthwhile to use 32-bit integer types for intermediate computations, even
if the final result will be stored in a smaller integer type.
Implementing Reductions Efficiently
-----------------------------------
It's often necessary to compute a reduction over a data set--for example,
one might want to add all of the values in an array, compute their minimum,
etc. ``ispc`` provides a few capabilities that make it easy to efficiently
compute reductions like these. However, it's important to use these
capabilities appropriately for best results.
As an example, consider the task of computing the sum of all of the values
in an array. In C code, we might have:
::
/* C implementation of a sum reduction */
float sum(const float array[], int count) {
float sum = 0;
for (int i = 0; i < count; ++i)
sum += array[i];
return sum;
}
Exactly this computation could also be expressed as a purely uniform
computation in ``ispc``, though without any benefit from vectorization:
::
/* inefficient ispc implementation of a sum reduction */
uniform float sum(const uniform float array[], uniform int count) {
uniform float sum = 0;
for (uniform int i = 0; i < count; ++i)
sum += array[i];
return sum;
}
As a first try, one might try using the ``reduce_add()`` function from the
``ispc`` standard library; it takes a ``varying`` value and returns the sum
of that value across all of the active program instances.
::
/* inefficient ispc implementation of a sum reduction */
uniform float sum(const uniform float array[], uniform int count) {
uniform float sum = 0;
foreach (i = 0 ... count)
sum += reduce_add(array[i+programIndex]);
return sum;
}
This implementation loads a gang's worth of values from the array, one for
each of the program instances, and then uses ``reduce_add()`` to reduce
across the program instances and then update the sum. Unfortunately this
approach loses most benefit from vectorization, as it does more work on the
cross-program instance ``reduce_add()`` call than it saves from the vector
load of values.
The most efficient approach is to do the reduction in two phases: rather
than using a ``uniform`` variable to store the sum, we maintain a varying
value, such that each program instance is effectively computing a local
partial sum on the subset of array values that it has loaded from the
array. When the loop over array elements concludes, a single call to
``reduce_add()`` computes the final reduction across each of the program
instances' elements of ``sum``. This approach effectively compiles to a
single vector load and a single vector add for each loop iteration's of
values--very efficient code in the end.
::
/* good ispc implementation of a sum reduction */
uniform float sum(const uniform float array[], uniform int count) {
float sum = 0;
foreach (i = 0 ... count)
sum += array[i+programIndex];
return reduce_add(sum);
}
Using Low-level Vector Tricks
-----------------------------
Many low-level Intel® SSE and AVX coding constructs can be implemented in
``ispc`` code. The ``ispc`` standard library functions ``intbits()`` and
``floatbits()`` are often useful in this context. Recall that
``intbits()`` takes a ``float`` value and returns it as an integer where
the bits of the integer are the same as the bit representation in memory of
the ``float``. (In other words, it does *not* perform an integer to
floating-point conversion.) ``floatbits()``, then, performs the inverse
computation.
As an example of the use of these functions, the following code efficiently
reverses the sign of the given values.
::
float flipsign(float a) {
unsigned int i = intbits(a);
i ^= 0x80000000;
return floatbits(i);
}
This code compiles down to a single XOR instruction.
The "Fast math" Option
----------------------
``ispc`` has a ``--opt=fast-math`` command-line flag that enables a number of
optimizations that may be undesirable in code where numerical precision is
critically important. For many graphics applications, for example, the
approximations introduced may be acceptable, however. The following two
optimizations are performed when ``--opt=fast-math`` is used. By default, the
``--opt=fast-math`` flag is off.
* Expressions like ``x / y``, where ``y`` is a compile-time constant, are
transformed to ``x * (1./y)``, where the inverse value of ``y`` is
precomputed at compile time.
* Expressions like ``x / y``, where ``y`` is not a compile-time constant,
are transformed to ``x * rcp(y)``, where ``rcp()`` maps to the
approximate reciprocal instruction from the ``ispc`` standard library.
"inline" Aggressively
---------------------
Inlining functions aggressively is generally beneficial for performance
with ``ispc``. Definitely use the ``inline`` qualifier for any short
functions (a few lines long), and experiment with it for longer functions.
Avoid The System Math Library
-----------------------------
The default math library for transcendentals and the like that ``ispc`` has
higher error than the system's math library, though is much more efficient
due to being vectorized across the program instances and due to the fact
that the functions can be inlined in the final code. (It generally has
errors in the range of 10ulps, while the system math library generally has
no more than 1ulp of error for transcendentals.)
If the ``--math-lib=system`` command-line option is used when compiling an
``ispc`` program, then calls to the system math library will be generated
instead. This option should only be used if the higher precision is
absolutely required as the performance impact of using it can be
significant.
Declare Variables In The Scope Where They're Used
-------------------------------------------------
Performance is slightly improved by declaring variables at the same block
scope where they are first used. For example, in code like the
following, if the lifetime of ``foo`` is only within the scope of the
``if`` clause, write the code like this:
::
float func() {
....
if (x < y) {
float foo;
... use foo ...
}
}
Try not to write code as:
::
float func() {
float foo;
....
if (x < y) {
... use foo ...
}
}
Doing so can reduce the amount of masked store instructions that the
compiler needs to generate.
Instrumenting ISPC Programs To Understand Runtime Behavior
----------------------------------------------------------
``ispc`` has an optional instrumentation feature that can help you
understand performance issues. If a program is compiled using the
``--instrument`` flag, the compiler emits calls to a function with the
following signature at various points in the program (for
example, at interesting points in the control flow, when scatters or
gathers happen.)
::
extern "C" {
void ISPCInstrument(const char *fn, const char *note,
int line, int mask);
}
This function is passed the file name of the ``ispc`` file running, a short
note indicating what is happening, the line number in the source file, and
the current mask of active program instances in the gang. You must provide an
implementation of this function and link it in with your application.
For example, when the ``ispc`` program runs, this function might be called
as follows:
::
ISPCInstrument("foo.ispc", "function entry", 55, 0xf);
This call indicates that at the currently executing program has just
entered the function defined at line 55 of the file ``foo.ispc``, with a
mask of all lanes currently executing (assuming a four-wide gang size
target machine).
For a fuller example of the utility of this functionality, see
``examples/aobench_instrumented`` in the ``ispc`` distribution. Ths
example includes an implementation of the ``ISPCInstrument()`` function
that collects aggregate data about the program's execution behavior.
When running this example, you will want to direct to the ``ao`` executable
to generate a low resolution image, because the instrumentation adds
substantial execution overhead. For example:
::
% ./ao 1 32 32
After the ``ao`` program exits, a summary report along the following lines
will be printed. In the first few lines, you can see how many times a few
functions were called, and the average percentage of SIMD lanes that were
active upon function entry.
::
ao.ispc(0067) - function entry: 342424 calls (0 / 0.00% all off!), 95.86% active lanes
ao.ispc(0067) - return: uniform control flow: 342424 calls (0 / 0.00% all off!), 95.86% active lanes
ao.ispc(0071) - function entry: 1122 calls (0 / 0.00% all off!), 97.33% active lanes
ao.ispc(0075) - return: uniform control flow: 1122 calls (0 / 0.00% all off!), 97.33% active lanes
ao.ispc(0079) - function entry: 10072 calls (0 / 0.00% all off!), 45.09% active lanes
ao.ispc(0088) - function entry: 36928 calls (0 / 0.00% all off!), 97.40% active lanes
...
Choosing A Target Vector Width
------------------------------
By default, ``ispc`` compiles to the natural vector width of the target
instruction set. For example, for SSE2 and SSE4, it compiles four-wide,
and for AVX, it complies 8-wide. For some programs, higher performance may
be seen if the program is compiled to a doubled vector width--8-wide for
SSE and 16-wide for AVX.
For workloads that don't require many of registers, this method can lead to
significantly more efficient execution thanks to greater instruction level
parallelism and amortization of various overhead over more program
instances. For other workloads, it may lead to a slowdown due to higher
register pressure; trying both approaches for key kernels may be
worthwhile.
This option is only available for each of the SSE2, SSE4 and AVX targets.
It is selected with the ``--target=sse2-x2``, ``--target=sse4-x2`` and
``--target=avx-x2`` options, respectively.
Disclaimer and Legal Information
================================
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE
OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT
OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED
NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD
CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.
Intel may make changes to specifications and product descriptions at any time,
without notice. Designers must not rely on the absence or characteristics of any
features or instructions marked "reserved" or "undefined." Intel reserves these
for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from future changes to them. The information here
is subject to change without notice. Do not finalize a design with this
information.
The products described in this document may contain design defects or errors
known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest
specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this
document, or other Intel literature, may be obtained by calling 1-800-548-4725,
or by visiting Intel's Web Site.
Intel processor numbers are not a measure of performance. Processor numbers
differentiate features within each processor family, not across different
processor families. See http://www.intel.com/products/processor_number for
details.
BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom,
Centrino Atom Inside, Centrino Inside, Centrino logo, Core Inside, FlashFile,
i960, InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4,
IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside,
Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst,
Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep,
Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium,
Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside,
skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon,
and Xeon Inside are trademarks of Intel Corporation in the U.S. and other
countries.
* Other names and brands may be claimed as the property of others.
Copyright(C) 2011, Intel Corporation. All rights reserved.
Optimization Notice
===================
Intel compilers, associated libraries and associated development tools may
include or utilize options that optimize for instruction sets that are
available in both Intel and non-Intel microprocessors (for example SIMD
instruction sets), but do not optimize equally for non-Intel
microprocessors. In addition, certain compiler options for Intel
compilers, including some that are not specific to Intel
micro-architecture, are reserved for Intel microprocessors. For a detailed
description of Intel compiler options, including the instruction sets and
specific microprocessors they implicate, please refer to the "Intel
Compiler User and Reference Guides" under "Compiler Options." Many library
routines that are part of Intel compiler products are more highly optimized
for Intel microprocessors than for other microprocessors. While the
compilers and libraries in Intel compiler products offer optimizations for
both Intel and Intel-compatible microprocessors, depending on the options
you select, your code and other factors, you likely will get extra
performance on Intel microprocessors.
Intel compilers, associated libraries and associated development tools may
or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These
optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2),
Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and Supplemental
Streaming SIMD Extensions 3 (Intel SSSE3) instruction sets and other
optimizations. Intel does not guarantee the availability, functionality,
or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors.
While Intel believes our compilers and libraries are excellent choices to
assist in obtaining the best performance on Intel and non-Intel
microprocessors, Intel recommends that you evaluate other compilers and
libraries to determine which best meet your requirements. We hope to win
your business by striving to offer the best performance of any compiler or
library; please let us know if you find we do not.

65
docs/template-perf.txt Normal file
View File

@@ -0,0 +1,65 @@
%(head_prefix)s
%(head)s
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-1486404-4']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
%(stylesheet)s
%(body_prefix)s
<div id="wrap">
<div id="wrap2">
<div id="header">
<h1 id="logo">Intel SPMD Program Compiler</h1>
<div id="slogan">An open-source compiler for high-performance SIMD programming on
the CPU</div>
</div>
<div id="nav">
<div id="nbar">
<ul>
<li><a href="index.html">Overview</a></li>
<li><a href="features.html">Features</a></li>
<li><a href="downloads.html">Downloads</a></li>
<li><a href="documentation.html">Documentation</a></li>
<li id="selected"><a href="perf.html">Performance</a></li>
</ul>
</div>
</div>
<div id="content-wrap">
<div id="sidebar">
<div class="widgetspace">
<h1>Resources</h1>
<ul class="menu">
<li><a href="http://github.com/ispc/ispc/">ispc page on github</a></li>
<li><a href="http://groups.google.com/group/ispc-users/">ispc
users mailing list</a></li>
<li><a href="http://groups.google.com/group/ispc-dev/">ispc
developers mailing list</a></li>
<li><a href="http://github.com/ispc/ispc/wiki/">Wiki</a></li>
<li><a href="http://github.com/ispc/ispc/issues/">Bug tracking</a></li>
<li><a href="doxygen/index.html">Doxygen documentation of
<tt>ispc</tt> source code</a></li>
</ul>
</div>
</div>
%(body_pre_docinfo)s
%(docinfo)s
<div id="content">
%(body)s
</div>
<div class="clearfix"></div>
<div id="footer"> &copy; 2011 <strong>Intel Corporation</strong> | Valid <a href="http://validator.w3.org/check?uri=referer">XHTML</a> | <a href="http://jigsaw.w3.org/css-validator/check/referer">CSS</a> | ClearBlue by: <a href="http://www.themebin.com/">ThemeBin</a>
<!-- Please Do Not remove this link, thank u -->
</div>
</div>
</div>
</div>
%(body_suffix)s

65
docs/template.txt Normal file
View File

@@ -0,0 +1,65 @@
%(head_prefix)s
%(head)s
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-1486404-4']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
%(stylesheet)s
%(body_prefix)s
<div id="wrap">
<div id="wrap2">
<div id="header">
<h1 id="logo">Intel SPMD Program Compiler</h1>
<div id="slogan">An open-source compiler for high-performance SIMD programming on
the CPU</div>
</div>
<div id="nav">
<div id="nbar">
<ul>
<li><a href="index.html">Overview</a></li>
<li><a href="features.html">Features</a></li>
<li><a href="downloads.html">Downloads</a></li>
<li id="selected"><a href="documentation.html">Documentation</a></li>
<li><a href="perf.html">Performance</a></li>
</ul>
</div>
</div>
<div id="content-wrap">
<div id="sidebar">
<div class="widgetspace">
<h1>Resources</h1>
<ul class="menu">
<li><a href="http://github.com/ispc/ispc/">ispc page on github</a></li>
<li><a href="http://groups.google.com/group/ispc-users/">ispc
users mailing list</a></li>
<li><a href="http://groups.google.com/group/ispc-dev/">ispc
developers mailing list</a></li>
<li><a href="http://github.com/ispc/ispc/wiki/">Wiki</a></li>
<li><a href="http://github.com/ispc/ispc/issues/">Bug tracking</a></li>
<li><a href="doxygen/index.html">Doxygen documentation of
<tt>ispc</tt> source code</a></li>
</ul>
</div>
</div>
%(body_pre_docinfo)s
%(docinfo)s
<div id="content">
%(body)s
</div>
<div class="clearfix"></div>
<div id="footer"> &copy; 2011 <strong>Intel Corporation</strong> | Valid <a href="http://validator.w3.org/check?uri=referer">XHTML</a> | <a href="http://jigsaw.w3.org/css-validator/check/referer">CSS</a> | ClearBlue by: <a href="http://www.themebin.com/">ThemeBin</a>
<!-- Please Do Not remove this link, thank u -->
</div>
</div>
</div>
</div>
%(body_suffix)s

View File

@@ -31,7 +31,7 @@ PROJECT_NAME = "Intel SPMD Program Compiler"
# This could be handy for archiving the generated documentation or
# if some version control system is used.
PROJECT_NUMBER = 1.0
PROJECT_NUMBER = 1.1.0
# The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute)
# base path where the generated documentation will be put.
@@ -585,7 +585,6 @@ INPUT = builtins.h \
ctx.h \
decl.h \
expr.h \
gatherbuf.h \
ispc.h \
llvmutil.h \
module.h \
@@ -598,7 +597,6 @@ INPUT = builtins.h \
ctx.cpp \
decl.cpp \
expr.cpp \
gatherbuf.cpp \
ispc.cpp \
llvmutil.cpp \
main.cpp \
@@ -610,7 +608,7 @@ INPUT = builtins.h \
util.cpp \
parse.yy \
lex.ll \
stdlib-c.c
builtins-c.c
# This tag can be used to specify the character encoding of the source files
# that doxygen parses. Internally doxygen uses the UTF-8 encoding, which is

View File

@@ -13,6 +13,7 @@ against regular serial C++ implementations, printing out a comparison of
the runtimes and the speedup delivered by ispc. It may be instructive to
do a side-by-side diff of the C++ and ispc implementations of these
algorithms to learn more about wirting ispc code.
AOBench
=======
@@ -27,6 +28,7 @@ It executes the program for the given number of iterations, rendering an
(xres x yres) image each time and measuring the computation time with both
serial and ispc implementations.
AOBench_Instrumented
====================
@@ -40,12 +42,47 @@ is provided in the instrument.cpp file.
*** Note: on Linux, this example currently hits an assertion in LLVM during
*** compilation
Deferred
========
This example shows an extensive example of using ispc for efficient
deferred shading of scenes with thousands of lights; it's an implementation
of the algorithm that Johan Andersson described at SIGGRAPH 2009,
implemented by Andrew Lauritzen and Jefferson Montgomery. The basic idea
is that a pre-rendered G-buffer is partitioned into tiles, and in each
tile, the set of lights that contribute to the tile is first computed.
Then, the pixels in the tile are then shaded using just those light
sources. (See slides 19-29 of
http://s09.idav.ucdavis.edu/talks/04-JAndersson-ParallelFrostbite-Siggraph09.pdf
for more details on the algorithm.)
This directory includes three implementations of the algorithm:
- An ispc implementation that first does a static partitioning of the
screen into tiles to parallelize across the CPU cores. Within each tile
ispc kernels provide highly efficient implementations of the light
culling and shading calculations.
- A "best practices" serial C++ implementation. This implementation does a
dynamic partitioning of the screen, refining tiles with significant Z
depth complexity (these tiles often have a large number of lights that
affect them). Within each final tile, the pixels are shaded using
regular C++ code.
- If the Cilk extensions are available in your compiler, an ispc
implementation that uses Cilk will also be built.
(See http://software.intel.com/en-us/articles/intel-cilk-plus/). Like
the "best practices" serial implementation, this version does dynamic
tile partitioning for better load balancing and then uses ispc for the
light culling and shading.
Mandelbrot
==========
Mandelbrot set generation. This example is extensively documented at the
http://ispc.github.com/example.html page.
Mandelbrot_tasks
================
@@ -57,6 +94,14 @@ Linux, a pthreads-based task system is used (tasks_pthreads.cpp). When
using tasks with ispc, no task system is mandated; the user is free to plug
in any task system they want, for ease of interoperating with existing task
systems.
Noise
=====
This example has an implementation of Ken Perlin's procedural "noise"
function, as described in his 2002 "Improving Noise" SIGGRAPH paper.
Options
=======
@@ -64,6 +109,7 @@ Options
This program implements both the Black-Scholes and Binomial options pricing
models in both ispc and regular serial C++ code.
RT
==
@@ -80,9 +126,25 @@ and triangle intersection code from pbrt; see the pbrt source code and/or
"Physically Based Rendering" book for more about the basic algorithmic
details.
Simple
======
This is a simple "hello world" type program that shows a ~10 line
application program calling out to a ~5 line ispc program to do a simple
computation.
Volume
======
Ray-marching volume rendering, with single scattering lighting model. To
run it, specify a camera parameter file and a volume density file, e.g.:
volume camera.dat density_highres.vol
(See, e.g. Chapters 11 and 16 of "Physically Based Rendering" for
information about the algorithm implemented here.) The volume data set
included here was generated by the example implementation of the "Wavelet
Turbulence for Fluid Simulation" SIGGRAPH 2008 paper by Kim et
al. (http://www.cs.cornell.edu/~tedkim/WTURB/)

2
examples/aobench/.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
ao
*.ppm

View File

@@ -1,8 +1,18 @@
ARCH = $(shell uname)
TASK_CXX=../tasksys.cpp
TASK_LIB=-lpthread
TASK_OBJ=$(addprefix objs/, $(subst ../,, $(TASK_CXX:.cpp=.o)))
CXX=g++
CXXFLAGS=-Iobjs/ -O3 -Wall
CXXFLAGS=-Iobjs/ -O3 -Wall -m64
ISPC=ispc
ISPCFLAGS=-O2 --fast-math
ISPCFLAGS=-O2 --target=sse2,sse4,avx --arch=x86-64
ISPC_OBJS=objs/ao_ispc.o objs/ao_ispc_sse2.o objs/ao_ispc_sse4.o \
objs/ao_ispc_avx.o
OBJS=objs/ao.o objs/ao_serial.o $(ISPC_OBJS) $(TASK_OBJ)
default: ao
@@ -14,13 +24,16 @@ dirs:
clean:
/bin/rm -rf objs *~ ao
ao: dirs objs/ao.o objs/ao_serial.o objs/ao_ispc.o
$(CXX) $(CXXFLAGS) -o $@ objs/ao.o objs/ao_ispc.o objs/ao_serial.o -lm -lpthread
ao: dirs $(OBJS) $(TASK_OBJ)
$(CXX) $(CXXFLAGS) -o $@ $(OBJS) -lm $(TASK_LIB)
objs/%.o: %.cpp
$(CXX) $< $(CXXFLAGS) -c -o $@
objs/%.o: ../%.cpp
$(CXX) $< $(CXXFLAGS) -c -o $@
objs/ao.o: objs/ao_ispc.h
objs/%_ispc.h objs/%_ispc.o: %.ispc
objs/%_ispc.h objs/%_ispc.o objs/%_ispc_sse2.o objs/%_ispc_sse4.o objs/%_ispc_avx.o: %.ispc
$(ISPC) $(ISPCFLAGS) $< -o objs/$*_ispc.o -h objs/$*_ispc.h

View File

@@ -100,24 +100,7 @@ savePPM(const char *fname, int w, int h)
fprintf(fp, "255\n");
fwrite(img, w * h * 3, 1, fp);
fclose(fp);
}
// Allocate memory with 64-byte alignment.
float *
AllocAligned(int size) {
#if defined(_WIN32) || defined(_WIN64)
return (float *)_aligned_malloc(size, 64);
#elif defined (__APPLE__)
// Allocate excess memory to ensure an aligned pointer can be returned
void *mem = malloc(size + (64-1) + sizeof(void*));
char *amem = ((char*)mem) + sizeof(void*);
amem += 64 - (reinterpret_cast<uint64_t>(amem) & (64 - 1));
((void**)amem)[-1] = mem;
return (float *)amem;
#else
return (float *)memalign(64, size);
#endif
printf("Wrote image file %s\n", fname);
}
@@ -136,8 +119,8 @@ int main(int argc, char **argv)
}
// Allocate space for output images
img = (unsigned char *)AllocAligned(width * height * 3);
fimg = (float *)AllocAligned(sizeof(float) * width * height * 3);
img = new unsigned char[width * height * 3];
fimg = new float[width * height * 3];
//
// Run the ispc path, test_iterations times, and report the minimum
@@ -155,10 +138,30 @@ int main(int argc, char **argv)
}
// Report results and save image
printf("[aobench ispc]:\t\t\t[%.3f] M cycles (%d x %d image)\n", minTimeISPC,
width, height);
printf("[aobench ispc]:\t\t\t[%.3f] M cycles (%d x %d image)\n",
minTimeISPC, width, height);
savePPM("ao-ispc.ppm", width, height);
//
// Run the ispc + tasks path, test_iterations times, and report the
// minimum time for any of them.
//
double minTimeISPCTasks = 1e30;
for (unsigned int i = 0; i < test_iterations; i++) {
memset((void *)fimg, 0, sizeof(float) * width * height * 3);
assert(NSUBSAMPLES == 2);
reset_and_start_timer();
ao_ispc_tasks(width, height, NSUBSAMPLES, fimg);
double t = get_elapsed_mcycles();
minTimeISPCTasks = std::min(minTimeISPCTasks, t);
}
// Report results and save image
printf("[aobench ispc + tasks]:\t\t[%.3f] M cycles (%d x %d image)\n",
minTimeISPCTasks, width, height);
savePPM("ao-ispc-tasks.ppm", width, height);
//
// Run the serial path, again test_iteration times, and report the
// minimum time.
@@ -175,7 +178,8 @@ int main(int argc, char **argv)
// Report more results, save another image...
printf("[aobench serial]:\t\t[%.3f] M cycles (%d x %d image)\n", minTimeSerial,
width, height);
printf("\t\t\t\t(%.2fx speedup from ISPC)\n", minTimeSerial / minTimeISPC);
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n",
minTimeSerial / minTimeISPC, minTimeSerial / minTimeISPCTasks);
savePPM("ao-serial.ppm", width, height);
return 0;

View File

@@ -75,7 +75,7 @@ static inline vec vcross(vec v0, vec v1) {
return ret;
}
static inline void vnormalize(reference vec v) {
static inline void vnormalize(vec &v) {
float len2 = dot(v, v);
float invlen = rsqrt(len2);
v *= invlen;
@@ -83,8 +83,7 @@ static inline void vnormalize(reference vec v) {
static inline void
ray_plane_intersect(reference Isect isect, reference Ray ray,
reference Plane plane) {
ray_plane_intersect(Isect &isect, Ray &ray, Plane &plane) {
float d = -dot(plane.p, plane.n);
float v = dot(ray.dir, plane.n);
@@ -104,8 +103,7 @@ ray_plane_intersect(reference Isect isect, reference Ray ray,
static inline void
ray_sphere_intersect(reference Isect isect, reference Ray ray,
reference Sphere sphere) {
ray_sphere_intersect(Isect &isect, Ray &ray, Sphere &sphere) {
vec rs = ray.org - sphere.center;
float B = dot(rs, ray.dir);
@@ -127,7 +125,7 @@ ray_sphere_intersect(reference Isect isect, reference Ray ray,
static inline void
orthoBasis(reference vec basis[3], vec n) {
orthoBasis(vec basis[3], vec n) {
basis[2] = n;
basis[1].x = 0.0; basis[1].y = 0.0; basis[1].z = 0.0;
@@ -150,8 +148,8 @@ orthoBasis(reference vec basis[3], vec n) {
static inline float
ambient_occlusion(reference Isect isect, reference Plane plane,
reference Sphere spheres[3], reference RNGState rngstate) {
ambient_occlusion(Isect &isect, Plane &plane, Sphere spheres[3],
RNGState &rngstate) {
float eps = 0.0001f;
vec p, n;
vec basis[3];
@@ -168,8 +166,8 @@ ambient_occlusion(reference Isect isect, reference Plane plane,
Ray ray;
Isect occIsect;
float theta = sqrt(frandom(rngstate));
float phi = 2.0f * M_PI * frandom(rngstate);
float theta = sqrt(frandom(&rngstate));
float phi = 2.0f * M_PI * frandom(&rngstate);
float x = cos(phi) * theta;
float y = sin(phi) * theta;
float z = sqrt(1.0 - theta * theta);
@@ -203,8 +201,9 @@ ambient_occlusion(reference Isect isect, reference Plane plane,
/* Compute the image for the scanlines from [y0,y1), for an overall image
of width w and height h.
*/
void ao_scanlines(uniform int y0, uniform int y1, uniform int w, uniform int h,
uniform int nsubsamples, reference uniform float image[]) {
static void ao_scanlines(uniform int y0, uniform int y1, uniform int w,
uniform int h, uniform int nsubsamples,
uniform float image[]) {
static Plane plane = { { 0.0f, -0.5f, 0.0f }, { 0.f, 1.f, 0.f } };
static Sphere spheres[3] = {
{ { -2.0f, 0.0f, -3.5f }, 0.5f },
@@ -212,7 +211,7 @@ void ao_scanlines(uniform int y0, uniform int y1, uniform int w, uniform int h,
{ { 1.0f, 0.0f, -2.2f }, 0.5f } };
RNGState rngstate;
seed_rng(rngstate, y0);
seed_rng(&rngstate, y0);
// Compute the mapping between the 'programCount'-wide program
// instances running in parallel and samples in the image.
@@ -231,6 +230,9 @@ void ao_scanlines(uniform int y0, uniform int y1, uniform int w, uniform int h,
// direction we do per iteration and ny the number in y.
uniform int nx = 1, ny = 1;
// FIXME: We actually need ny to be 1 regardless of the decomposition,
// since the task decomposition is one scanline high.
if (programCount == 8) {
// Do two pixels at once in the x direction
nx = 2;
@@ -239,19 +241,21 @@ void ao_scanlines(uniform int y0, uniform int y1, uniform int w, uniform int h,
++du;
}
else if (programCount == 16) {
// Two at once in both x and y
nx = ny = 2;
if ((programIndex >= 4 && programIndex < 8) || programIndex >= 12)
nx = 4;
ny = 1;
if (programIndex >= 4 && programIndex < 8)
++du;
if (programIndex >= 8)
++dv;
if (programIndex >= 8 && programIndex < 12)
du += 2;
if (programIndex >= 12)
du += 3;
}
// Now loop over all of the pixels, stepping in x and y as calculated
// above. (Assumes that ny divides y and nx divides x...)
for (uniform int y = y0; y < y1; y += ny) {
for (uniform int x = 0; x < w; x += nx) {
// Figur out x,y pixel in NDC
// Figure out x,y pixel in NDC
float px = (x + du - (w / 2.0f)) / (w / 2.0f);
float py = -(y + dv - (h / 2.0f)) / (h / 2.0f);
float ret = 0.f;
@@ -293,7 +297,7 @@ void ao_scanlines(uniform int y0, uniform int y1, uniform int w, uniform int h,
// offset to the first pixel in the image
uniform int offset = 3 * (y * w + x);
for (uniform int p = 0; p < programCount; p += 4, ++offset) {
for (uniform int p = 0; p < programCount; p += 4, offset += 3) {
// Get the four sample values for this pixel
uniform float sumret = retArray[p] + retArray[p+1] + retArray[p+2] +
retArray[p+3];
@@ -315,3 +319,15 @@ export void ao_ispc(uniform int w, uniform int h, uniform int nsubsamples,
uniform float image[]) {
ao_scanlines(0, h, w, h, nsubsamples, image);
}
static void task ao_task(uniform int width, uniform int height,
uniform int nsubsamples, uniform float image[]) {
ao_scanlines(taskIndex, taskIndex+1, width, height, nsubsamples, image);
}
export void ao_ispc_tasks(uniform int w, uniform int h, uniform int nsubsamples,
uniform float image[]) {
launch[h] < ao_task(w, h, nsubsamples, image) >;
}

View File

@@ -140,7 +140,7 @@ ray_plane_intersect(Isect &isect, Ray &ray,
float d = -dot(plane.p, plane.n);
float v = dot(ray.dir, plane.n);
if (fabsf(v) < 1.0e-17)
if (fabsf(v) < 1.0e-17f)
return;
else {
float t = -(dot(ray.org, plane.n) + d) / v;
@@ -183,11 +183,11 @@ orthoBasis(vec basis[3], const vec &n) {
basis[2] = n;
basis[1].x = 0.0; basis[1].y = 0.0; basis[1].z = 0.0;
if ((n.x < 0.6) && (n.x > -0.6)) {
if ((n.x < 0.6f) && (n.x > -0.6f)) {
basis[1].x = 1.0;
} else if ((n.y < 0.6) && (n.y > -0.6)) {
} else if ((n.y < 0.6f) && (n.y > -0.6f)) {
basis[1].y = 1.0;
} else if ((n.z < 0.6) && (n.z > -0.6)) {
} else if ((n.z < 0.6f) && (n.z > -0.6f)) {
basis[1].z = 1.0;
} else {
basis[1].x = 1.0;
@@ -224,7 +224,7 @@ ambient_occlusion(Isect &isect, Plane &plane,
float phi = 2.0f * M_PI * drand48();
float x = cosf(phi) * theta;
float y = sinf(phi) * theta;
float z = sqrtf(1.0 - theta * theta);
float z = sqrtf(1.0f - theta * theta);
// local . global
float rx = x * basis[0].x + y * basis[1].x + z * basis[2].x;
@@ -236,14 +236,14 @@ ambient_occlusion(Isect &isect, Plane &plane,
ray.dir.y = ry;
ray.dir.z = rz;
occIsect.t = 1.0e+17;
occIsect.t = 1.0e+17f;
occIsect.hit = 0;
for (int snum = 0; snum < 3; ++snum)
ray_sphere_intersect(occIsect, ray, spheres[snum]);
ray_plane_intersect (occIsect, ray, plane);
if (occIsect.hit) occlusion += 1.0;
if (occIsect.hit) occlusion += 1.f;
}
}
@@ -280,10 +280,10 @@ static void ao_scanlines(int y0, int y1, int w, int h, int nsubsamples,
ray.dir.x = px;
ray.dir.y = py;
ray.dir.z = -1.0;
ray.dir.z = -1.0f;
vnormalize(ray.dir);
isect.t = 1.0e+17;
isect.t = 1.0e+17f;
isect.hit = 0;
for (int snum = 0; snum < 3; ++snum)

31
examples/aobench/aobench.vcxproj Executable file → Normal file
View File

@@ -21,22 +21,23 @@
<ItemGroup>
<ClCompile Include="ao.cpp" />
<ClCompile Include="ao_serial.cpp" />
<ClCompile Include="../tasksys.cpp" />
</ItemGroup>
<ItemGroup>
<CustomBuild Include="ao.ispc">
<FileType>Document</FileType>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --arch=x86
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --arch=x86 --target=sse2,sse4,avx
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --target=sse2,sse4,avx
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">%(Filename).obj</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">%(Filename).obj</Outputs>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --arch=x86
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --arch=x86 --target=sse2,sse4,avx
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|x64'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h
<Command Condition="'$(Configuration)|$(Platform)'=='Release|x64'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --target=sse2,sse4,avx
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">%(Filename).obj</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|x64'">%(Filename).obj</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|x64'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
</CustomBuild>
</ItemGroup>
<PropertyGroup Label="Globals">
@@ -85,15 +86,19 @@
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ExecutablePath);$(ProjectDir)..\..</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
@@ -102,6 +107,9 @@
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<IntrinsicFunctions>true</IntrinsicFunctions>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -115,6 +123,9 @@
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<IntrinsicFunctions>true</IntrinsicFunctions>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -130,6 +141,8 @@
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -147,6 +160,8 @@
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>

View File

@@ -0,0 +1,2 @@
ao
*.ppm

View File

@@ -1,8 +1,8 @@
CXX=g++
CXX=g++ -m64
CXXFLAGS=-Iobjs/ -g3 -Wall
ISPC=ispc
ISPCFLAGS=-O2 --fast-math --instrument
ISPCFLAGS=-O2 --instrument --arch=x86-64 --target=sse2
default: ao

View File

@@ -32,7 +32,6 @@
*/
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#define NOMINMAX
#pragma warning (disable: 4244)
#pragma warning (disable: 4305)
@@ -51,7 +50,7 @@
#include <algorithm>
#include <sys/types.h>
#include "ao_ispc.h"
#include "ao_instrumented_ispc.h"
using namespace ispc;
#include "instrument.h"
@@ -99,26 +98,10 @@ savePPM(const char *fname, int w, int h)
fprintf(fp, "255\n");
fwrite(img, w * h * 3, 1, fp);
fclose(fp);
printf("Wrote image file %s\n", fname);
}
// Allocate memory with 64-byte alignment.
float *
AllocAligned(int size) {
#if defined(_WIN32) || defined(_WIN64)
return (float *)_aligned_malloc(size, 64);
#elif defined (__APPLE__)
// Allocate excess memory to ensure an aligned pointer can be returned
void *mem = malloc(size + (64-1) + sizeof(void*));
char *amem = ((char*)mem) + sizeof(void*);
amem += 64 - (reinterpret_cast<uint64_t>(amem) & (64 - 1));
((void**)amem)[-1] = mem;
return (float *)amem;
#else
return (float *)memalign(64, size);
#endif
}
int main(int argc, char **argv)
{
@@ -135,8 +118,8 @@ int main(int argc, char **argv)
}
// Allocate space for output images
img = (unsigned char *)AllocAligned(width * height * 3);
fimg = (float *)AllocAligned(sizeof(float) * width * height * 3);
img = new unsigned char[width * height * 3];
fimg = new float[width * height * 3];
ao_ispc(width, height, NSUBSAMPLES, fimg);

View File

@@ -75,7 +75,7 @@ static inline vec vcross(vec v0, vec v1) {
return ret;
}
static inline void vnormalize(reference vec v) {
static inline void vnormalize(vec &v) {
float len2 = dot(v, v);
float invlen = rsqrt(len2);
v *= invlen;
@@ -83,8 +83,7 @@ static inline void vnormalize(reference vec v) {
static inline void
ray_plane_intersect(reference Isect isect, reference Ray ray,
reference Plane plane) {
ray_plane_intersect(Isect &isect, Ray &ray, Plane &plane) {
float d = -dot(plane.p, plane.n);
float v = dot(ray.dir, plane.n);
@@ -104,8 +103,7 @@ ray_plane_intersect(reference Isect isect, reference Ray ray,
static inline void
ray_sphere_intersect(reference Isect isect, reference Ray ray,
reference Sphere sphere) {
ray_sphere_intersect(Isect &isect, Ray &ray, Sphere &sphere) {
vec rs = ray.org - sphere.center;
float B = dot(rs, ray.dir);
@@ -127,7 +125,7 @@ ray_sphere_intersect(reference Isect isect, reference Ray ray,
static inline void
orthoBasis(reference vec basis[3], vec n) {
orthoBasis(vec basis[3], vec n) {
basis[2] = n;
basis[1].x = 0.0; basis[1].y = 0.0; basis[1].z = 0.0;
@@ -150,8 +148,8 @@ orthoBasis(reference vec basis[3], vec n) {
static inline float
ambient_occlusion(reference Isect isect, reference Plane plane,
reference Sphere spheres[3], reference RNGState rngstate) {
ambient_occlusion(Isect &isect, Plane &plane, Sphere spheres[3],
RNGState &rngstate) {
float eps = 0.0001f;
vec p, n;
vec basis[3];
@@ -168,8 +166,8 @@ ambient_occlusion(reference Isect isect, reference Plane plane,
Ray ray;
Isect occIsect;
float theta = sqrt(frandom(rngstate));
float phi = 2.0f * M_PI * frandom(rngstate);
float theta = sqrt(frandom(&rngstate));
float phi = 2.0f * M_PI * frandom(&rngstate);
float x = cos(phi) * theta;
float y = sin(phi) * theta;
float z = sqrt(1.0 - theta * theta);
@@ -203,8 +201,9 @@ ambient_occlusion(reference Isect isect, reference Plane plane,
/* Compute the image for the scanlines from [y0,y1), for an overall image
of width w and height h.
*/
void ao_scanlines(uniform int y0, uniform int y1, uniform int w, uniform int h,
uniform int nsubsamples, reference uniform float image[]) {
static void ao_scanlines(uniform int y0, uniform int y1, uniform int w,
uniform int h, uniform int nsubsamples,
uniform float image[]) {
static Plane plane = { { 0.0f, -0.5f, 0.0f }, { 0.f, 1.f, 0.f } };
static Sphere spheres[3] = {
{ { -2.0f, 0.0f, -3.5f }, 0.5f },
@@ -212,7 +211,7 @@ void ao_scanlines(uniform int y0, uniform int y1, uniform int w, uniform int h,
{ { 1.0f, 0.0f, -2.2f }, 0.5f } };
RNGState rngstate;
seed_rng(rngstate, y0);
seed_rng(&rngstate, y0);
// Compute the mapping between the 'programCount'-wide program
// instances running in parallel and samples in the image.
@@ -231,6 +230,9 @@ void ao_scanlines(uniform int y0, uniform int y1, uniform int w, uniform int h,
// direction we do per iteration and ny the number in y.
uniform int nx = 1, ny = 1;
// FIXME: We actually need ny to be 1 regardless of the decomposition,
// since the task decomposition is one scanline high.
if (programCount == 8) {
// Do two pixels at once in the x direction
nx = 2;
@@ -239,19 +241,21 @@ void ao_scanlines(uniform int y0, uniform int y1, uniform int w, uniform int h,
++du;
}
else if (programCount == 16) {
// Two at once in both x and y
nx = ny = 2;
if ((programIndex >= 4 && programIndex < 8) || programIndex >= 12)
nx = 4;
ny = 1;
if (programIndex >= 4 && programIndex < 8)
++du;
if (programIndex >= 8)
++dv;
if (programIndex >= 8 && programIndex < 12)
du += 2;
if (programIndex >= 12)
du += 3;
}
// Now loop over all of the pixels, stepping in x and y as calculated
// above. (Assumes that ny divides y and nx divides x...)
for (uniform int y = y0; y < y1; y += ny) {
for (uniform int x = 0; x < w; x += nx) {
// Figur out x,y pixel in NDC
// Figure out x,y pixel in NDC
float px = (x + du - (w / 2.0f)) / (w / 2.0f);
float py = -(y + dv - (h / 2.0f)) / (h / 2.0f);
float ret = 0.f;
@@ -293,7 +297,7 @@ void ao_scanlines(uniform int y0, uniform int y1, uniform int w, uniform int h,
// offset to the first pixel in the image
uniform int offset = 3 * (y * w + x);
for (uniform int p = 0; p < programCount; p += 4, ++offset) {
for (uniform int p = 0; p < programCount; p += 4, offset += 3) {
// Get the four sample values for this pixel
uniform float sumret = retArray[p] + retArray[p+1] + retArray[p+2] +
retArray[p+3];
@@ -315,3 +319,15 @@ export void ao_ispc(uniform int w, uniform int h, uniform int nsubsamples,
uniform float image[]) {
ao_scanlines(0, h, w, h, nsubsamples, image);
}
static void task ao_task(uniform int width, uniform int height,
uniform int nsubsamples, uniform float image[]) {
ao_scanlines(taskIndex, taskIndex+1, width, height, nsubsamples, image);
}
export void ao_ispc_tasks(uniform int w, uniform int h, uniform int nsubsamples,
uniform float image[]) {
launch[h] < ao_task(w, h, nsubsamples, image) >;
}

View File

@@ -21,22 +21,23 @@
<ItemGroup>
<ClCompile Include="ao.cpp" />
<ClCompile Include="instrument.cpp" />
<ClCompile Include="../tasksys.cpp" />
</ItemGroup>
<ItemGroup>
<CustomBuild Include="ao.ispc">
<FileType>Document</FileType>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --arch=x86 --instrument
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename)_instrumented.obj -h $(TargetDir)%(Filename)_instrumented_ispc.h --arch=x86 --instrument --target=sse2
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --instrument
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename)_instrumented.obj -h $(TargetDir)%(Filename)_instrumented_ispc.h --instrument --target=sse2
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">%(Filename).obj</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">%(Filename).obj</Outputs>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --arch=x86 --instrument
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">$(TargetDir)%(Filename)_instrumented.obj;$(TargetDir)%(Filename)_instrumented_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">$(TargetDir)%(Filename)_instrumented.obj;$(TargetDir)%(Filename)_instrumented_ispc.h</Outputs>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename)_instrumented.obj -h $(TargetDir)%(Filename)_instrumented_ispc.h --arch=x86 --instrument --target=sse2
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|x64'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --instrument
<Command Condition="'$(Configuration)|$(Platform)'=='Release|x64'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename)_instrumented.obj -h $(TargetDir)%(Filename)_instrumented_ispc.h --instrument --target=sse2
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">%(Filename).obj</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|x64'">%(Filename).obj</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">$(TargetDir)%(Filename)_instrumented.obj;$(TargetDir)%(Filename)_instrumented_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|x64'">$(TargetDir)%(Filename)_instrumented.obj;$(TargetDir)%(Filename)_instrumented_ispc.h</Outputs>
</CustomBuild>
</ItemGroup>
<PropertyGroup Label="Globals">
@@ -85,15 +86,23 @@
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
<PreBuildEventUseInBuild>true</PreBuildEventUseInBuild>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
<PreBuildEventUseInBuild>true</PreBuildEventUseInBuild>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
<PreBuildEventUseInBuild>true</PreBuildEventUseInBuild>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
<PreBuildEventUseInBuild>true</PreBuildEventUseInBuild>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
@@ -101,7 +110,8 @@
</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;_CRT_SECURE_NO_WARNINGS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -114,7 +124,8 @@
</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;_CRT_SECURE_NO_WARNINGS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -129,7 +140,8 @@
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;_CRT_SECURE_NO_WARNINGS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -146,7 +158,8 @@
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;_CRT_SECURE_NO_WARNINGS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -158,4 +171,4 @@
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>
</Project>

View File

@@ -0,0 +1,38 @@
ARCH = $(shell uname)
TASK_CXX=../tasksys.cpp
TASK_LIB=-lpthread
TASK_OBJ=$(addprefix objs/, $(subst ../,, $(TASK_CXX:.cpp=.o)))
CXX=g++
CXXFLAGS=-Iobjs/ -O3 -Wall -m64
ISPC=ispc
ISPCFLAGS=-O2 --target=sse2,sse4-x2,avx-x2 --arch=x86-64 --math-lib=fast
OBJS=objs/main.o objs/common.o objs/kernels_ispc.o objs/kernels_ispc_sse2.o \
objs/kernels_ispc_sse4.o objs/kernels_ispc_avx.o \
objs/dynamic_c.o objs/dynamic_cilk.o
default: deferred_shading
.PHONY: dirs clean
.PRECIOUS: objs/kernels_ispc.h
dirs:
/bin/mkdir -p objs/
clean:
/bin/rm -rf objs *~ deferred_shading
deferred_shading: dirs $(OBJS) $(TASK_OBJ)
$(CXX) $(CXXFLAGS) -o $@ $(OBJS) $(TASK_OBJ) -lm $(TASK_LIB)
objs/%.o: %.cpp objs/kernels_ispc.h deferred.h
$(CXX) $< $(CXXFLAGS) -c -o $@
objs/%.o: ../%.cpp
$(CXX) $< $(CXXFLAGS) -c -o $@
objs/%_ispc.h objs/%_ispc.o objs/%_ispc_sse2.o objs/%_ispc_sse4.o objs/%_ispc_avx.o: %.ispc
$(ISPC) $(ISPCFLAGS) $< -o objs/$*_ispc.o -h objs/$*_ispc.h

View File

@@ -0,0 +1,209 @@
/*
Copyright (c) 2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#define ISPC_IS_WINDOWS
#elif defined(__linux__)
#define ISPC_IS_LINUX
#elif defined(__APPLE__)
#define ISPC_IS_APPLE
#endif
#include <fcntl.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <stdint.h>
#include <algorithm>
#include <assert.h>
#include <vector>
#ifdef ISPC_IS_WINDOWS
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#ifdef ISPC_IS_LINUX
#include <malloc.h>
#endif
#include "deferred.h"
#include "../timing.h"
///////////////////////////////////////////////////////////////////////////
static void *
lAlignedMalloc(size_t size, int32_t alignment) {
#ifdef ISPC_IS_WINDOWS
return _aligned_malloc(size, alignment);
#endif
#ifdef ISPC_IS_LINUX
return memalign(alignment, size);
#endif
#ifdef ISPC_IS_APPLE
void *mem = malloc(size + (alignment-1) + sizeof(void*));
char *amem = ((char*)mem) + sizeof(void*);
amem = amem + uint32_t(alignment - (reinterpret_cast<uint64_t>(amem) &
(alignment - 1)));
((void**)amem)[-1] = mem;
return amem;
#endif
}
static void
lAlignedFree(void *ptr) {
#ifdef ISPC_IS_WINDOWS
_aligned_free(ptr);
#endif
#ifdef ISPC_IS_LINUX
free(ptr);
#endif
#ifdef ISPC_IS_APPLE
free(((void**)ptr)[-1]);
#endif
}
Framebuffer::Framebuffer(int width, int height) {
nPixels = width*height;
r = (uint8_t *)lAlignedMalloc(nPixels, ALIGNMENT_BYTES);
g = (uint8_t *)lAlignedMalloc(nPixels, ALIGNMENT_BYTES);
b = (uint8_t *)lAlignedMalloc(nPixels, ALIGNMENT_BYTES);
}
Framebuffer::~Framebuffer() {
lAlignedFree(r);
lAlignedFree(g);
lAlignedFree(b);
}
void
Framebuffer::clear() {
memset(r, 0, nPixels);
memset(g, 0, nPixels);
memset(b, 0, nPixels);
}
InputData *
CreateInputDataFromFile(const char *path) {
FILE *in = fopen(path, "rb");
if (!in) return 0;
InputData *input = new InputData;
// Load header
if (fread(&input->header, sizeof(ispc::InputHeader), 1, in) != 1) {
fprintf(stderr, "Preumature EOF reading file \"%s\"\n", path);
return NULL;
}
// Load data chunk and update pointers
input->chunk = (uint8_t *)lAlignedMalloc(input->header.inputDataChunkSize,
ALIGNMENT_BYTES);
if (fread(input->chunk, input->header.inputDataChunkSize, 1, in) != 1) {
fprintf(stderr, "Preumature EOF reading file \"%s\"\n", path);
return NULL;
}
input->arrays.zBuffer =
(float *)&input->chunk[input->header.inputDataArrayOffsets[idaZBuffer]];
input->arrays.normalEncoded_x =
(uint16_t *)&input->chunk[input->header.inputDataArrayOffsets[idaNormalEncoded_x]];
input->arrays.normalEncoded_y =
(uint16_t *)&input->chunk[input->header.inputDataArrayOffsets[idaNormalEncoded_y]];
input->arrays.specularAmount =
(uint16_t *)&input->chunk[input->header.inputDataArrayOffsets[idaSpecularAmount]];
input->arrays.specularPower =
(uint16_t *)&input->chunk[input->header.inputDataArrayOffsets[idaSpecularPower]];
input->arrays.albedo_x =
(uint8_t *)&input->chunk[input->header.inputDataArrayOffsets[idaAlbedo_x]];
input->arrays.albedo_y =
(uint8_t *)&input->chunk[input->header.inputDataArrayOffsets[idaAlbedo_y]];
input->arrays.albedo_z =
(uint8_t *)&input->chunk[input->header.inputDataArrayOffsets[idaAlbedo_z]];
input->arrays.lightPositionView_x =
(float *)&input->chunk[input->header.inputDataArrayOffsets[idaLightPositionView_x]];
input->arrays.lightPositionView_y =
(float *)&input->chunk[input->header.inputDataArrayOffsets[idaLightPositionView_y]];
input->arrays.lightPositionView_z =
(float *)&input->chunk[input->header.inputDataArrayOffsets[idaLightPositionView_z]];
input->arrays.lightAttenuationBegin =
(float *)&input->chunk[input->header.inputDataArrayOffsets[idaLightAttenuationBegin]];
input->arrays.lightColor_x =
(float *)&input->chunk[input->header.inputDataArrayOffsets[idaLightColor_x]];
input->arrays.lightColor_y =
(float *)&input->chunk[input->header.inputDataArrayOffsets[idaLightColor_y]];
input->arrays.lightColor_z =
(float *)&input->chunk[input->header.inputDataArrayOffsets[idaLightColor_z]];
input->arrays.lightAttenuationEnd =
(float *)&input->chunk[input->header.inputDataArrayOffsets[idaLightAttenuationEnd]];
fclose(in);
return input;
}
void DeleteInputData(InputData *input) {
lAlignedFree(input->chunk);
}
void WriteFrame(const char *filename, const InputData *input,
const Framebuffer &framebuffer) {
// Deswizzle and copy to RGBA output
// Doesn't need to be fast... only happens once
size_t imageBytes = 3 * input->header.framebufferWidth *
input->header.framebufferHeight;
uint8_t* framebufferAOS = (uint8_t *)lAlignedMalloc(imageBytes, ALIGNMENT_BYTES);
memset(framebufferAOS, 0, imageBytes);
for (int i = 0; i < input->header.framebufferWidth *
input->header.framebufferHeight; ++i) {
framebufferAOS[3 * i + 0] = framebuffer.r[i];
framebufferAOS[3 * i + 1] = framebuffer.g[i];
framebufferAOS[3 * i + 2] = framebuffer.b[i];
}
// Write out simple PPM file
FILE *out = fopen(filename, "wb");
fprintf(out, "P6 %d %d 255\n", input->header.framebufferWidth,
input->header.framebufferHeight);
fwrite(framebufferAOS, imageBytes, 1, out);
lAlignedFree(framebufferAOS);
}

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,108 @@
/*
Copyright (c) 2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef DEFERRED_H
#define DEFERRED_H
// Currently tile widths must be a multiple of SIMD width (i.e. 8 for ispc sse4x2)!
#define MIN_TILE_WIDTH 16
#define MIN_TILE_HEIGHT 16
#define MAX_LIGHTS 1024
enum InputDataArraysEnum {
idaZBuffer = 0,
idaNormalEncoded_x,
idaNormalEncoded_y,
idaSpecularAmount,
idaSpecularPower,
idaAlbedo_x,
idaAlbedo_y,
idaAlbedo_z,
idaLightPositionView_x,
idaLightPositionView_y,
idaLightPositionView_z,
idaLightAttenuationBegin,
idaLightColor_x,
idaLightColor_y,
idaLightColor_z,
idaLightAttenuationEnd,
idaNum
};
#ifndef ISPC
#include <stdint.h>
#include "kernels_ispc.h"
#define ALIGNMENT_BYTES 64
#define MAX_LIGHTS 1024
#define VISUALIZE_LIGHT_COUNT 0
struct InputData
{
ispc::InputHeader header;
ispc::InputDataArrays arrays;
uint8_t *chunk;
};
struct Framebuffer {
Framebuffer(int width, int height);
~Framebuffer();
void clear();
uint8_t *r, *g, *b;
private:
int nPixels;
Framebuffer(const Framebuffer &);
Framebuffer &operator=(const Framebuffer *);
};
InputData *CreateInputDataFromFile(const char *path);
void DeleteInputData(InputData *input);
void WriteFrame(const char *filename, const InputData *input,
const Framebuffer &framebuffer);
void InitDynamicC(InputData *input);
void InitDynamicCilk(InputData *input);
void DispatchDynamicC(InputData *input, Framebuffer *framebuffer);
void DispatchDynamicCilk(InputData *input, Framebuffer *framebuffer);
#endif // !ISPC
#endif // DEFERRED_H

View File

@@ -0,0 +1,178 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|Win32">
<Configuration>Debug</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|Win32">
<Configuration>Release</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{87f53c53-957e-4e91-878a-bc27828fb9eb}</ProjectGuid>
<Keyword>Win32Proj</Keyword>
<RootNamespace>mandelbrot</RootNamespace>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
<PrecompiledHeader>
</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<IntrinsicFunctions>true</IntrinsicFunctions>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<ClCompile>
<PrecompiledHeader>
</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<IntrinsicFunctions>true</IntrinsicFunctions>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PrecompiledHeader>
</PrecompiledHeader>
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PrecompiledHeader>
</PrecompiledHeader>
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
</Link>
</ItemDefinitionGroup>
<ItemGroup>
<ClCompile Include="common.cpp" />
<ClCompile Include="dynamic_c.cpp" />
<ClCompile Include="dynamic_cilk.cpp" />
<ClCompile Include="main.cpp" />
<ClCompile Include="../tasksys.cpp" />
</ItemGroup>
<ItemGroup>
<CustomBuild Include="kernels.ispc">
<FileType>Document</FileType>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --arch=x86 --target=sse2,sse4-x2,avx-x2
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --target=sse2,sse4-x2,avx-x2
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --arch=x86 --target=sse2,sse4-x2,avx-x2
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|x64'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --target=sse2,sse4-x2,avx-x2
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|x64'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
</CustomBuild>
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>

View File

@@ -0,0 +1,870 @@
/*
Copyright (c) 2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "deferred.h"
#include "kernels_ispc.h"
#include <algorithm>
#include <stdint.h>
#include <assert.h>
#include <math.h>
#ifdef _MSC_VER
#define ISPC_IS_WINDOWS
#elif defined(__linux__)
#define ISPC_IS_LINUX
#elif defined(__APPLE__)
#define ISPC_IS_APPLE
#endif
#ifdef ISPC_IS_LINUX
#include <malloc.h>
#endif // ISPC_IS_LINUX
// Currently tile widths must be a multiple of SIMD width (i.e. 8 for ispc sse4x2)!
#define MIN_TILE_WIDTH 16
#define MIN_TILE_HEIGHT 16
#define DYNAMIC_TREE_LEVELS 5
// If this is set to 1 then the result will be identical to the static version
#define DYNAMIC_MIN_LIGHTS_TO_SUBDIVIDE 1
static void *
lAlignedMalloc(size_t size, int32_t alignment) {
#ifdef ISPC_IS_WINDOWS
return _aligned_malloc(size, alignment);
#endif
#ifdef ISPC_IS_LINUX
return memalign(alignment, size);
#endif
#ifdef ISPC_IS_APPLE
void *mem = malloc(size + (alignment-1) + sizeof(void*));
char *amem = ((char*)mem) + sizeof(void*);
amem = amem + uint32_t(alignment - (reinterpret_cast<uint64_t>(amem) &
(alignment - 1)));
((void**)amem)[-1] = mem;
return amem;
#endif
}
static void
lAlignedFree(void *ptr) {
#ifdef ISPC_IS_WINDOWS
_aligned_free(ptr);
#endif
#ifdef ISPC_IS_LINUX
free(ptr);
#endif
#ifdef ISPC_IS_APPLE
free(((void**)ptr)[-1]);
#endif
}
static void
ComputeZBounds(int tileStartX, int tileEndX,
int tileStartY, int tileEndY,
// G-buffer data
float zBuffer[],
int gBufferWidth,
// Camera data
float cameraProj_33, float cameraProj_43,
float cameraNear, float cameraFar,
// Output
float *minZ, float *maxZ)
{
// Find Z bounds
float laneMinZ = cameraFar;
float laneMaxZ = cameraNear;
for (int y = tileStartY; y < tileEndY; ++y) {
for (int x = tileStartX; x < tileEndX; ++x) {
// Unproject depth buffer Z value into view space
float z = zBuffer[(y * gBufferWidth + x)];
float viewSpaceZ = cameraProj_43 / (z - cameraProj_33);
// Work out Z bounds for our samples
// Avoid considering skybox/background or otherwise invalid pixels
if ((viewSpaceZ < cameraFar) && (viewSpaceZ >= cameraNear)) {
laneMinZ = std::min(laneMinZ, viewSpaceZ);
laneMaxZ = std::max(laneMaxZ, viewSpaceZ);
}
}
}
*minZ = laneMinZ;
*maxZ = laneMaxZ;
}
static void
ComputeZBoundsRow(int tileY, int tileWidth, int tileHeight,
int numTilesX, int numTilesY,
// G-buffer data
float zBuffer[],
int gBufferWidth,
// Camera data
float cameraProj_33, float cameraProj_43,
float cameraNear, float cameraFar,
// Output
float minZArray[],
float maxZArray[])
{
for (int tileX = 0; tileX < numTilesX; ++tileX) {
float minZ, maxZ;
ComputeZBounds(tileX * tileWidth, tileX * tileWidth + tileWidth,
tileY * tileHeight, tileY * tileHeight + tileHeight,
zBuffer, gBufferWidth, cameraProj_33, cameraProj_43,
cameraNear, cameraFar, &minZ, &maxZ);
minZArray[tileX] = minZ;
maxZArray[tileX] = maxZ;
}
}
class MinMaxZTree
{
public:
// Currently (min) tile dimensions must divide gBuffer dimensions evenly
// Levels must be small enough that neither dimension goes below one tile
MinMaxZTree(
int tileWidth, int tileHeight, int levels,
int gBufferWidth, int gBufferHeight)
: mTileWidth(tileWidth), mTileHeight(tileHeight), mLevels(levels)
{
mNumTilesX = gBufferWidth / mTileWidth;
mNumTilesY = gBufferHeight / mTileHeight;
// Allocate arrays
mMinZArrays = (float **)lAlignedMalloc(sizeof(float *) * mLevels, 16);
mMaxZArrays = (float **)lAlignedMalloc(sizeof(float *) * mLevels, 16);
for (int i = 0; i < mLevels; ++i) {
int x = NumTilesX(i);
int y = NumTilesY(i);
assert(x > 0);
assert(y > 0);
// NOTE: If the following two asserts fire it probably means that
// the base tile dimensions do not evenly divide the G-buffer dimensions
assert(x * (mTileWidth << i) >= gBufferWidth);
assert(y * (mTileHeight << i) >= gBufferHeight);
mMinZArrays[i] = (float *)lAlignedMalloc(sizeof(float) * x * y, 16);
mMaxZArrays[i] = (float *)lAlignedMalloc(sizeof(float) * x * y, 16);
}
}
void Update(float *zBuffer, int gBufferPitchInElements,
float cameraProj_33, float cameraProj_43,
float cameraNear, float cameraFar)
{
for (int tileY = 0; tileY < mNumTilesY; ++tileY) {
ComputeZBoundsRow(tileY, mTileWidth, mTileHeight, mNumTilesX, mNumTilesY,
zBuffer, gBufferPitchInElements,
cameraProj_33, cameraProj_43, cameraNear, cameraFar,
mMinZArrays[0] + (tileY * mNumTilesX),
mMaxZArrays[0] + (tileY * mNumTilesX));
}
// Generate other levels
for (int level = 1; level < mLevels; ++level) {
int destTilesX = NumTilesX(level);
int destTilesY = NumTilesY(level);
int srcLevel = level - 1;
int srcTilesX = NumTilesX(srcLevel);
int srcTilesY = NumTilesY(srcLevel);
for (int y = 0; y < destTilesY; ++y) {
for (int x = 0; x < destTilesX; ++x) {
int srcX = x << 1;
int srcY = y << 1;
// NOTE: Ugly branches to deal with non-multiple dimensions at some levels
// TODO: SSE branchless min/max is probably better...
float minZ = mMinZArrays[srcLevel][(srcY) * srcTilesX + (srcX)];
float maxZ = mMaxZArrays[srcLevel][(srcY) * srcTilesX + (srcX)];
if (srcX + 1 < srcTilesX) {
minZ = std::min(minZ, mMinZArrays[srcLevel][(srcY) * srcTilesX +
(srcX + 1)]);
maxZ = std::max(maxZ, mMaxZArrays[srcLevel][(srcY) * srcTilesX +
(srcX + 1)]);
if (srcY + 1 < srcTilesY) {
minZ = std::min(minZ, mMinZArrays[srcLevel][(srcY + 1) * srcTilesX +
(srcX + 1)]);
maxZ = std::max(maxZ, mMaxZArrays[srcLevel][(srcY + 1) * srcTilesX +
(srcX + 1)]);
}
}
if (srcY + 1 < srcTilesY) {
minZ = std::min(minZ, mMinZArrays[srcLevel][(srcY + 1) * srcTilesX +
(srcX )]);
maxZ = std::max(maxZ, mMaxZArrays[srcLevel][(srcY + 1) * srcTilesX +
(srcX )]);
}
mMinZArrays[level][y * destTilesX + x] = minZ;
mMaxZArrays[level][y * destTilesX + x] = maxZ;
}
}
}
}
~MinMaxZTree() {
for (int i = 0; i < mLevels; ++i) {
lAlignedFree(mMinZArrays[i]);
lAlignedFree(mMaxZArrays[i]);
}
lAlignedFree(mMinZArrays);
lAlignedFree(mMaxZArrays);
}
int Levels() const { return mLevels; }
// These round UP, so beware that the last tile for a given level may not be completely full
// TODO: Verify this...
int NumTilesX(int level = 0) const { return (mNumTilesX + (1 << level) - 1) >> level; }
int NumTilesY(int level = 0) const { return (mNumTilesY + (1 << level) - 1) >> level; }
int TileWidth(int level = 0) const { return (mTileWidth << level); }
int TileHeight(int level = 0) const { return (mTileHeight << level); }
float MinZ(int level, int tileX, int tileY) const {
return mMinZArrays[level][tileY * NumTilesX(level) + tileX];
}
float MaxZ(int level, int tileX, int tileY) const {
return mMaxZArrays[level][tileY * NumTilesX(level) + tileX];
}
private:
int mTileWidth;
int mTileHeight;
int mLevels;
int mNumTilesX;
int mNumTilesY;
// One array for each "level" in the tree
float **mMinZArrays;
float **mMaxZArrays;
};
static MinMaxZTree *gMinMaxZTree = 0;
void InitDynamicC(InputData *input) {
gMinMaxZTree =
new MinMaxZTree(MIN_TILE_WIDTH, MIN_TILE_HEIGHT, DYNAMIC_TREE_LEVELS,
input->header.framebufferWidth,
input->header.framebufferHeight);
}
/* We're going to split a tile into 4 sub-tiles. This function
reclassifies the tile's lights with respect to the sub-tiles. */
static void
SplitTileMinMax(
int tileMidX, int tileMidY,
// Subtile data (00, 10, 01, 11)
float subtileMinZ[],
float subtileMaxZ[],
// G-buffer data
int gBufferWidth, int gBufferHeight,
// Camera data
float cameraProj_11, float cameraProj_22,
// Light Data
int lightIndices[],
int numLights,
float light_positionView_x_array[],
float light_positionView_y_array[],
float light_positionView_z_array[],
float light_attenuationEnd_array[],
// Outputs
int subtileIndices[],
int subtileIndicesPitch,
int subtileNumLights[]
)
{
float gBufferScale_x = 0.5f * (float)gBufferWidth;
float gBufferScale_y = 0.5f * (float)gBufferHeight;
float frustumPlanes_xy[2] = { -(cameraProj_11 * gBufferScale_x),
(cameraProj_22 * gBufferScale_y) };
float frustumPlanes_z[2] = { tileMidX - gBufferScale_x,
tileMidY - gBufferScale_y };
for (int i = 0; i < 2; ++i) {
// Normalize
float norm = 1.f / sqrtf(frustumPlanes_xy[i] * frustumPlanes_xy[i] +
frustumPlanes_z[i] * frustumPlanes_z[i]);
frustumPlanes_xy[i] *= norm;
frustumPlanes_z[i] *= norm;
}
// Initialize
int subtileLightOffset[4];
subtileLightOffset[0] = 0 * subtileIndicesPitch;
subtileLightOffset[1] = 1 * subtileIndicesPitch;
subtileLightOffset[2] = 2 * subtileIndicesPitch;
subtileLightOffset[3] = 3 * subtileIndicesPitch;
for (int i = 0; i < numLights; ++i) {
int lightIndex = lightIndices[i];
float light_positionView_x = light_positionView_x_array[lightIndex];
float light_positionView_y = light_positionView_y_array[lightIndex];
float light_positionView_z = light_positionView_z_array[lightIndex];
float light_attenuationEnd = light_attenuationEnd_array[lightIndex];
float light_attenuationEndNeg = -light_attenuationEnd;
// Test lights again against subtile z bounds
bool inFrustum[4];
inFrustum[0] = (light_positionView_z - subtileMinZ[0] >= light_attenuationEndNeg) &&
(subtileMaxZ[0] - light_positionView_z >= light_attenuationEndNeg);
inFrustum[1] = (light_positionView_z - subtileMinZ[1] >= light_attenuationEndNeg) &&
(subtileMaxZ[1] - light_positionView_z >= light_attenuationEndNeg);
inFrustum[2] = (light_positionView_z - subtileMinZ[2] >= light_attenuationEndNeg) &&
(subtileMaxZ[2] - light_positionView_z >= light_attenuationEndNeg);
inFrustum[3] = (light_positionView_z - subtileMinZ[3] >= light_attenuationEndNeg) &&
(subtileMaxZ[3] - light_positionView_z >= light_attenuationEndNeg);
float dx = light_positionView_z * frustumPlanes_z[0] +
light_positionView_x * frustumPlanes_xy[0];
float dy = light_positionView_z * frustumPlanes_z[1] +
light_positionView_y * frustumPlanes_xy[1];
if (fabsf(dx) > light_attenuationEnd) {
bool positiveX = dx > 0.0f;
inFrustum[0] = inFrustum[0] && positiveX; // 00 subtile
inFrustum[1] = inFrustum[1] && !positiveX; // 10 subtile
inFrustum[2] = inFrustum[2] && positiveX; // 01 subtile
inFrustum[3] = inFrustum[3] && !positiveX; // 11 subtile
}
if (fabsf(dy) > light_attenuationEnd) {
bool positiveY = dy > 0.0f;
inFrustum[0] = inFrustum[0] && positiveY; // 00 subtile
inFrustum[1] = inFrustum[1] && positiveY; // 10 subtile
inFrustum[2] = inFrustum[2] && !positiveY; // 01 subtile
inFrustum[3] = inFrustum[3] && !positiveY; // 11 subtile
}
if (inFrustum[0])
subtileIndices[subtileLightOffset[0]++] = lightIndex;
if (inFrustum[1])
subtileIndices[subtileLightOffset[1]++] = lightIndex;
if (inFrustum[2])
subtileIndices[subtileLightOffset[2]++] = lightIndex;
if (inFrustum[3])
subtileIndices[subtileLightOffset[3]++] = lightIndex;
}
subtileNumLights[0] = subtileLightOffset[0] - 0 * subtileIndicesPitch;
subtileNumLights[1] = subtileLightOffset[1] - 1 * subtileIndicesPitch;
subtileNumLights[2] = subtileLightOffset[2] - 2 * subtileIndicesPitch;
subtileNumLights[3] = subtileLightOffset[3] - 3 * subtileIndicesPitch;
}
static inline float
dot3(float x, float y, float z, float a, float b, float c) {
return (x*a + y*b + z*c);
}
static inline void
normalize3(float x, float y, float z, float &ox, float &oy, float &oz) {
float n = 1.f / sqrtf(x*x + y*y + z*z);
ox = x * n;
oy = y * n;
oz = z * n;
}
static inline float
Unorm8ToFloat32(uint8_t u) {
return (float)u * (1.0f / 255.0f);
}
static inline uint8_t
Float32ToUnorm8(float f) {
return (uint8_t)(f * 255.0f);
}
static inline float
half_to_float_fast(uint16_t h) {
uint32_t hs = h & (int32_t)0x8000u; // Pick off sign bit
uint32_t he = h & (int32_t)0x7C00u; // Pick off exponent bits
uint32_t hm = h & (int32_t)0x03FFu; // Pick off mantissa bits
// sign
uint32_t xs = ((uint32_t) hs) << 16;
// Exponent: unbias the halfp, then bias the single
int32_t xes = ((int32_t) (he >> 10)) - 15 + 127;
// Exponent
uint32_t xe = (uint32_t) (xes << 23);
// Mantissa
uint32_t xm = ((uint32_t) hm) << 13;
uint32_t bits = (xs | xe | xm);
float *fp = reinterpret_cast<float *>(&bits);
return *fp;
}
static void
ShadeTileC(
int32_t tileStartX, int32_t tileEndX,
int32_t tileStartY, int32_t tileEndY,
int32_t gBufferWidth, int32_t gBufferHeight,
const ispc::InputDataArrays &inputData,
// Camera data
float cameraProj_11, float cameraProj_22,
float cameraProj_33, float cameraProj_43,
// Light list
int32_t tileLightIndices[],
int32_t tileNumLights,
// UI
bool visualizeLightCount,
// Output
uint8_t framebuffer_r[],
uint8_t framebuffer_g[],
uint8_t framebuffer_b[]
)
{
if (tileNumLights == 0 || visualizeLightCount) {
uint8_t c = (uint8_t)(std::min(tileNumLights << 2, 255));
for (int32_t y = tileStartY; y < tileEndY; ++y) {
for (int32_t x = tileStartX; x < tileEndX; ++x) {
int32_t framebufferIndex = (y * gBufferWidth + x);
framebuffer_r[framebufferIndex] = c;
framebuffer_g[framebufferIndex] = c;
framebuffer_b[framebufferIndex] = c;
}
}
} else {
float twoOverGBufferWidth = 2.0f / gBufferWidth;
float twoOverGBufferHeight = 2.0f / gBufferHeight;
for (int32_t y = tileStartY; y < tileEndY; ++y) {
float positionScreen_y = -(((0.5f + y) * twoOverGBufferHeight) - 1.f);
for (int32_t x = tileStartX; x < tileEndX; ++x) {
int32_t gBufferOffset = y * gBufferWidth + x;
// Reconstruct position and (negative) view vector from G-buffer
float surface_positionView_x, surface_positionView_y, surface_positionView_z;
float Vneg_x, Vneg_y, Vneg_z;
float z = inputData.zBuffer[gBufferOffset];
// Compute screen/clip-space position
// NOTE: Mind DX11 viewport transform and pixel center!
float positionScreen_x = (0.5f + (float)(x)) *
twoOverGBufferWidth - 1.0f;
// Unproject depth buffer Z value into view space
surface_positionView_z = cameraProj_43 / (z - cameraProj_33);
surface_positionView_x = positionScreen_x * surface_positionView_z /
cameraProj_11;
surface_positionView_y = positionScreen_y * surface_positionView_z /
cameraProj_22;
// We actually end up with a vector pointing *at* the
// surface (i.e. the negative view vector)
normalize3(surface_positionView_x, surface_positionView_y,
surface_positionView_z, Vneg_x, Vneg_y, Vneg_z);
// Reconstruct normal from G-buffer
float surface_normal_x, surface_normal_y, surface_normal_z;
float normal_x = half_to_float_fast(inputData.normalEncoded_x[gBufferOffset]);
float normal_y = half_to_float_fast(inputData.normalEncoded_y[gBufferOffset]);
float f = (normal_x - normal_x * normal_x) + (normal_y - normal_y * normal_y);
float m = sqrtf(4.0f * f - 1.0f);
surface_normal_x = m * (4.0f * normal_x - 2.0f);
surface_normal_y = m * (4.0f * normal_y - 2.0f);
surface_normal_z = 3.0f - 8.0f * f;
// Load other G-buffer parameters
float surface_specularAmount =
half_to_float_fast(inputData.specularAmount[gBufferOffset]);
float surface_specularPower =
half_to_float_fast(inputData.specularPower[gBufferOffset]);
float surface_albedo_x = Unorm8ToFloat32(inputData.albedo_x[gBufferOffset]);
float surface_albedo_y = Unorm8ToFloat32(inputData.albedo_y[gBufferOffset]);
float surface_albedo_z = Unorm8ToFloat32(inputData.albedo_z[gBufferOffset]);
float lit_x = 0.0f;
float lit_y = 0.0f;
float lit_z = 0.0f;
for (int32_t tileLightIndex = 0; tileLightIndex < tileNumLights;
++tileLightIndex) {
int32_t lightIndex = tileLightIndices[tileLightIndex];
// Gather light data relevant to initial culling
float light_positionView_x =
inputData.lightPositionView_x[lightIndex];
float light_positionView_y =
inputData.lightPositionView_y[lightIndex];
float light_positionView_z =
inputData.lightPositionView_z[lightIndex];
float light_attenuationEnd =
inputData.lightAttenuationEnd[lightIndex];
// Compute light vector
float L_x = light_positionView_x - surface_positionView_x;
float L_y = light_positionView_y - surface_positionView_y;
float L_z = light_positionView_z - surface_positionView_z;
float distanceToLight2 = dot3(L_x, L_y, L_z, L_x, L_y, L_z);
// Clip at end of attenuation
float light_attenutaionEnd2 = light_attenuationEnd * light_attenuationEnd;
if (distanceToLight2 < light_attenutaionEnd2) {
float distanceToLight = sqrtf(distanceToLight2);
float distanceToLightRcp = 1.f / distanceToLight;
L_x *= distanceToLightRcp;
L_y *= distanceToLightRcp;
L_z *= distanceToLightRcp;
// Start computing brdf
float NdotL = dot3(surface_normal_x, surface_normal_y,
surface_normal_z, L_x, L_y, L_z);
// Clip back facing
if (NdotL > 0.0f) {
float light_attenuationBegin =
inputData.lightAttenuationBegin[lightIndex];
// Light distance attenuation (linstep)
float lightRange = (light_attenuationEnd - light_attenuationBegin);
float falloffPosition = (light_attenuationEnd - distanceToLight);
float attenuation = std::min(falloffPosition / lightRange, 1.0f);
float H_x = (L_x - Vneg_x);
float H_y = (L_y - Vneg_y);
float H_z = (L_z - Vneg_z);
normalize3(H_x, H_y, H_z, H_x, H_y, H_z);
float NdotH = dot3(surface_normal_x, surface_normal_y,
surface_normal_z, H_x, H_y, H_z);
NdotH = std::max(NdotH, 0.0f);
float specular = powf(NdotH, surface_specularPower);
float specularNorm = (surface_specularPower + 2.0f) *
(1.0f / 8.0f);
float specularContrib = surface_specularAmount *
specularNorm * specular;
float k = attenuation * NdotL * (1.0f + specularContrib);
float light_color_x = inputData.lightColor_x[lightIndex];
float light_color_y = inputData.lightColor_y[lightIndex];
float light_color_z = inputData.lightColor_z[lightIndex];
float lightContrib_x = surface_albedo_x * light_color_x;
float lightContrib_y = surface_albedo_y * light_color_y;
float lightContrib_z = surface_albedo_z * light_color_z;
lit_x += lightContrib_x * k;
lit_y += lightContrib_y * k;
lit_z += lightContrib_z * k;
}
}
}
// Gamma correct
float gamma = 1.0 / 2.2f;
lit_x = powf(std::min(std::max(lit_x, 0.0f), 1.0f), gamma);
lit_y = powf(std::min(std::max(lit_y, 0.0f), 1.0f), gamma);
lit_z = powf(std::min(std::max(lit_z, 0.0f), 1.0f), gamma);
framebuffer_r[gBufferOffset] = Float32ToUnorm8(lit_x);
framebuffer_g[gBufferOffset] = Float32ToUnorm8(lit_y);
framebuffer_b[gBufferOffset] = Float32ToUnorm8(lit_z);
}
}
}
}
void
ShadeDynamicTileRecurse(InputData *input, int level, int tileX, int tileY,
int *lightIndices, int numLights,
Framebuffer *framebuffer) {
const MinMaxZTree *minMaxZTree = gMinMaxZTree;
// If we few enough lights or this is the base case (last level), shade
// this full tile directly
if (level == 0 || numLights < DYNAMIC_MIN_LIGHTS_TO_SUBDIVIDE) {
int width = minMaxZTree->TileWidth(level);
int height = minMaxZTree->TileHeight(level);
int startX = tileX * width;
int startY = tileY * height;
int endX = std::min(input->header.framebufferWidth, startX + width);
int endY = std::min(input->header.framebufferHeight, startY + height);
// Skip entirely offscreen tiles
if (endX > startX && endY > startY) {
ShadeTileC(startX, endX, startY, endY,
input->header.framebufferWidth, input->header.framebufferHeight,
input->arrays,
input->header.cameraProj[0][0], input->header.cameraProj[1][1],
input->header.cameraProj[2][2], input->header.cameraProj[3][2],
lightIndices, numLights, VISUALIZE_LIGHT_COUNT,
framebuffer->r, framebuffer->g, framebuffer->b);
}
}
else {
// Otherwise, subdivide and 4-way recurse using X and Y splitting planes
// Move down a level in the tree
--level;
tileX <<= 1;
tileY <<= 1;
int width = minMaxZTree->TileWidth(level);
int height = minMaxZTree->TileHeight(level);
// Work out splitting coords
int midX = (tileX + 1) * width;
int midY = (tileY + 1) * height;
// Read subtile min/max data
// NOTE: We must be sure to handle out-of-bounds access here since
// sometimes we'll only have 1 or 2 subtiles for non-pow-2
// framebuffer sizes.
bool rightTileExists = (tileX + 1 < minMaxZTree->NumTilesX(level));
bool bottomTileExists = (tileY + 1 < minMaxZTree->NumTilesY(level));
// NOTE: Order is 00, 10, 01, 11
// Set defaults up to cull all lights if the tile doesn't exist (offscreen)
float minZ[4] = {input->header.cameraFar, input->header.cameraFar,
input->header.cameraFar, input->header.cameraFar};
float maxZ[4] = {input->header.cameraNear, input->header.cameraNear,
input->header.cameraNear, input->header.cameraNear};
minZ[0] = minMaxZTree->MinZ(level, tileX, tileY);
maxZ[0] = minMaxZTree->MaxZ(level, tileX, tileY);
if (rightTileExists) {
minZ[1] = minMaxZTree->MinZ(level, tileX + 1, tileY);
maxZ[1] = minMaxZTree->MaxZ(level, tileX + 1, tileY);
if (bottomTileExists) {
minZ[3] = minMaxZTree->MinZ(level, tileX + 1, tileY + 1);
maxZ[3] = minMaxZTree->MaxZ(level, tileX + 1, tileY + 1);
}
}
if (bottomTileExists) {
minZ[2] = minMaxZTree->MinZ(level, tileX, tileY + 1);
maxZ[2] = minMaxZTree->MaxZ(level, tileX, tileY + 1);
}
// Cull lights into subtile lists
#ifdef ISPC_IS_WINDOWS
__declspec(align(ALIGNMENT_BYTES))
#endif
int subtileLightIndices[4][MAX_LIGHTS]
#ifndef ISPC_IS_WINDOWS
__attribute__ ((aligned(ALIGNMENT_BYTES)))
#endif
;
int subtileNumLights[4];
SplitTileMinMax(midX, midY, minZ, maxZ,
input->header.framebufferWidth, input->header.framebufferHeight,
input->header.cameraProj[0][0], input->header.cameraProj[1][1],
lightIndices, numLights, input->arrays.lightPositionView_x,
input->arrays.lightPositionView_y, input->arrays.lightPositionView_z,
input->arrays.lightAttenuationEnd,
subtileLightIndices[0], MAX_LIGHTS, subtileNumLights);
// Recurse into subtiles
ShadeDynamicTileRecurse(input, level, tileX , tileY,
subtileLightIndices[0], subtileNumLights[0],
framebuffer);
ShadeDynamicTileRecurse(input, level, tileX + 1, tileY,
subtileLightIndices[1], subtileNumLights[1],
framebuffer);
ShadeDynamicTileRecurse(input, level, tileX , tileY + 1,
subtileLightIndices[2], subtileNumLights[2],
framebuffer);
ShadeDynamicTileRecurse(input, level, tileX + 1, tileY + 1,
subtileLightIndices[3], subtileNumLights[3],
framebuffer);
}
}
static int
IntersectLightsWithTileMinMax(
int tileStartX, int tileEndX,
int tileStartY, int tileEndY,
// Tile data
float minZ,
float maxZ,
// G-buffer data
int gBufferWidth, int gBufferHeight,
// Camera data
float cameraProj_11, float cameraProj_22,
// Light Data
int numLights,
float light_positionView_x_array[],
float light_positionView_y_array[],
float light_positionView_z_array[],
float light_attenuationEnd_array[],
// Output
int tileLightIndices[]
)
{
float gBufferScale_x = 0.5f * (float)gBufferWidth;
float gBufferScale_y = 0.5f * (float)gBufferHeight;
float frustumPlanes_xy[4];
float frustumPlanes_z[4];
// This one is totally constant over the whole screen... worth pulling it up at all?
float frustumPlanes_xy_v[4] = { -(cameraProj_11 * gBufferScale_x),
(cameraProj_11 * gBufferScale_x),
(cameraProj_22 * gBufferScale_y),
-(cameraProj_22 * gBufferScale_y) };
float frustumPlanes_z_v[4] = { tileEndX - gBufferScale_x,
-tileStartX + gBufferScale_x,
tileEndY - gBufferScale_y,
-tileStartY + gBufferScale_y };
for (int i = 0; i < 4; ++i) {
float norm = 1.f / sqrtf(frustumPlanes_xy_v[i] * frustumPlanes_xy_v[i] +
frustumPlanes_z_v[i] * frustumPlanes_z_v[i]);
frustumPlanes_xy_v[i] *= norm;
frustumPlanes_z_v[i] *= norm;
frustumPlanes_xy[i] = frustumPlanes_xy_v[i];
frustumPlanes_z[i] = frustumPlanes_z_v[i];
}
int tileNumLights = 0;
for (int lightIndex = 0; lightIndex < numLights; ++lightIndex) {
float light_positionView_z = light_positionView_z_array[lightIndex];
float light_attenuationEnd = light_attenuationEnd_array[lightIndex];
float light_attenuationEndNeg = -light_attenuationEnd;
float d = light_positionView_z - minZ;
bool inFrustum = (d >= light_attenuationEndNeg);
d = maxZ - light_positionView_z;
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
if (!inFrustum)
continue;
float light_positionView_x = light_positionView_x_array[lightIndex];
float light_positionView_y = light_positionView_y_array[lightIndex];
d = light_positionView_z * frustumPlanes_z[0] +
light_positionView_x * frustumPlanes_xy[0];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
d = light_positionView_z * frustumPlanes_z[1] +
light_positionView_x * frustumPlanes_xy[1];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
d = light_positionView_z * frustumPlanes_z[2] +
light_positionView_y * frustumPlanes_xy[2];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
d = light_positionView_z * frustumPlanes_z[3] +
light_positionView_y * frustumPlanes_xy[3];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
// Pack and store intersecting lights
if (inFrustum)
tileLightIndices[tileNumLights++] = lightIndex;
}
return tileNumLights;
}
void
ShadeDynamicTile(InputData *input, int level, int tileX, int tileY,
Framebuffer *framebuffer) {
const MinMaxZTree *minMaxZTree = gMinMaxZTree;
// Get Z min/max for this tile
int width = minMaxZTree->TileWidth(level);
int height = minMaxZTree->TileHeight(level);
float minZ = minMaxZTree->MinZ(level, tileX, tileY);
float maxZ = minMaxZTree->MaxZ(level, tileX, tileY);
int startX = tileX * width;
int startY = tileY * height;
int endX = std::min(input->header.framebufferWidth, startX + width);
int endY = std::min(input->header.framebufferHeight, startY + height);
// This is a root tile, so first do a full 6-plane cull
#ifdef ISPC_IS_WINDOWS
__declspec(align(ALIGNMENT_BYTES))
#endif
int lightIndices[MAX_LIGHTS]
#ifndef ISPC_IS_WINDOWS
__attribute__ ((aligned(ALIGNMENT_BYTES)))
#endif
;
int numLights = IntersectLightsWithTileMinMax(
startX, endX, startY, endY, minZ, maxZ,
input->header.framebufferWidth, input->header.framebufferHeight,
input->header.cameraProj[0][0], input->header.cameraProj[1][1],
MAX_LIGHTS, input->arrays.lightPositionView_x,
input->arrays.lightPositionView_y, input->arrays.lightPositionView_z,
input->arrays.lightAttenuationEnd, lightIndices);
// Now kick off the recursive process for this tile
ShadeDynamicTileRecurse(input, level, tileX, tileY, lightIndices,
numLights, framebuffer);
}
void
DispatchDynamicC(InputData *input, Framebuffer *framebuffer)
{
MinMaxZTree *minMaxZTree = gMinMaxZTree;
// Update min/max Z tree
minMaxZTree->Update(input->arrays.zBuffer, input->header.framebufferWidth,
input->header.cameraProj[2][2], input->header.cameraProj[3][2],
input->header.cameraNear, input->header.cameraFar);
int rootLevel = minMaxZTree->Levels() - 1;
int rootTilesX = minMaxZTree->NumTilesX(rootLevel);
int rootTilesY = minMaxZTree->NumTilesY(rootLevel);
int rootTiles = rootTilesX * rootTilesY;
for (int g = 0; g < rootTiles; ++g) {
uint32_t tileY = g / rootTilesX;
uint32_t tileX = g % rootTilesX;
ShadeDynamicTile(input, rootLevel, tileX, tileY, framebuffer);
}
}

View File

@@ -0,0 +1,398 @@
/*
Copyright (c) 2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef __cilk
#include "deferred.h"
#include "kernels_ispc.h"
#include <algorithm>
#include <assert.h>
#ifdef _MSC_VER
#define ISPC_IS_WINDOWS
#elif defined(__linux__)
#define ISPC_IS_LINUX
#elif defined(__APPLE__)
#define ISPC_IS_APPLE
#endif
#ifdef ISPC_IS_LINUX
#include <malloc.h>
#endif // ISPC_IS_LINUX
// Currently tile widths must be a multiple of SIMD width (i.e. 8 for ispc sse4x2)!
#define MIN_TILE_WIDTH 16
#define MIN_TILE_HEIGHT 16
#define DYNAMIC_TREE_LEVELS 5
// If this is set to 1 then the result will be identical to the static version
#define DYNAMIC_MIN_LIGHTS_TO_SUBDIVIDE 1
static void *
lAlignedMalloc(size_t size, int32_t alignment) {
#ifdef ISPC_IS_WINDOWS
return _aligned_malloc(size, alignment);
#endif
#ifdef ISPC_IS_LINUX
return memalign(alignment, size);
#endif
#ifdef ISPC_IS_APPLE
void *mem = malloc(size + (alignment-1) + sizeof(void*));
char *amem = ((char*)mem) + sizeof(void*);
amem = amem + uint32_t(alignment - (reinterpret_cast<uint64_t>(amem) &
(alignment - 1)));
((void**)amem)[-1] = mem;
return amem;
#endif
}
static void
lAlignedFree(void *ptr) {
#ifdef ISPC_IS_WINDOWS
_aligned_free(ptr);
#endif
#ifdef ISPC_IS_LINUX
free(ptr);
#endif
#ifdef ISPC_IS_APPLE
free(((void**)ptr)[-1]);
#endif
}
class MinMaxZTreeCilk
{
public:
// Currently (min) tile dimensions must divide gBuffer dimensions evenly
// Levels must be small enough that neither dimension goes below one tile
MinMaxZTreeCilk(
int tileWidth, int tileHeight, int levels,
int gBufferWidth, int gBufferHeight)
: mTileWidth(tileWidth), mTileHeight(tileHeight), mLevels(levels)
{
mNumTilesX = gBufferWidth / mTileWidth;
mNumTilesY = gBufferHeight / mTileHeight;
// Allocate arrays
mMinZArrays = (float **)lAlignedMalloc(sizeof(float *) * mLevels, 16);
mMaxZArrays = (float **)lAlignedMalloc(sizeof(float *) * mLevels, 16);
for (int i = 0; i < mLevels; ++i) {
int x = NumTilesX(i);
int y = NumTilesY(i);
assert(x > 0);
assert(y > 0);
// NOTE: If the following two asserts fire it probably means that
// the base tile dimensions do not evenly divide the G-buffer dimensions
assert(x * (mTileWidth << i) >= gBufferWidth);
assert(y * (mTileHeight << i) >= gBufferHeight);
mMinZArrays[i] = (float *)lAlignedMalloc(sizeof(float) * x * y, 16);
mMaxZArrays[i] = (float *)lAlignedMalloc(sizeof(float) * x * y, 16);
}
}
void Update(float *zBuffer, int gBufferPitchInElements,
float cameraProj_33, float cameraProj_43,
float cameraNear, float cameraFar)
{
// Compute level 0 in parallel. Outer loops is here since we use Cilk
_Cilk_for (int tileY = 0; tileY < mNumTilesY; ++tileY) {
ispc::ComputeZBoundsRow(tileY,
mTileWidth, mTileHeight, mNumTilesX, mNumTilesY,
zBuffer, gBufferPitchInElements,
cameraProj_33, cameraProj_43, cameraNear, cameraFar,
mMinZArrays[0] + (tileY * mNumTilesX),
mMaxZArrays[0] + (tileY * mNumTilesX));
}
// Generate other levels
// NOTE: We currently don't use ispc here since it's sort of an
// awkward gather-based reduction Using SSE odd pack/unpack
// instructions might actually work here when we need to optimize
for (int level = 1; level < mLevels; ++level) {
int destTilesX = NumTilesX(level);
int destTilesY = NumTilesY(level);
int srcLevel = level - 1;
int srcTilesX = NumTilesX(srcLevel);
int srcTilesY = NumTilesY(srcLevel);
_Cilk_for (int y = 0; y < destTilesY; ++y) {
for (int x = 0; x < destTilesX; ++x) {
int srcX = x << 1;
int srcY = y << 1;
// NOTE: Ugly branches to deal with non-multiple dimensions at some levels
// TODO: SSE branchless min/max is probably better...
float minZ = mMinZArrays[srcLevel][(srcY) * srcTilesX + (srcX)];
float maxZ = mMaxZArrays[srcLevel][(srcY) * srcTilesX + (srcX)];
if (srcX + 1 < srcTilesX) {
minZ = std::min(minZ, mMinZArrays[srcLevel][(srcY) * srcTilesX +
(srcX + 1)]);
maxZ = std::max(maxZ, mMaxZArrays[srcLevel][(srcY) * srcTilesX +
(srcX + 1)]);
if (srcY + 1 < srcTilesY) {
minZ = std::min(minZ, mMinZArrays[srcLevel][(srcY + 1) * srcTilesX +
(srcX + 1)]);
maxZ = std::max(maxZ, mMaxZArrays[srcLevel][(srcY + 1) * srcTilesX +
(srcX + 1)]);
}
}
if (srcY + 1 < srcTilesY) {
minZ = std::min(minZ, mMinZArrays[srcLevel][(srcY + 1) * srcTilesX +
(srcX )]);
maxZ = std::max(maxZ, mMaxZArrays[srcLevel][(srcY + 1) * srcTilesX +
(srcX )]);
}
mMinZArrays[level][y * destTilesX + x] = minZ;
mMaxZArrays[level][y * destTilesX + x] = maxZ;
}
}
}
}
~MinMaxZTreeCilk() {
for (int i = 0; i < mLevels; ++i) {
lAlignedFree(mMinZArrays[i]);
lAlignedFree(mMaxZArrays[i]);
}
lAlignedFree(mMinZArrays);
lAlignedFree(mMaxZArrays);
}
int Levels() const { return mLevels; }
// These round UP, so beware that the last tile for a given level may not be completely full
// TODO: Verify this...
int NumTilesX(int level = 0) const { return (mNumTilesX + (1 << level) - 1) >> level; }
int NumTilesY(int level = 0) const { return (mNumTilesY + (1 << level) - 1) >> level; }
int TileWidth(int level = 0) const { return (mTileWidth << level); }
int TileHeight(int level = 0) const { return (mTileHeight << level); }
float MinZ(int level, int tileX, int tileY) const {
return mMinZArrays[level][tileY * NumTilesX(level) + tileX];
}
float MaxZ(int level, int tileX, int tileY) const {
return mMaxZArrays[level][tileY * NumTilesX(level) + tileX];
}
private:
int mTileWidth;
int mTileHeight;
int mLevels;
int mNumTilesX;
int mNumTilesY;
// One array for each "level" in the tree
float **mMinZArrays;
float **mMaxZArrays;
};
static MinMaxZTreeCilk *gMinMaxZTreeCilk = 0;
void InitDynamicCilk(InputData *input) {
gMinMaxZTreeCilk =
new MinMaxZTreeCilk(MIN_TILE_WIDTH, MIN_TILE_HEIGHT, DYNAMIC_TREE_LEVELS,
input->header.framebufferWidth,
input->header.framebufferHeight);
}
static void
ShadeDynamicTileRecurse(InputData *input, int level, int tileX, int tileY,
int *lightIndices, int numLights,
Framebuffer *framebuffer) {
const MinMaxZTreeCilk *minMaxZTree = gMinMaxZTreeCilk;
// If we few enough lights or this is the base case (last level), shade
// this full tile directly
if (level == 0 || numLights < DYNAMIC_MIN_LIGHTS_TO_SUBDIVIDE) {
int width = minMaxZTree->TileWidth(level);
int height = minMaxZTree->TileHeight(level);
int startX = tileX * width;
int startY = tileY * height;
int endX = std::min(input->header.framebufferWidth, startX + width);
int endY = std::min(input->header.framebufferHeight, startY + height);
// Skip entirely offscreen tiles
if (endX > startX && endY > startY) {
ispc::ShadeTile(
startX, endX, startY, endY,
input->header.framebufferWidth, input->header.framebufferHeight,
&input->arrays,
input->header.cameraProj[0][0], input->header.cameraProj[1][1],
input->header.cameraProj[2][2], input->header.cameraProj[3][2],
lightIndices, numLights, VISUALIZE_LIGHT_COUNT,
framebuffer->r, framebuffer->g, framebuffer->b);
}
}
else {
// Otherwise, subdivide and 4-way recurse using X and Y splitting planes
// Move down a level in the tree
--level;
tileX <<= 1;
tileY <<= 1;
int width = minMaxZTree->TileWidth(level);
int height = minMaxZTree->TileHeight(level);
// Work out splitting coords
int midX = (tileX + 1) * width;
int midY = (tileY + 1) * height;
// Read subtile min/max data
// NOTE: We must be sure to handle out-of-bounds access here since
// sometimes we'll only have 1 or 2 subtiles for non-pow-2
// framebuffer sizes.
bool rightTileExists = (tileX + 1 < minMaxZTree->NumTilesX(level));
bool bottomTileExists = (tileY + 1 < minMaxZTree->NumTilesY(level));
// NOTE: Order is 00, 10, 01, 11
// Set defaults up to cull all lights if the tile doesn't exist (offscreen)
float minZ[4] = {input->header.cameraFar, input->header.cameraFar,
input->header.cameraFar, input->header.cameraFar};
float maxZ[4] = {input->header.cameraNear, input->header.cameraNear,
input->header.cameraNear, input->header.cameraNear};
minZ[0] = minMaxZTree->MinZ(level, tileX, tileY);
maxZ[0] = minMaxZTree->MaxZ(level, tileX, tileY);
if (rightTileExists) {
minZ[1] = minMaxZTree->MinZ(level, tileX + 1, tileY);
maxZ[1] = minMaxZTree->MaxZ(level, tileX + 1, tileY);
if (bottomTileExists) {
minZ[3] = minMaxZTree->MinZ(level, tileX + 1, tileY + 1);
maxZ[3] = minMaxZTree->MaxZ(level, tileX + 1, tileY + 1);
}
}
if (bottomTileExists) {
minZ[2] = minMaxZTree->MinZ(level, tileX, tileY + 1);
maxZ[2] = minMaxZTree->MaxZ(level, tileX, tileY + 1);
}
// Cull lights into subtile lists
#ifdef ISPC_IS_WINDOWS
__declspec(align(ALIGNMENT_BYTES))
#endif
int subtileLightIndices[4][MAX_LIGHTS]
#ifndef ISPC_IS_WINDOWS
__attribute__ ((aligned(ALIGNMENT_BYTES)))
#endif
;
int subtileNumLights[4];
ispc::SplitTileMinMax(midX, midY, minZ, maxZ,
input->header.framebufferWidth, input->header.framebufferHeight,
input->header.cameraProj[0][0], input->header.cameraProj[1][1],
lightIndices, numLights, input->arrays.lightPositionView_x,
input->arrays.lightPositionView_y, input->arrays.lightPositionView_z,
input->arrays.lightAttenuationEnd,
subtileLightIndices[0], MAX_LIGHTS, subtileNumLights);
// Recurse into subtiles
_Cilk_spawn ShadeDynamicTileRecurse(input, level, tileX , tileY,
subtileLightIndices[0], subtileNumLights[0],
framebuffer);
_Cilk_spawn ShadeDynamicTileRecurse(input, level, tileX + 1, tileY,
subtileLightIndices[1], subtileNumLights[1],
framebuffer);
_Cilk_spawn ShadeDynamicTileRecurse(input, level, tileX , tileY + 1,
subtileLightIndices[2], subtileNumLights[2],
framebuffer);
ShadeDynamicTileRecurse(input, level, tileX + 1, tileY + 1,
subtileLightIndices[3], subtileNumLights[3],
framebuffer);
}
}
static void
ShadeDynamicTile(InputData *input, int level, int tileX, int tileY,
Framebuffer *framebuffer) {
const MinMaxZTreeCilk *minMaxZTree = gMinMaxZTreeCilk;
// Get Z min/max for this tile
int width = minMaxZTree->TileWidth(level);
int height = minMaxZTree->TileHeight(level);
float minZ = minMaxZTree->MinZ(level, tileX, tileY);
float maxZ = minMaxZTree->MaxZ(level, tileX, tileY);
int startX = tileX * width;
int startY = tileY * height;
int endX = std::min(input->header.framebufferWidth, startX + width);
int endY = std::min(input->header.framebufferHeight, startY + height);
// This is a root tile, so first do a full 6-plane cull
#ifdef ISPC_IS_WINDOWS
__declspec(align(ALIGNMENT_BYTES))
#endif
int lightIndices[MAX_LIGHTS]
#ifndef ISPC_IS_WINDOWS
__attribute__ ((aligned(ALIGNMENT_BYTES)))
#endif
;
int numLights = ispc::IntersectLightsWithTileMinMax(
startX, endX, startY, endY, minZ, maxZ,
input->header.framebufferWidth, input->header.framebufferHeight,
input->header.cameraProj[0][0], input->header.cameraProj[1][1],
MAX_LIGHTS, input->arrays.lightPositionView_x,
input->arrays.lightPositionView_y, input->arrays.lightPositionView_z,
input->arrays.lightAttenuationEnd, lightIndices);
// Now kick off the recursive process for this tile
ShadeDynamicTileRecurse(input, level, tileX, tileY, lightIndices,
numLights, framebuffer);
}
void
DispatchDynamicCilk(InputData *input, Framebuffer *framebuffer)
{
MinMaxZTreeCilk *minMaxZTree = gMinMaxZTreeCilk;
// Update min/max Z tree
minMaxZTree->Update(input->arrays.zBuffer, input->header.framebufferWidth,
input->header.cameraProj[2][2], input->header.cameraProj[3][2],
input->header.cameraNear, input->header.cameraFar);
// Launch the "root" tiles. Ideally these should at least fill the
// machine... at the moment we have a static number of "levels" to the
// mip tree but it might make sense to compute it based on the width of
// the machine.
int rootLevel = minMaxZTree->Levels() - 1;
int rootTilesX = minMaxZTree->NumTilesX(rootLevel);
int rootTilesY = minMaxZTree->NumTilesY(rootLevel);
int rootTiles = rootTilesX * rootTilesY;
_Cilk_for (int g = 0; g < rootTiles; ++g) {
uint32_t tileY = g / rootTilesX;
uint32_t tileX = g % rootTilesX;
ShadeDynamicTile(input, rootLevel, tileX, tileY, framebuffer);
}
}
#endif // __cilk

View File

@@ -0,0 +1,700 @@
/*
Copyright (c) 2010-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "deferred.h"
struct InputDataArrays
{
uniform float * uniform zBuffer;
uniform unsigned int16 * uniform normalEncoded_x; // half float
uniform unsigned int16 * uniform normalEncoded_y; // half float
uniform unsigned int16 * uniform specularAmount; // half float
uniform unsigned int16 * uniform specularPower; // half float
uniform unsigned int8 * uniform albedo_x; // unorm8
uniform unsigned int8 * uniform albedo_y; // unorm8
uniform unsigned int8 * uniform albedo_z; // unorm8
uniform float * uniform lightPositionView_x;
uniform float * uniform lightPositionView_y;
uniform float * uniform lightPositionView_z;
uniform float * uniform lightAttenuationBegin;
uniform float * uniform lightColor_x;
uniform float * uniform lightColor_y;
uniform float * uniform lightColor_z;
uniform float * uniform lightAttenuationEnd;
};
struct InputHeader
{
uniform float cameraProj[4][4];
uniform float cameraNear;
uniform float cameraFar;
uniform int32 framebufferWidth;
uniform int32 framebufferHeight;
uniform int32 numLights;
uniform int32 inputDataChunkSize;
uniform int32 inputDataArrayOffsets[idaNum];
};
///////////////////////////////////////////////////////////////////////////
// Common utility routines
static inline float
dot3(float x, float y, float z, float a, float b, float c) {
return (x*a + y*b + z*c);
}
static inline void
normalize3(float x, float y, float z, float &ox, float &oy, float &oz) {
float n = rsqrt(x*x + y*y + z*z);
ox = x * n;
oy = y * n;
oz = z * n;
}
static inline float
Unorm8ToFloat32(unsigned int8 u) {
return (float)u * (1.0f / 255.0f);
}
static inline unsigned int8
Float32ToUnorm8(float f) {
return (unsigned int8)(f * 255.0f);
}
static void
ComputeZBounds(
uniform int32 tileStartX, uniform int32 tileEndX,
uniform int32 tileStartY, uniform int32 tileEndY,
// G-buffer data
uniform float zBuffer[],
uniform int32 gBufferWidth,
// Camera data
uniform float cameraProj_33, uniform float cameraProj_43,
uniform float cameraNear, uniform float cameraFar,
// Output
uniform float &minZ,
uniform float &maxZ
)
{
// Find Z bounds
float laneMinZ = cameraFar;
float laneMaxZ = cameraNear;
for (uniform int32 y = tileStartY; y < tileEndY; ++y) {
foreach (x = tileStartX ... tileEndX) {
// Unproject depth buffer Z value into view space
float z = zBuffer[y * gBufferWidth + x];
float viewSpaceZ = cameraProj_43 / (z - cameraProj_33);
// Work out Z bounds for our samples
// Avoid considering skybox/background or otherwise invalid pixels
if ((viewSpaceZ < cameraFar) && (viewSpaceZ >= cameraNear)) {
laneMinZ = min(laneMinZ, viewSpaceZ);
laneMaxZ = max(laneMaxZ, viewSpaceZ);
}
}
}
minZ = reduce_min(laneMinZ);
maxZ = reduce_max(laneMaxZ);
}
export uniform int32
IntersectLightsWithTileMinMax(
uniform int32 tileStartX, uniform int32 tileEndX,
uniform int32 tileStartY, uniform int32 tileEndY,
// Tile data
uniform float minZ,
uniform float maxZ,
// G-buffer data
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
// Camera data
uniform float cameraProj_11, uniform float cameraProj_22,
// Light Data
uniform int32 numLights,
uniform float light_positionView_x_array[],
uniform float light_positionView_y_array[],
uniform float light_positionView_z_array[],
uniform float light_attenuationEnd_array[],
// Output
uniform int32 tileLightIndices[]
)
{
uniform float gBufferScale_x = 0.5f * (float)gBufferWidth;
uniform float gBufferScale_y = 0.5f * (float)gBufferHeight;
// Parallize across frustum planes.
// We really only have four side planes here, but write the code to
// handle programCount > 4 robustly
uniform float frustumPlanes_xy[programCount];
uniform float frustumPlanes_z[programCount];
// TODO: If programIndex < 4 here? Don't care about masking off the
// rest but if interleaving ("x2" modes) the other lanes should ideally
// not be emitted...
{
// This one is totally constant over the whole screen... worth pulling it up at all?
float frustumPlanes_xy_v;
frustumPlanes_xy_v = insert(frustumPlanes_xy_v, 0, -(cameraProj_11 * gBufferScale_x));
frustumPlanes_xy_v = insert(frustumPlanes_xy_v, 1, (cameraProj_11 * gBufferScale_x));
frustumPlanes_xy_v = insert(frustumPlanes_xy_v, 2, (cameraProj_22 * gBufferScale_y));
frustumPlanes_xy_v = insert(frustumPlanes_xy_v, 3, -(cameraProj_22 * gBufferScale_y));
float frustumPlanes_z_v;
frustumPlanes_z_v = insert(frustumPlanes_z_v, 0, tileEndX - gBufferScale_x);
frustumPlanes_z_v = insert(frustumPlanes_z_v, 1, -tileStartX + gBufferScale_x);
frustumPlanes_z_v = insert(frustumPlanes_z_v, 2, tileEndY - gBufferScale_y);
frustumPlanes_z_v = insert(frustumPlanes_z_v, 3, -tileStartY + gBufferScale_y);
// Normalize
float norm = rsqrt(frustumPlanes_xy_v * frustumPlanes_xy_v +
frustumPlanes_z_v * frustumPlanes_z_v);
frustumPlanes_xy_v *= norm;
frustumPlanes_z_v *= norm;
// Save out for uniform use later
frustumPlanes_xy[programIndex] = frustumPlanes_xy_v;
frustumPlanes_z[programIndex] = frustumPlanes_z_v;
}
uniform int32 tileNumLights = 0;
foreach (lightIndex = 0 ... numLights) {
float light_positionView_z = light_positionView_z_array[lightIndex];
float light_attenuationEnd = light_attenuationEnd_array[lightIndex];
float light_attenuationEndNeg = -light_attenuationEnd;
float d = light_positionView_z - minZ;
bool inFrustum = (d >= light_attenuationEndNeg);
d = maxZ - light_positionView_z;
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
// This seems better than cif(!inFrustum) ccontinue; here since we
// don't actually need to mask the rest of this function - this is
// just a greedy early-out. Could also structure all of this as
// nested if() statements, but this a bit easier to read
if (any(inFrustum)) {
float light_positionView_x = light_positionView_x_array[lightIndex];
float light_positionView_y = light_positionView_y_array[lightIndex];
d = light_positionView_z * frustumPlanes_z[0] +
light_positionView_x * frustumPlanes_xy[0];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
d = light_positionView_z * frustumPlanes_z[1] +
light_positionView_x * frustumPlanes_xy[1];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
d = light_positionView_z * frustumPlanes_z[2] +
light_positionView_y * frustumPlanes_xy[2];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
d = light_positionView_z * frustumPlanes_z[3] +
light_positionView_y * frustumPlanes_xy[3];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
// Pack and store intersecting lights
cif (inFrustum) {
tileNumLights += packed_store_active(&tileLightIndices[tileNumLights],
lightIndex);
}
}
}
return tileNumLights;
}
static uniform int32
IntersectLightsWithTile(
uniform int32 tileStartX, uniform int32 tileEndX,
uniform int32 tileStartY, uniform int32 tileEndY,
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
// G-buffer data
uniform float zBuffer[],
// Camera data
uniform float cameraProj_11, uniform float cameraProj_22,
uniform float cameraProj_33, uniform float cameraProj_43,
uniform float cameraNear, uniform float cameraFar,
// Light Data
uniform int32 numLights,
uniform float light_positionView_x_array[],
uniform float light_positionView_y_array[],
uniform float light_positionView_z_array[],
uniform float light_attenuationEnd_array[],
// Output
uniform int32 tileLightIndices[]
)
{
uniform float minZ, maxZ;
ComputeZBounds(tileStartX, tileEndX, tileStartY, tileEndY,
zBuffer, gBufferWidth, cameraProj_33, cameraProj_43, cameraNear, cameraFar,
minZ, maxZ);
uniform int32 tileNumLights = IntersectLightsWithTileMinMax(
tileStartX, tileEndX, tileStartY, tileEndY, minZ, maxZ,
gBufferWidth, gBufferHeight, cameraProj_11, cameraProj_22,
MAX_LIGHTS, light_positionView_x_array, light_positionView_y_array,
light_positionView_z_array, light_attenuationEnd_array,
tileLightIndices);
return tileNumLights;
}
export void
ShadeTile(
uniform int32 tileStartX, uniform int32 tileEndX,
uniform int32 tileStartY, uniform int32 tileEndY,
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
uniform InputDataArrays &inputData,
// Camera data
uniform float cameraProj_11, uniform float cameraProj_22,
uniform float cameraProj_33, uniform float cameraProj_43,
// Light list
uniform int32 tileLightIndices[],
uniform int32 tileNumLights,
// UI
uniform bool visualizeLightCount,
// Output
uniform unsigned int8 framebuffer_r[],
uniform unsigned int8 framebuffer_g[],
uniform unsigned int8 framebuffer_b[]
)
{
if (tileNumLights == 0 || visualizeLightCount) {
uniform unsigned int8 c = (unsigned int8)(min(tileNumLights << 2, 255));
for (uniform int32 y = tileStartY; y < tileEndY; ++y) {
foreach (x = tileStartX ... tileEndX) {
int32 framebufferIndex = (y * gBufferWidth + x);
framebuffer_r[framebufferIndex] = c;
framebuffer_g[framebufferIndex] = c;
framebuffer_b[framebufferIndex] = c;
}
}
} else {
uniform float twoOverGBufferWidth = 2.0f / gBufferWidth;
uniform float twoOverGBufferHeight = 2.0f / gBufferHeight;
for (uniform int32 y = tileStartY; y < tileEndY; ++y) {
uniform float positionScreen_y = -(((0.5f + y) * twoOverGBufferHeight) - 1.f);
foreach (x = tileStartX ... tileEndX) {
int32 gBufferOffset = y * gBufferWidth + x;
// Reconstruct position and (negative) view vector from G-buffer
float surface_positionView_x, surface_positionView_y, surface_positionView_z;
float Vneg_x, Vneg_y, Vneg_z;
float z = inputData.zBuffer[gBufferOffset];
// Compute screen/clip-space position
// NOTE: Mind DX11 viewport transform and pixel center!
float positionScreen_x = (0.5f + (float)(x)) *
twoOverGBufferWidth - 1.0f;
// Unproject depth buffer Z value into view space
surface_positionView_z = cameraProj_43 / (z - cameraProj_33);
surface_positionView_x = positionScreen_x * surface_positionView_z /
cameraProj_11;
surface_positionView_y = positionScreen_y * surface_positionView_z /
cameraProj_22;
// We actually end up with a vector pointing *at* the
// surface (i.e. the negative view vector)
normalize3(surface_positionView_x, surface_positionView_y,
surface_positionView_z, Vneg_x, Vneg_y, Vneg_z);
// Reconstruct normal from G-buffer
float surface_normal_x, surface_normal_y, surface_normal_z;
float normal_x = half_to_float_fast(inputData.normalEncoded_x[gBufferOffset]);
float normal_y = half_to_float_fast(inputData.normalEncoded_y[gBufferOffset]);
float f = (normal_x - normal_x * normal_x) + (normal_y - normal_y * normal_y);
float m = sqrt(4.0f * f - 1.0f);
surface_normal_x = m * (4.0f * normal_x - 2.0f);
surface_normal_y = m * (4.0f * normal_y - 2.0f);
surface_normal_z = 3.0f - 8.0f * f;
// Load other G-buffer parameters
float surface_specularAmount =
half_to_float_fast(inputData.specularAmount[gBufferOffset]);
float surface_specularPower =
half_to_float_fast(inputData.specularPower[gBufferOffset]);
float surface_albedo_x = Unorm8ToFloat32(inputData.albedo_x[gBufferOffset]);
float surface_albedo_y = Unorm8ToFloat32(inputData.albedo_y[gBufferOffset]);
float surface_albedo_z = Unorm8ToFloat32(inputData.albedo_z[gBufferOffset]);
float lit_x = 0.0f;
float lit_y = 0.0f;
float lit_z = 0.0f;
for (uniform int32 tileLightIndex = 0; tileLightIndex < tileNumLights;
++tileLightIndex) {
uniform int32 lightIndex = tileLightIndices[tileLightIndex];
// Gather light data relevant to initial culling
uniform float light_positionView_x =
inputData.lightPositionView_x[lightIndex];
uniform float light_positionView_y =
inputData.lightPositionView_y[lightIndex];
uniform float light_positionView_z =
inputData.lightPositionView_z[lightIndex];
uniform float light_attenuationEnd =
inputData.lightAttenuationEnd[lightIndex];
// Compute light vector
float L_x = light_positionView_x - surface_positionView_x;
float L_y = light_positionView_y - surface_positionView_y;
float L_z = light_positionView_z - surface_positionView_z;
float distanceToLight2 = dot3(L_x, L_y, L_z, L_x, L_y, L_z);
// Clip at end of attenuation
float light_attenutaionEnd2 = light_attenuationEnd * light_attenuationEnd;
cif (distanceToLight2 < light_attenutaionEnd2) {
float distanceToLight = sqrt(distanceToLight2);
// HLSL "rcp" is allowed to be fairly inaccurate
float distanceToLightRcp = rcp(distanceToLight);
L_x *= distanceToLightRcp;
L_y *= distanceToLightRcp;
L_z *= distanceToLightRcp;
// Start computing brdf
float NdotL = dot3(surface_normal_x, surface_normal_y,
surface_normal_z, L_x, L_y, L_z);
// Clip back facing
cif (NdotL > 0.0f) {
uniform float light_attenuationBegin =
inputData.lightAttenuationBegin[lightIndex];
// Light distance attenuation (linstep)
float lightRange = (light_attenuationEnd - light_attenuationBegin);
float falloffPosition = (light_attenuationEnd - distanceToLight);
float attenuation = min(falloffPosition / lightRange, 1.0f);
float H_x = (L_x - Vneg_x);
float H_y = (L_y - Vneg_y);
float H_z = (L_z - Vneg_z);
normalize3(H_x, H_y, H_z, H_x, H_y, H_z);
float NdotH = dot3(surface_normal_x, surface_normal_y,
surface_normal_z, H_x, H_y, H_z);
NdotH = max(NdotH, 0.0f);
float specular = pow(NdotH, surface_specularPower);
float specularNorm = (surface_specularPower + 2.0f) *
(1.0f / 8.0f);
float specularContrib = surface_specularAmount *
specularNorm * specular;
float k = attenuation * NdotL * (1.0f + specularContrib);
uniform float light_color_x = inputData.lightColor_x[lightIndex];
uniform float light_color_y = inputData.lightColor_y[lightIndex];
uniform float light_color_z = inputData.lightColor_z[lightIndex];
float lightContrib_x = surface_albedo_x * light_color_x;
float lightContrib_y = surface_albedo_y * light_color_y;
float lightContrib_z = surface_albedo_z * light_color_z;
lit_x += lightContrib_x * k;
lit_y += lightContrib_y * k;
lit_z += lightContrib_z * k;
}
}
}
// Gamma correct
// These pows are pretty slow right now, but we can do
// something faster if really necessary to squeeze every
// last bit of performance out of it
float gamma = 1.0 / 2.2f;
lit_x = pow(clamp(lit_x, 0.0f, 1.0f), gamma);
lit_y = pow(clamp(lit_y, 0.0f, 1.0f), gamma);
lit_z = pow(clamp(lit_z, 0.0f, 1.0f), gamma);
framebuffer_r[gBufferOffset] = Float32ToUnorm8(lit_x);
framebuffer_g[gBufferOffset] = Float32ToUnorm8(lit_y);
framebuffer_b[gBufferOffset] = Float32ToUnorm8(lit_z);
}
}
}
}
///////////////////////////////////////////////////////////////////////////
// Static decomposition
task void
RenderTile(uniform int num_groups_x, uniform int num_groups_y,
uniform InputHeader &inputHeader,
uniform InputDataArrays &inputData,
uniform int visualizeLightCount,
// Output
uniform unsigned int8 framebuffer_r[],
uniform unsigned int8 framebuffer_g[],
uniform unsigned int8 framebuffer_b[]) {
uniform int32 group_y = taskIndex / num_groups_x;
uniform int32 group_x = taskIndex % num_groups_x;
uniform int32 tile_start_x = group_x * MIN_TILE_WIDTH;
uniform int32 tile_start_y = group_y * MIN_TILE_HEIGHT;
uniform int32 tile_end_x = tile_start_x + MIN_TILE_WIDTH;
uniform int32 tile_end_y = tile_start_y + MIN_TILE_HEIGHT;
uniform int framebufferWidth = inputHeader.framebufferWidth;
uniform int framebufferHeight = inputHeader.framebufferHeight;
uniform float cameraProj_00 = inputHeader.cameraProj[0][0];
uniform float cameraProj_11 = inputHeader.cameraProj[1][1];
uniform float cameraProj_22 = inputHeader.cameraProj[2][2];
uniform float cameraProj_32 = inputHeader.cameraProj[3][2];
// Light intersection: figure out which lights illuminate this tile.
uniform int tileLightIndices[MAX_LIGHTS]; // Light list for the tile
uniform int numTileLights =
IntersectLightsWithTile(tile_start_x, tile_end_x,
tile_start_y, tile_end_y,
framebufferWidth, framebufferHeight,
inputData.zBuffer,
cameraProj_00, cameraProj_11,
cameraProj_22, cameraProj_32,
inputHeader.cameraNear, inputHeader.cameraFar,
MAX_LIGHTS,
inputData.lightPositionView_x,
inputData.lightPositionView_y,
inputData.lightPositionView_z,
inputData.lightAttenuationEnd,
tileLightIndices);
// And now shade the tile, using the lights in tileLightIndices
ShadeTile(tile_start_x, tile_end_x, tile_start_y, tile_end_y,
framebufferWidth, framebufferHeight, inputData,
cameraProj_00, cameraProj_11, cameraProj_22, cameraProj_32,
tileLightIndices, numTileLights, visualizeLightCount,
framebuffer_r, framebuffer_g, framebuffer_b);
}
export void
RenderStatic(uniform InputHeader &inputHeader,
uniform InputDataArrays &inputData,
uniform int visualizeLightCount,
// Output
uniform unsigned int8 framebuffer_r[],
uniform unsigned int8 framebuffer_g[],
uniform unsigned int8 framebuffer_b[]) {
uniform int num_groups_x = (inputHeader.framebufferWidth +
MIN_TILE_WIDTH - 1) / MIN_TILE_WIDTH;
uniform int num_groups_y = (inputHeader.framebufferHeight +
MIN_TILE_HEIGHT - 1) / MIN_TILE_HEIGHT;
uniform int num_groups = num_groups_x * num_groups_y;
// Launch a task to render each tile, each of which is MIN_TILE_WIDTH
// by MIN_TILE_HEIGHT pixels.
launch[num_groups] < RenderTile(num_groups_x, num_groups_y,
inputHeader, inputData, visualizeLightCount,
framebuffer_r, framebuffer_g, framebuffer_b) >;
}
///////////////////////////////////////////////////////////////////////////
// Routines for dynamic decomposition path
// This computes the z min/max range for a whole row worth of tiles.
export void
ComputeZBoundsRow(
uniform int32 tileY,
uniform int32 tileWidth, uniform int32 tileHeight,
uniform int32 numTilesX, uniform int32 numTilesY,
// G-buffer data
uniform float zBuffer[],
uniform int32 gBufferWidth,
// Camera data
uniform float cameraProj_33, uniform float cameraProj_43,
uniform float cameraNear, uniform float cameraFar,
// Output
uniform float minZArray[],
uniform float maxZArray[]
)
{
for (uniform int32 tileX = 0; tileX < numTilesX; ++tileX) {
uniform float minZ, maxZ;
ComputeZBounds(
tileX * tileWidth, tileX * tileWidth + tileWidth,
tileY * tileHeight, tileY * tileHeight + tileHeight,
zBuffer, gBufferWidth,
cameraProj_33, cameraProj_43, cameraNear, cameraFar,
minZ, maxZ);
minZArray[tileX] = minZ;
maxZArray[tileX] = maxZ;
}
}
// Reclassifies the lights with respect to four sub-tiles when we refine a tile.
// numLights need not be a multiple of programCount here, but the input and output arrays
// should be able to handle programCount-sized load/stores.
export void
SplitTileMinMax(
uniform int32 tileMidX, uniform int32 tileMidY,
// Subtile data (00, 10, 01, 11)
uniform float subtileMinZ[],
uniform float subtileMaxZ[],
// G-buffer data
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
// Camera data
uniform float cameraProj_11, uniform float cameraProj_22,
// Light Data
uniform int32 lightIndices[],
uniform int32 numLights,
uniform float light_positionView_x_array[],
uniform float light_positionView_y_array[],
uniform float light_positionView_z_array[],
uniform float light_attenuationEnd_array[],
// Outputs
// TODO: ISPC doesn't currently like multidimensionsal arrays so we'll do the
// indexing math ourselves
uniform int32 subtileIndices[],
uniform int32 subtileIndicesPitch,
uniform int32 subtileNumLights[]
)
{
uniform float gBufferScale_x = 0.5f * (float)gBufferWidth;
uniform float gBufferScale_y = 0.5f * (float)gBufferHeight;
// Parallize across frustum planes
// Only have 2 frustum split planes here so may not be worth it, but
// we'll do it for now for consistency
uniform float frustumPlanes_xy[programCount];
uniform float frustumPlanes_z[programCount];
// This one is totally constant over the whole screen... worth pulling it up at all?
float frustumPlanes_xy_v;
frustumPlanes_xy_v = insert(frustumPlanes_xy_v, 0, -(cameraProj_11 * gBufferScale_x));
frustumPlanes_xy_v = insert(frustumPlanes_xy_v, 1, (cameraProj_22 * gBufferScale_y));
float frustumPlanes_z_v;
frustumPlanes_z_v = insert(frustumPlanes_z_v, 0, tileMidX - gBufferScale_x);
frustumPlanes_z_v = insert(frustumPlanes_z_v, 1, tileMidY - gBufferScale_y);
// Normalize
float norm = rsqrt(frustumPlanes_xy_v * frustumPlanes_xy_v +
frustumPlanes_z_v * frustumPlanes_z_v);
frustumPlanes_xy_v *= norm;
frustumPlanes_z_v *= norm;
// Save out for uniform use later
frustumPlanes_xy[programIndex] = frustumPlanes_xy_v;
frustumPlanes_z[programIndex] = frustumPlanes_z_v;
// Initialize
uniform int32 subtileLightOffset[4];
subtileLightOffset[0] = 0 * subtileIndicesPitch;
subtileLightOffset[1] = 1 * subtileIndicesPitch;
subtileLightOffset[2] = 2 * subtileIndicesPitch;
subtileLightOffset[3] = 3 * subtileIndicesPitch;
foreach (i = 0 ... numLights) {
int32 lightIndex = lightIndices[i];
float light_positionView_x = light_positionView_x_array[lightIndex];
float light_positionView_y = light_positionView_y_array[lightIndex];
float light_positionView_z = light_positionView_z_array[lightIndex];
float light_attenuationEnd = light_attenuationEnd_array[lightIndex];
float light_attenuationEndNeg = -light_attenuationEnd;
// Test lights again subtile z bounds
bool inFrustum[4];
inFrustum[0] = (light_positionView_z - subtileMinZ[0] >= light_attenuationEndNeg) &&
(subtileMaxZ[0] - light_positionView_z >= light_attenuationEndNeg);
inFrustum[1] = (light_positionView_z - subtileMinZ[1] >= light_attenuationEndNeg) &&
(subtileMaxZ[1] - light_positionView_z >= light_attenuationEndNeg);
inFrustum[2] = (light_positionView_z - subtileMinZ[2] >= light_attenuationEndNeg) &&
(subtileMaxZ[2] - light_positionView_z >= light_attenuationEndNeg);
inFrustum[3] = (light_positionView_z - subtileMinZ[3] >= light_attenuationEndNeg) &&
(subtileMaxZ[3] - light_positionView_z >= light_attenuationEndNeg);
float dx = light_positionView_z * frustumPlanes_z[0] +
light_positionView_x * frustumPlanes_xy[0];
float dy = light_positionView_z * frustumPlanes_z[1] +
light_positionView_y * frustumPlanes_xy[1];
cif (abs(dx) > light_attenuationEnd) {
bool positiveX = dx > 0.0f;
inFrustum[0] = inFrustum[0] && positiveX; // 00 subtile
inFrustum[1] = inFrustum[1] && !positiveX; // 10 subtile
inFrustum[2] = inFrustum[2] && positiveX; // 01 subtile
inFrustum[3] = inFrustum[3] && !positiveX; // 11 subtile
}
cif (abs(dy) > light_attenuationEnd) {
bool positiveY = dy > 0.0f;
inFrustum[0] = inFrustum[0] && positiveY; // 00 subtile
inFrustum[1] = inFrustum[1] && positiveY; // 10 subtile
inFrustum[2] = inFrustum[2] && !positiveY; // 01 subtile
inFrustum[3] = inFrustum[3] && !positiveY; // 11 subtile
}
// Pack and store intersecting lights
// TODO: Experiment with a loop here instead
cif (inFrustum[0])
subtileLightOffset[0] +=
packed_store_active(&subtileIndices[subtileLightOffset[0]],
lightIndex);
cif (inFrustum[1])
subtileLightOffset[1] +=
packed_store_active(&subtileIndices[subtileLightOffset[1]],
lightIndex);
cif (inFrustum[2])
subtileLightOffset[2] +=
packed_store_active(&subtileIndices[subtileLightOffset[2]],
lightIndex);
cif (inFrustum[3])
subtileLightOffset[3] +=
packed_store_active(&subtileIndices[subtileLightOffset[3]],
lightIndex);
}
subtileNumLights[0] = subtileLightOffset[0] - 0 * subtileIndicesPitch;
subtileNumLights[1] = subtileLightOffset[1] - 1 * subtileIndicesPitch;
subtileNumLights[2] = subtileLightOffset[2] - 2 * subtileIndicesPitch;
subtileNumLights[3] = subtileLightOffset[3] - 3 * subtileIndicesPitch;
}

139
examples/deferred/main.cpp Normal file
View File

@@ -0,0 +1,139 @@
/*
Copyright (c) 2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef _MSC_VER
#define ISPC_IS_WINDOWS
#define NOMINMAX
#elif defined(__linux__)
#define ISPC_IS_LINUX
#elif defined(__APPLE__)
#define ISPC_IS_APPLE
#endif
#include <fcntl.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <stdint.h>
#include <algorithm>
#include <assert.h>
#include <vector>
#ifdef ISPC_IS_WINDOWS
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include "deferred.h"
#include "kernels_ispc.h"
#include "../timing.h"
///////////////////////////////////////////////////////////////////////////
int main(int argc, char** argv) {
if (argc != 2) {
printf("usage: deferred_shading <input_file (e.g. data/pp1280x720.bin)>\n");
return 1;
}
InputData *input = CreateInputDataFromFile(argv[1]);
if (!input) {
printf("Failed to load input file \"%s\"!\n", argv[1]);
return 1;
}
Framebuffer framebuffer(input->header.framebufferWidth,
input->header.framebufferHeight);
InitDynamicC(input);
#ifdef __cilk
InitDynamicCilk(input);
#endif // __cilk
int nframes = 5;
double ispcCycles = 1e30;
for (int i = 0; i < 5; ++i) {
framebuffer.clear();
reset_and_start_timer();
for (int j = 0; j < nframes; ++j)
ispc::RenderStatic(&input->header, &input->arrays,
VISUALIZE_LIGHT_COUNT,
framebuffer.r, framebuffer.g, framebuffer.b);
double mcycles = get_elapsed_mcycles() / nframes;
ispcCycles = std::min(ispcCycles, mcycles);
}
printf("[ispc static + tasks]:\t\t[%.3f] million cycles to render "
"%d x %d image\n", ispcCycles,
input->header.framebufferWidth, input->header.framebufferHeight);
WriteFrame("deferred-ispc-static.ppm", input, framebuffer);
#ifdef __cilk
double dynamicCilkCycles = 1e30;
for (int i = 0; i < 5; ++i) {
framebuffer.clear();
reset_and_start_timer();
for (int j = 0; j < nframes; ++j)
DispatchDynamicCilk(input, &framebuffer);
double mcycles = get_elapsed_mcycles() / nframes;
dynamicCilkCycles = std::min(dynamicCilkCycles, mcycles);
}
printf("[ispc + Cilk dynamic]:\t\t[%.3f] million cycles to render image\n",
dynamicCilkCycles);
WriteFrame("deferred-ispc-dynamic.ppm", input, framebuffer);
#endif // __cilk
double serialCycles = 1e30;
for (int i = 0; i < 5; ++i) {
framebuffer.clear();
reset_and_start_timer();
for (int j = 0; j < nframes; ++j)
DispatchDynamicC(input, &framebuffer);
double mcycles = get_elapsed_mcycles() / nframes;
serialCycles = std::min(serialCycles, mcycles);
}
printf("[C++ serial dynamic, 1 core]:\t[%.3f] million cycles to render image\n",
serialCycles);
WriteFrame("deferred-serial-dynamic.ppm", input, framebuffer);
#ifdef __cilk
printf("\t\t\t\t(%.2fx speedup from static ISPC, %.2fx from Cilk+ISPC)\n",
serialCycles/ispcCycles, serialCycles/dynamicCilkCycles);
#else
printf("\t\t\t\t(%.2fx speedup from ISPC)\n", serialCycles/ispcCycles);
#endif // __cilk
DeleteInputData(input);
return 0;
}

View File

@@ -15,6 +15,14 @@ Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "mandelbrot_tasks", "mandelb
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "aobench_instrumented", "aobench_instrumented\aobench_instrumented.vcxproj", "{B3B4AE3D-6D5A-4CF9-AF5B-43CF2131B958}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "noise", "noise\noise.vcxproj", "{0E0886D8-8B5E-4EAF-9A21-91E63DAF81FD}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "volume", "volume_rendering\volume.vcxproj", "{DEE5733A-E93E-449D-9114-9BFFCAEB4DF9}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "stencil", "stencil\stencil.vcxproj", "{2EF070A1-F62F-4E6A-944B-88D140945C3C}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "deferred_shading", "deferred\deferred_shading.vcxproj", "{87F53C53-957E-4E91-878A-BC27828FB9EB}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Win32 = Debug|Win32
@@ -79,6 +87,38 @@ Global
{B3B4AE3D-6D5A-4CF9-AF5B-43CF2131B958}.Release|Win32.Build.0 = Release|Win32
{B3B4AE3D-6D5A-4CF9-AF5B-43CF2131B958}.Release|x64.ActiveCfg = Release|x64
{B3B4AE3D-6D5A-4CF9-AF5B-43CF2131B958}.Release|x64.Build.0 = Release|x64
{0E0886D8-8B5E-4EAF-9A21-91E63DAF81FD}.Debug|Win32.ActiveCfg = Debug|Win32
{0E0886D8-8B5E-4EAF-9A21-91E63DAF81FD}.Debug|Win32.Build.0 = Debug|Win32
{0E0886D8-8B5E-4EAF-9A21-91E63DAF81FD}.Debug|x64.ActiveCfg = Debug|x64
{0E0886D8-8B5E-4EAF-9A21-91E63DAF81FD}.Debug|x64.Build.0 = Debug|x64
{0E0886D8-8B5E-4EAF-9A21-91E63DAF81FD}.Release|Win32.ActiveCfg = Release|Win32
{0E0886D8-8B5E-4EAF-9A21-91E63DAF81FD}.Release|Win32.Build.0 = Release|Win32
{0E0886D8-8B5E-4EAF-9A21-91E63DAF81FD}.Release|x64.ActiveCfg = Release|x64
{0E0886D8-8B5E-4EAF-9A21-91E63DAF81FD}.Release|x64.Build.0 = Release|x64
{DEE5733A-E93E-449D-9114-9BFFCAEB4DF9}.Debug|Win32.ActiveCfg = Debug|Win32
{DEE5733A-E93E-449D-9114-9BFFCAEB4DF9}.Debug|Win32.Build.0 = Debug|Win32
{DEE5733A-E93E-449D-9114-9BFFCAEB4DF9}.Debug|x64.ActiveCfg = Debug|x64
{DEE5733A-E93E-449D-9114-9BFFCAEB4DF9}.Debug|x64.Build.0 = Debug|x64
{DEE5733A-E93E-449D-9114-9BFFCAEB4DF9}.Release|Win32.ActiveCfg = Release|Win32
{DEE5733A-E93E-449D-9114-9BFFCAEB4DF9}.Release|Win32.Build.0 = Release|Win32
{DEE5733A-E93E-449D-9114-9BFFCAEB4DF9}.Release|x64.ActiveCfg = Release|x64
{DEE5733A-E93E-449D-9114-9BFFCAEB4DF9}.Release|x64.Build.0 = Release|x64
{2EF070A1-F62F-4E6A-944B-88D140945C3C}.Debug|Win32.ActiveCfg = Debug|Win32
{2EF070A1-F62F-4E6A-944B-88D140945C3C}.Debug|Win32.Build.0 = Debug|Win32
{2EF070A1-F62F-4E6A-944B-88D140945C3C}.Debug|x64.ActiveCfg = Debug|x64
{2EF070A1-F62F-4E6A-944B-88D140945C3C}.Debug|x64.Build.0 = Debug|x64
{2EF070A1-F62F-4E6A-944B-88D140945C3C}.Release|Win32.ActiveCfg = Release|Win32
{2EF070A1-F62F-4E6A-944B-88D140945C3C}.Release|Win32.Build.0 = Release|Win32
{2EF070A1-F62F-4E6A-944B-88D140945C3C}.Release|x64.ActiveCfg = Release|x64
{2EF070A1-F62F-4E6A-944B-88D140945C3C}.Release|x64.Build.0 = Release|x64
{87F53C53-957E-4E91-878A-BC27828FB9EB}.Debug|Win32.ActiveCfg = Debug|Win32
{87F53C53-957E-4E91-878A-BC27828FB9EB}.Debug|Win32.Build.0 = Debug|Win32
{87F53C53-957E-4E91-878A-BC27828FB9EB}.Debug|x64.ActiveCfg = Debug|x64
{87F53C53-957E-4E91-878A-BC27828FB9EB}.Debug|x64.Build.0 = Debug|x64
{87F53C53-957E-4E91-878A-BC27828FB9EB}.Release|Win32.ActiveCfg = Release|Win32
{87F53C53-957E-4E91-878A-BC27828FB9EB}.Release|Win32.Build.0 = Release|Win32
{87F53C53-957E-4E91-878A-BC27828FB9EB}.Release|x64.ActiveCfg = Release|x64
{87F53C53-957E-4E91-878A-BC27828FB9EB}.Release|x64.Build.0 = Release|x64
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE

3
examples/mandelbrot/.gitignore vendored Normal file
View File

@@ -0,0 +1,3 @@
mandelbrot
*.ppm
objs

View File

@@ -1,8 +1,8 @@
CXX=g++
CXX=g++ -m64
CXXFLAGS=-Iobjs/ -O3 -Wall
ISPC=ispc
ISPCFLAGS=-O2 --target=sse4x2
ISPCFLAGS=-O2 --target=sse2,sse4-x2,avx-x2 --arch=x86-64
default: mandelbrot
@@ -14,13 +14,17 @@ dirs:
clean:
/bin/rm -rf objs *~ mandelbrot
mandelbrot: dirs objs/mandelbrot.o objs/mandelbrot_serial.o objs/mandelbrot_ispc.o
$(CXX) $(CXXFLAGS) -o $@ objs/mandelbrot.o objs/mandelbrot_ispc.o objs/mandelbrot_serial.o -lm
OBJS=objs/mandelbrot.o objs/mandelbrot_serial.o objs/mandelbrot_ispc_sse2.o \
objs/mandelbrot_ispc_sse4.o objs/mandelbrot_ispc_avx.o \
objs/mandelbrot_ispc.o
mandelbrot: dirs $(OBJS)
$(CXX) $(CXXFLAGS) -o $@ $(OBJS) -lm
objs/%.o: %.cpp
$(CXX) $< $(CXXFLAGS) -c -o $@
objs/mandelbrot.o: objs/mandelbrot_ispc.h
objs/%_ispc.h objs/%_ispc.o: %.ispc
objs/%_ispc.h objs/%_ispc.o objs/%_ispc_sse2.o objs/%_ispc_sse4.o objs/%_ispc_avx.o: %.ispc
$(ISPC) $(ISPCFLAGS) $< -o objs/$*_ispc.o -h objs/$*_ispc.h

View File

@@ -63,6 +63,7 @@ writePPM(int *buf, int width, int height, const char *fn) {
fputc(c, fp);
}
fclose(fp);
printf("Wrote image file %s\n", fn);
}

View File

@@ -51,7 +51,7 @@ export void mandelbrot_ispc(uniform float x0, uniform float y0,
uniform float x1, uniform float y1,
uniform int width, uniform int height,
uniform int maxIterations,
reference uniform int output[])
uniform int output[])
{
float dx = (x1 - x0) / width;
float dy = (y1 - y0) / height;
@@ -60,16 +60,16 @@ export void mandelbrot_ispc(uniform float x0, uniform float y0,
// Note that we'll be doing programCount computations in parallel,
// so increment i by that much. This assumes that width evenly
// divides programCount.
for (uniform int i = 0; i < width; i += programCount) {
foreach (i = 0 ... width) {
// Figure out the position on the complex plane to compute the
// number of iterations at. Note that the x values are
// different across different program instances, since its
// initializer incorporates the value of the programIndex
// variable.
float x = x0 + (programIndex + i) * dx;
float x = x0 + i * dx;
float y = y0 + j * dy;
int index = j * width + i + programIndex;
int index = j * width + i;
output[index] = mandel(x, y, maxIterations);
}
}

32
examples/mandelbrot/mandelbrot.vcxproj Executable file → Normal file
View File

@@ -1,4 +1,4 @@
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|Win32">
@@ -64,15 +64,19 @@
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
@@ -81,6 +85,9 @@
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<IntrinsicFunctions>true</IntrinsicFunctions>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -94,6 +101,9 @@
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<IntrinsicFunctions>true</IntrinsicFunctions>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -109,6 +119,8 @@
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -126,6 +138,8 @@
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -141,18 +155,18 @@
<ItemGroup>
<CustomBuild Include="mandelbrot.ispc">
<FileType>Document</FileType>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --arch=x86 --target=sse4x2
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --arch=x86 --target=sse2,sse4-x2,avx-x2
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --target=sse4x2
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --target=sse2,sse4-x2,avx-x2
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">%(Filename).obj;%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">%(Filename).obj;%(Filename)_ispc.h</Outputs>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --arch=x86 --target=sse4x2
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --arch=x86 --target=sse2,sse4-x2,avx-x2
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|x64'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --target=sse4x2
<Command Condition="'$(Configuration)|$(Platform)'=='Release|x64'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --target=sse2,sse4-x2,avx-x2
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">%(Filename).obj;%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|x64'">%(Filename).obj;%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|x64'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
</CustomBuild>
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />

View File

@@ -36,7 +36,7 @@ static int mandel(float c_re, float c_im, int count) {
float z_re = c_re, z_im = c_im;
int i;
for (i = 0; i < count; ++i) {
if (z_re * z_re + z_im * z_im > 4.)
if (z_re * z_re + z_im * z_im > 4.f)
break;
float new_re = z_re*z_re - z_im*z_im;

2
examples/mandelbrot_tasks/.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
mandelbrot
*.ppm

View File

@@ -1,20 +1,18 @@
ARCH = $(shell uname)
TASK_CXX=tasks_pthreads.cpp
TASK_CXX=../tasksys.cpp
TASK_LIB=-lpthread
ifeq ($(ARCH), Darwin)
TASK_CXX=tasks_gcd.cpp
TASK_LIB=
endif
TASK_OBJ=$(addprefix objs/, $(TASK_CXX:.cpp=.o))
TASK_OBJ=$(addprefix objs/, $(subst ../,, $(TASK_CXX:.cpp=.o)))
CXX=g++
CXXFLAGS=-Iobjs/ -O3 -Wall
CXXFLAGS=-Iobjs/ -O3 -Wall -m64
ISPC=ispc
ISPCFLAGS=-O2 --target=sse4x2
ISPCFLAGS=-O2 --target=sse2,sse4-x2,avx-x2 --arch=x86-64
OBJS=objs/mandelbrot.o objs/mandelbrot_serial.o $(TASK_OBJ) \
objs/mandelbrot_ispc.o objs/mandelbrot_ispc_sse2.o \
objs/mandelbrot_ispc_sse4.o objs/mandelbrot_ispc_avx.o
default: mandelbrot
@@ -26,13 +24,16 @@ dirs:
clean:
/bin/rm -rf objs *~ mandelbrot
mandelbrot: dirs objs/mandelbrot.o objs/mandelbrot_serial.o objs/mandelbrot_ispc.o $(TASK_OBJ)
$(CXX) $(CXXFLAGS) -o $@ objs/mandelbrot.o objs/mandelbrot_ispc.o objs/mandelbrot_serial.o $(TASK_OBJ) -lm $(TASK_LIB)
mandelbrot: dirs $(OBJS)
$(CXX) $(CXXFLAGS) -o $@ $(OBJS) -lm $(TASK_LIB)
objs/%.o: %.cpp
$(CXX) $< $(CXXFLAGS) -c -o $@
objs/%.o: ../%.cpp
$(CXX) $< $(CXXFLAGS) -c -o $@
objs/mandelbrot.o: objs/mandelbrot_ispc.h
objs/%_ispc.h objs/%_ispc.o: %.ispc
objs/%_ispc.h objs/%_ispc.o objs/%_ispc_sse2.o objs/%_ispc_sse4.o objs/%_ispc_avx.o: %.ispc
$(ISPC) $(ISPCFLAGS) $< -o objs/$*_ispc.o -h objs/$*_ispc.h

View File

@@ -40,6 +40,7 @@
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include "../timing.h"
#include "mandelbrot_ispc.h"
using namespace ispc;
@@ -63,10 +64,16 @@ writePPM(int *buf, int width, int height, const char *fn) {
fputc(c, fp);
}
fclose(fp);
printf("Wrote image file %s\n", fn);
}
int main() {
static void usage() {
fprintf(stderr, "usage: mandelbrot [--scale=<factor>]\n");
exit(1);
}
int main(int argc, char *argv[]) {
unsigned int width = 1536;
unsigned int height = 1024;
float x0 = -2;
@@ -74,8 +81,24 @@ int main() {
float y0 = -1;
float y1 = 1;
extern void TasksInit();
TasksInit();
if (argc == 1)
;
else if (argc == 2) {
if (strncmp(argv[1], "--scale=", 8) == 0) {
float scale = atof(argv[1] + 8);
if (scale == 0.f)
usage();
width *= scale;
height *= scale;
// round up to multiples of 16
width = (width + 0xf) & ~0xf;
height = (height + 0xf) & ~0xf;
}
else
usage();
}
else
usage();
int maxIterations = 512;
int *buf = new int[width*height];
@@ -86,6 +109,9 @@ int main() {
//
double minISPC = 1e30;
for (int i = 0; i < 3; ++i) {
// Clear out the buffer
for (unsigned int i = 0; i < width * height; ++i)
buf[i] = 0;
reset_and_start_timer();
mandelbrot_ispc(x0, y0, x1, y1, width, height, maxIterations, buf);
double dt = get_elapsed_mcycles();
@@ -95,9 +121,6 @@ int main() {
printf("[mandelbrot ispc+tasks]:\t[%.3f] million cycles\n", minISPC);
writePPM(buf, width, height, "mandelbrot-ispc.ppm");
// Clear out the buffer
for (unsigned int i = 0; i < width * height; ++i)
buf[i] = 0;
//
// And run the serial implementation 3 times, again reporting the
@@ -105,6 +128,9 @@ int main() {
//
double minSerial = 1e30;
for (int i = 0; i < 3; ++i) {
// Clear out the buffer
for (unsigned int i = 0; i < width * height; ++i)
buf[i] = 0;
reset_and_start_timer();
mandelbrot_serial(x0, y0, x1, y1, width, height, maxIterations, buf);
double dt = get_elapsed_mcycles();

View File

@@ -53,34 +53,46 @@ mandel(float c_re, float c_im, int count) {
[ystart,yend).
*/
task void
mandelbrot_scanlines(uniform int ystart, uniform int yend,
mandelbrot_scanlines(uniform int ybase, uniform int span,
uniform float x0, uniform float dx,
uniform float y0, uniform float dy,
uniform int width, uniform int maxIterations,
reference uniform int output[]) {
for (uniform int j = ystart; j < yend; ++j) {
for (uniform int i = 0; i < width; i += programCount) {
float x = x0 + (programIndex + i) * dx;
float y = y0 + j * dy;
uniform int output[]) {
uniform int ystart = ybase + taskIndex * span;
uniform int yend = ystart + span;
int index = j * width + i + programIndex;
output[index] = mandel(x, y, maxIterations);
}
foreach (yi = ystart ... yend, xi = 0 ... width) {
float x = x0 + xi * dx;
float y = y0 + yi * dy;
int index = yi * width + xi;
output[index] = mandel(x, y, maxIterations);
}
}
task void
mandelbrot_chunk(uniform float x0, uniform float dx,
uniform float y0, uniform float dy,
uniform int width, uniform int height,
uniform int maxIterations, uniform int output[]) {
uniform int ystart = taskIndex * (height/taskCount);
uniform int yend = (taskIndex+1) * (height/taskCount);
uniform int span = 1;
launch[(yend-ystart)/span] < mandelbrot_scanlines(ystart, span, x0, dx, y0, dy,
width, maxIterations, output) >;
}
export void
mandelbrot_ispc(uniform float x0, uniform float y0,
uniform float x1, uniform float y1,
uniform int width, uniform int height,
uniform int maxIterations, reference uniform int output[]) {
uniform int maxIterations, uniform int output[]) {
uniform float dx = (x1 - x0) / width;
uniform float dy = (y1 - y0) / height;
/* Launch task to compute results for spans of 'span' scanlines. */
uniform int span = 2;
for (uniform int j = 0; j < height; j += span)
launch < mandelbrot_scanlines(j, j+span, x0, dx, y0, dy, width,
maxIterations, output) >;
launch[32] < mandelbrot_chunk(x0, dx, y0, dy, width, height,
maxIterations, output) >;
}

View File

@@ -36,7 +36,7 @@ static int mandel(float c_re, float c_im, int count) {
float z_re = c_re, z_im = c_im;
int i;
for (i = 0; i < count; ++i) {
if (z_re * z_re + z_im * z_im > 4.)
if (z_re * z_re + z_im * z_im > 4.f)
break;
float new_re = z_re*z_re - z_im*z_im;

36
examples/mandelbrot_tasks/mandelbrot_tasks.vcxproj Executable file → Normal file
View File

@@ -1,4 +1,4 @@
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|Win32">
@@ -64,15 +64,19 @@
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
@@ -81,6 +85,9 @@
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<IntrinsicFunctions>true</IntrinsicFunctions>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -94,6 +101,9 @@
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<IntrinsicFunctions>true</IntrinsicFunctions>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -109,6 +119,8 @@
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -126,6 +138,8 @@
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -137,26 +151,26 @@
<ItemGroup>
<ClCompile Include="mandelbrot.cpp" />
<ClCompile Include="mandelbrot_serial.cpp" />
<ClCompile Include="tasks_concrt.cpp" />
<ClCompile Include="../tasksys.cpp" />
</ItemGroup>
<ItemGroup>
<CustomBuild Include="mandelbrot.ispc">
<FileType>Document</FileType>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --arch=x86 --target=sse4x2
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --arch=x86 --target=sse2,sse4-x2,avx-x2
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --target=sse4x2
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --target=sse2,sse4-x2,avx-x2
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">%(Filename).obj;%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">%(Filename).obj;%(Filename)_ispc.h</Outputs>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --arch=x86 --target=sse4x2
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --arch=x86 --target=sse2,sse4-x2,avx-x2
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|x64'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --target=sse4x2
<Command Condition="'$(Configuration)|$(Platform)'=='Release|x64'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --target=sse2,sse4-x2,avx-x2
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">%(Filename).obj;%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|x64'">%(Filename).obj;%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|x64'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
</CustomBuild>
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>
</Project>

View File

@@ -1,115 +0,0 @@
/*
Copyright (c) 2010-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Simple task system implementation for ispc based on Microsoft's
Concurrency Runtime. */
#include <windows.h>
#include <concrt.h>
using namespace Concurrency;
#include <assert.h>
#include <stdio.h>
// ispc expects these functions to have C linkage / not be mangled
extern "C" {
void ISPCLaunch(void *f, void *data);
void ISPCSync();
}
typedef void (*TaskFuncType)(void *, int, int);
struct TaskInfo {
TaskFuncType ispcFunc;
void *ispcData;
};
// This is a simple implementation that just aborts if more than MAX_TASKS
// are launched. It could easily be extended to be more general...
#define MAX_TASKS 4096
static int taskOffset;
static TaskInfo taskInfo[MAX_TASKS];
static event *events[MAX_TASKS];
static CRITICAL_SECTION criticalSection;
void
TasksInit() {
InitializeCriticalSection(&criticalSection);
for (int i = 0; i < MAX_TASKS; ++i)
events[i] = new event;
}
void __cdecl
lRunTask(LPVOID param) {
TaskInfo *ti = (TaskInfo *)param;
// Actually run the task.
// FIXME: like the tasks_gcd.cpp implementation, this is passing bogus
// values for the threadIndex and threadCount builtins, which in turn
// will cause bugs in code that uses those. FWIW this example doesn't
// use them...
int threadIndex = 0;
int threadCount = 1;
ti->ispcFunc(ti->ispcData, threadIndex, threadCount);
// Signal the event that this task is done
int taskNum = ti - &taskInfo[0];
events[taskNum]->set();
}
void
ISPCLaunch(void *func, void *data) {
// Get a TaskInfo struct for this task
EnterCriticalSection(&criticalSection);
TaskInfo *ti = &taskInfo[taskOffset++];
assert(taskOffset < MAX_TASKS);
LeaveCriticalSection(&criticalSection);
// And pass it on to the Concurrency Runtime...
ti->ispcFunc = (TaskFuncType)func;
ti->ispcData = data;
CurrentScheduler::ScheduleTask(lRunTask, ti);
}
void ISPCSync() {
event::wait_for_multiple(&events[0], taskOffset, true,
COOPERATIVE_TIMEOUT_INFINITE);
for (int i = 0; i < taskOffset; ++i)
events[i]->reset();
taskOffset = 0;
}

View File

@@ -1,285 +0,0 @@
/*
Copyright (c) 2010-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <pthread.h>
#include <semaphore.h>
#include <string.h>
#include <unistd.h>
#include <assert.h>
#include <stdio.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/param.h>
#include <sys/sysctl.h>
#include <stdint.h>
#include <stdlib.h>
#include <errno.h>
#include <vector>
// ispc expects these functions to have C linkage / not be mangled
extern "C" {
void ISPCLaunch(void *f, void *data);
void ISPCSync();
}
static int nThreads;
static pthread_t *threads;
static pthread_mutex_t taskQueueMutex;
static std::vector<std::pair<void *, void *> > taskQueue;
static sem_t *workerSemaphore;
static uint32_t numUnfinishedTasks;
static pthread_mutex_t tasksRunningConditionMutex;
static pthread_cond_t tasksRunningCondition;
static void *lTaskEntry(void *arg);
/** Figure out how many CPU cores there are in the system
*/
static int
lNumCPUCores() {
#if defined(__linux__)
return sysconf(_SC_NPROCESSORS_ONLN);
#else
// Mac
int mib[2];
mib[0] = CTL_HW;
size_t length = 2;
if (sysctlnametomib("hw.logicalcpu", mib, &length) == -1) {
fprintf(stderr, "sysctlnametomib() filed. Guessing 2 cores.");
return 2;
}
assert(length == 2);
int nCores = 0;
size_t size = sizeof(nCores);
if (sysctl(mib, 2, &nCores, &size, NULL, 0) == -1) {
fprintf(stderr, "sysctl() to find number of cores present failed. Guessing 2.");
return 2;
}
return nCores;
#endif
}
void
TasksInit() {
nThreads = lNumCPUCores();
threads = new pthread_t[nThreads];
int err;
if ((err = pthread_mutex_init(&taskQueueMutex, NULL)) != 0) {
fprintf(stderr, "Error creating mutex: %s\n", strerror(err));
exit(1);
}
char name[32];
sprintf(name, "mandelbrot.%d", (int)getpid());
workerSemaphore = sem_open(name, O_CREAT, S_IRUSR|S_IWUSR, 0);
if (!workerSemaphore) {
fprintf(stderr, "Error creating semaphore: %s\n", strerror(err));
exit(1);
}
if ((err = pthread_cond_init(&tasksRunningCondition, NULL)) != 0) {
fprintf(stderr, "Error creating condition variable: %s\n", strerror(err));
exit(1);
}
if ((err = pthread_mutex_init(&tasksRunningConditionMutex, NULL)) != 0) {
fprintf(stderr, "Error creating mutex: %s\n", strerror(err));
exit(1);
}
for (int i = 0; i < nThreads; ++i) {
err = pthread_create(&threads[i], NULL, &lTaskEntry, reinterpret_cast<void *>(i));
if (err != 0) {
fprintf(stderr, "Error creating pthread %d: %s\n", i, strerror(err));
exit(1);
}
}
}
void
ISPCLaunch(void *f, void *d) {
//
// Acquire mutex, add task
//
int err;
if ((err = pthread_mutex_lock(&taskQueueMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_lock: %s\n", strerror(err));
exit(1);
}
taskQueue.push_back(std::make_pair(f, d));
if ((err = pthread_mutex_unlock(&taskQueueMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_unlock: %s\n", strerror(err));
exit(1);
}
//
// Update count of number of tasks left to run
//
if ((err = pthread_mutex_lock(&tasksRunningConditionMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_lock: %s\n", strerror(err));
exit(1);
}
++numUnfinishedTasks;
if ((err = pthread_mutex_unlock(&tasksRunningConditionMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_lock: %s\n", strerror(err));
exit(1);
}
//
// Post to the worker semaphore to wake up worker threads that are
// sleeping waiting for tasks to show up
//
if ((err = sem_post(workerSemaphore)) != 0) {
fprintf(stderr, "Error from sem_post: %s\n", strerror(err));
exit(1);
}
}
static void *
lTaskEntry(void *arg) {
int threadIndex = int(reinterpret_cast<int64_t>(arg));
int threadCount = nThreads;
while (true) {
int err;
if ((err = sem_wait(workerSemaphore)) != 0) {
fprintf(stderr, "Error from sem_wait: %s\n", strerror(err));
exit(1);
}
std::pair<void *, void *> myTask;
//
// Acquire mutex, get task
//
if ((err = pthread_mutex_lock(&taskQueueMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_lock: %s\n", strerror(err));
exit(1);
}
if (taskQueue.size() == 0) {
//
// Task queue is empty, go back and wait on the semaphore
//
if ((err = pthread_mutex_unlock(&taskQueueMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_unlock: %s\n", strerror(err));
exit(1);
}
continue;
}
myTask = taskQueue.back();
taskQueue.pop_back();
if ((err = pthread_mutex_unlock(&taskQueueMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_unlock: %s\n", strerror(err));
exit(1);
}
//
// Do work for _myTask_
//
typedef void (*TaskFunType)(void *, int, int);
TaskFunType func = (TaskFunType)myTask.first;
func(myTask.second, threadIndex, threadCount);
//
// Decrement the number of unfinished tasks counter
//
if ((err = pthread_mutex_lock(&tasksRunningConditionMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_lock: %s\n", strerror(err));
exit(1);
}
int unfinished = --numUnfinishedTasks;
if (unfinished == 0) {
//
// Signal the "no more tasks are running" condition if all of
// them are done.
//
int err;
if ((err = pthread_cond_signal(&tasksRunningCondition)) != 0) {
fprintf(stderr, "Error from pthread_cond_signal: %s\n", strerror(err));
exit(1);
}
}
if ((err = pthread_mutex_unlock(&tasksRunningConditionMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_lock: %s\n", strerror(err));
exit(1);
}
}
pthread_exit(NULL);
return 0;
}
void ISPCSync() {
int err;
if ((err = pthread_mutex_lock(&tasksRunningConditionMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_lock: %s\n", strerror(err));
exit(1);
}
// As long as there are tasks running, wait on the condition variable;
// doing so causes this thread to go to sleep until someone signals on
// the tasksRunningCondition condition variable.
while (numUnfinishedTasks > 0) {
if ((err = pthread_cond_wait(&tasksRunningCondition,
&tasksRunningConditionMutex)) != 0) {
fprintf(stderr, "Error from pthread_cond_wait: %s\n", strerror(err));
exit(1);
}
}
// We acquire ownership of the condition variable mutex when the above
// pthread_cond_wait returns.
// FIXME: is there a lurking issue here if numUnfinishedTasks gets back
// to zero by the time we get to ISPCSync() and thence we're trying to
// unlock a mutex we don't have a lock on?
if ((err = pthread_mutex_unlock(&tasksRunningConditionMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_lock: %s\n", strerror(err));
exit(1);
}
}

3
examples/noise/.gitignore vendored Normal file
View File

@@ -0,0 +1,3 @@
noise
*.ppm
objs

29
examples/noise/Makefile Normal file
View File

@@ -0,0 +1,29 @@
CXX=g++ -m64
CXXFLAGS=-Iobjs/ -O3 -Wall
ISPC=ispc
ISPCFLAGS=-O2 --target=sse2,sse4,avx-x2 --arch=x86-64
OBJS=objs/noise.o objs/noise_serial.o objs/noise_ispc.o objs/noise_ispc_sse2.o \
objs/noise_ispc_sse4.o objs/noise_ispc_avx.o
default: noise
.PHONY: dirs clean
dirs:
/bin/mkdir -p objs/
clean:
/bin/rm -rf objs *~ noise
noise: dirs $(OBJS)
$(CXX) $(CXXFLAGS) -o $@ $(OBJS) -lm
objs/%.o: %.cpp
$(CXX) $< $(CXXFLAGS) -c -o $@
objs/noise.o: objs/noise_ispc.h
objs/%_ispc.h objs/%_ispc.o objs/%_ispc_sse2.o objs/%_ispc_sse4.o objs/%_ispc_avx.o: %.ispc
$(ISPC) $(ISPCFLAGS) $< -o objs/$*_ispc.o -h objs/$*_ispc.h

115
examples/noise/noise.cpp Normal file
View File

@@ -0,0 +1,115 @@
/*
Copyright (c) 2010-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#define NOMINMAX
#pragma warning (disable: 4244)
#pragma warning (disable: 4305)
#endif
#include <stdio.h>
#include <algorithm>
#include "../timing.h"
#include "noise_ispc.h"
using namespace ispc;
extern void noise_serial(float x0, float y0, float x1, float y1,
int width, int height, float output[]);
/* Write a PPM image file with the image */
static void
writePPM(float *buf, int width, int height, const char *fn) {
FILE *fp = fopen(fn, "wb");
fprintf(fp, "P6\n");
fprintf(fp, "%d %d\n", width, height);
fprintf(fp, "255\n");
for (int i = 0; i < width*height; ++i) {
float v = buf[i] * 255.f;
if (v < 0) v = 0;
if (v > 255) v = 255;
for (int j = 0; j < 3; ++j)
fputc((char)v, fp);
}
fclose(fp);
}
int main() {
unsigned int width = 768;
unsigned int height = 768;
float x0 = -10;
float x1 = 10;
float y0 = -10;
float y1 = 10;
float *buf = new float[width*height];
//
// Compute the image using the ispc implementation; report the minimum
// time of three runs.
//
double minISPC = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
noise_ispc(x0, y0, x1, y1, width, height, buf);
double dt = get_elapsed_mcycles();
minISPC = std::min(minISPC, dt);
}
printf("[noise ispc]:\t\t\t[%.3f] million cycles\n", minISPC);
writePPM(buf, width, height, "noise-ispc.ppm");
// Clear out the buffer
for (unsigned int i = 0; i < width * height; ++i)
buf[i] = 0;
//
// And run the serial implementation 3 times, again reporting the
// minimum time.
//
double minSerial = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
noise_serial(x0, y0, x1, y1, width, height, buf);
double dt = get_elapsed_mcycles();
minSerial = std::min(minSerial, dt);
}
printf("[noise serial]:\t\t\t[%.3f] millon cycles\n", minSerial);
writePPM(buf, width, height, "noise-serial.ppm");
printf("\t\t\t\t(%.2fx speedup from ISPC)\n", minSerial/minISPC);
return 0;
}

164
examples/noise/noise.ispc Normal file
View File

@@ -0,0 +1,164 @@
/*
Copyright (c) 2010-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define NOISE_PERM_SIZE 256
static uniform int NoisePerm[2 * NOISE_PERM_SIZE] = {
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140,
36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120,
234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33,
88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71,
134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133,
230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161,
1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130,
116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250,
124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227,
47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44,
154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19,
98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251,
34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249,
14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115,
121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72,
243, 141, 128, 195, 78, 66, 215, 61, 156, 180, 151, 160, 137, 91, 90, 15,
131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99,
37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252,
219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125,
136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158,
231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245,
40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187,
208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109,
198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118,
126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42,
223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155,
167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232,
178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144,
12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214,
31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150,
254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78,
66, 215, 61, 156, 180
};
inline float SmoothStep(float low, float high, float value) {
float v = clamp((value - low) / (high - low), 0.f, 1.f);
return v * v * (-2.f * v + 3.f);
}
inline int Floor2Int(float val) {
return (int)floor(val);
}
inline float Grad(int x, int y, int z, float dx, float dy, float dz) {
int h = NoisePerm[NoisePerm[NoisePerm[x]+y]+z];
h &= 15;
float u = h<8 || h==12 || h==13 ? dx : dy;
float v = h<4 || h==12 || h==13 ? dy : dz;
return ((h&1) ? -u : u) + ((h&2) ? -v : v);
}
inline float NoiseWeight(float t) {
float t3 = t*t*t;
float t4 = t3*t;
return 6.f*t4*t - 15.f*t4 + 10.f*t3;
}
inline float Lerp(float t, float low, float high) {
return (1. - t) * low + t * high;
}
static float Noise(float x, float y, float z) {
// Compute noise cell coordinates and offsets
int ix = Floor2Int(x), iy = Floor2Int(y), iz = Floor2Int(z);
float dx = x - ix, dy = y - iy, dz = z - iz;
// Compute gradient weights
ix &= (NOISE_PERM_SIZE-1);
iy &= (NOISE_PERM_SIZE-1);
iz &= (NOISE_PERM_SIZE-1);
float w000 = Grad(ix, iy, iz, dx, dy, dz);
float w100 = Grad(ix+1, iy, iz, dx-1, dy, dz);
float w010 = Grad(ix, iy+1, iz, dx, dy-1, dz);
float w110 = Grad(ix+1, iy+1, iz, dx-1, dy-1, dz);
float w001 = Grad(ix, iy, iz+1, dx, dy, dz-1);
float w101 = Grad(ix+1, iy, iz+1, dx-1, dy, dz-1);
float w011 = Grad(ix, iy+1, iz+1, dx, dy-1, dz-1);
float w111 = Grad(ix+1, iy+1, iz+1, dx-1, dy-1, dz-1);
// Compute trilinear interpolation of weights
float wx = NoiseWeight(dx), wy = NoiseWeight(dy), wz = NoiseWeight(dz);
float x00 = Lerp(wx, w000, w100);
float x10 = Lerp(wx, w010, w110);
float x01 = Lerp(wx, w001, w101);
float x11 = Lerp(wx, w011, w111);
float y0 = Lerp(wy, x00, x10);
float y1 = Lerp(wy, x01, x11);
return Lerp(wz, y0, y1);
}
static float Turbulence(float x, float y, float z, uniform int octaves) {
float omega = 0.6;
float sum = 0., lambda = 1., o = 1.;
for (uniform int i = 0; i < octaves; ++i) {
sum += abs(o * Noise(lambda * x, lambda * y, lambda * z));
lambda *= 1.99f;
o *= omega;
}
return sum * 0.5;
}
export void noise_ispc(uniform float x0, uniform float y0, uniform float x1,
uniform float y1, uniform int width, uniform int height,
uniform float output[])
{
uniform float dx = (x1 - x0) / width;
uniform float dy = (y1 - y0) / height;
for (uniform int j = 0; j < height; j++) {
for (uniform int i = 0; i < width; i += programCount) {
float x = x0 + (i + programIndex) * dx;
float y = y0 + j * dy;
int index = (j * width + i + programIndex);
output[index] = Turbulence(x, y, 0.6, 8);
}
}
}

View File

@@ -0,0 +1,175 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|Win32">
<Configuration>Debug</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|Win32">
<Configuration>Release</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{0E0886D8-8B5E-4EAF-9A21-91E63DAF81FD}</ProjectGuid>
<Keyword>Win32Proj</Keyword>
<RootNamespace>noise</RootNamespace>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
<PrecompiledHeader>
</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<IntrinsicFunctions>true</IntrinsicFunctions>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<ClCompile>
<PrecompiledHeader>
</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<IntrinsicFunctions>true</IntrinsicFunctions>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PrecompiledHeader>
</PrecompiledHeader>
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PrecompiledHeader>
</PrecompiledHeader>
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
</Link>
</ItemDefinitionGroup>
<ItemGroup>
<ClCompile Include="noise.cpp" />
<ClCompile Include="noise_serial.cpp" />
</ItemGroup>
<ItemGroup>
<CustomBuild Include="noise.ispc">
<FileType>Document</FileType>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --arch=x86 --target=sse2,sse4,avx-x2
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --target=sse2,sse4,avx-x2
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --arch=x86 --target=sse2,sse4,avx-x2
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|x64'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --target=sse2,sse4,avx-x2
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|x64'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
</CustomBuild>
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>

View File

@@ -0,0 +1,170 @@
/*
Copyright (c) 2010-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <math.h>
#define NOISE_PERM_SIZE 256
static int NoisePerm[2 * NOISE_PERM_SIZE] = {
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140,
36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120,
234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33,
88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71,
134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133,
230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161,
1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130,
116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250,
124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227,
47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44,
154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19,
98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251,
34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249,
14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115,
121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72,
243, 141, 128, 195, 78, 66, 215, 61, 156, 180, 151, 160, 137, 91, 90, 15,
131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99,
37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252,
219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125,
136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158,
231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245,
40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187,
208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109,
198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118,
126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42,
223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155,
167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232,
178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144,
12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214,
31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150,
254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78,
66, 215, 61, 156, 180
};
inline float Clamp(float v, float low, float high) {
return v < low ? low : ((v > high) ? high : v);
}
inline float SmoothStep(float low, float high, float value) {
float v = Clamp((value - low) / (high - low), 0.f, 1.f);
return v * v * (-2.f * v + 3.f);
}
inline int Floor2Int(float val) {
return (int)floorf(val);
}
inline float Grad(int x, int y, int z, float dx, float dy, float dz) {
int h = NoisePerm[NoisePerm[NoisePerm[x]+y]+z];
h &= 15;
float u = h<8 || h==12 || h==13 ? dx : dy;
float v = h<4 || h==12 || h==13 ? dy : dz;
return ((h&1) ? -u : u) + ((h&2) ? -v : v);
}
inline float NoiseWeight(float t) {
float t3 = t*t*t;
float t4 = t3*t;
return 6.f*t4*t - 15.f*t4 + 10.f*t3;
}
inline float Lerp(float t, float low, float high) {
return (1.f - t) * low + t * high;
}
static float Noise(float x, float y, float z) {
// Compute noise cell coordinates and offsets
int ix = Floor2Int(x), iy = Floor2Int(y), iz = Floor2Int(z);
float dx = x - ix, dy = y - iy, dz = z - iz;
// Compute gradient weights
ix &= (NOISE_PERM_SIZE-1);
iy &= (NOISE_PERM_SIZE-1);
iz &= (NOISE_PERM_SIZE-1);
float w000 = Grad(ix, iy, iz, dx, dy, dz);
float w100 = Grad(ix+1, iy, iz, dx-1, dy, dz);
float w010 = Grad(ix, iy+1, iz, dx, dy-1, dz);
float w110 = Grad(ix+1, iy+1, iz, dx-1, dy-1, dz);
float w001 = Grad(ix, iy, iz+1, dx, dy, dz-1);
float w101 = Grad(ix+1, iy, iz+1, dx-1, dy, dz-1);
float w011 = Grad(ix, iy+1, iz+1, dx, dy-1, dz-1);
float w111 = Grad(ix+1, iy+1, iz+1, dx-1, dy-1, dz-1);
// Compute trilinear interpolation of weights
float wx = NoiseWeight(dx), wy = NoiseWeight(dy), wz = NoiseWeight(dz);
float x00 = Lerp(wx, w000, w100);
float x10 = Lerp(wx, w010, w110);
float x01 = Lerp(wx, w001, w101);
float x11 = Lerp(wx, w011, w111);
float y0 = Lerp(wy, x00, x10);
float y1 = Lerp(wy, x01, x11);
return Lerp(wz, y0, y1);
}
static float Turbulence(float x, float y, float z, int octaves) {
float omega = 0.6;
float sum = 0., lambda = 1., o = 1.;
for (int i = 0; i < octaves; ++i) {
sum += fabsf(o * Noise(lambda * x, lambda * y, lambda * z));
lambda *= 1.99f;
o *= omega;
}
return sum * 0.5f;
}
void noise_serial(float x0, float y0, float x1, float y1,
int width, int height, float output[])
{
float dx = (x1 - x0) / width;
float dy = (y1 - y0) / height;
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; ++i) {
float x = x0 + i * dx;
float y = y0 + j * dy;
int index = (j * width + i);
output[index] = Turbulence(x, y, 0.6f, 8);
}
}
}

1
examples/options/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
options

View File

@@ -1,8 +1,17 @@
CXX=g++
TASK_CXX=../tasksys.cpp
TASK_LIB=-lpthread
TASK_OBJ=$(addprefix objs/, $(subst ../,, $(TASK_CXX:.cpp=.o)))
CXX=g++ -m64
CXXFLAGS=-Iobjs/ -g -Wall
ISPC=ispc
ISPCFLAGS=-O2 --target=sse4x2
ISPCFLAGS=-O2 --target=sse2,sse4-x2,avx-x2 --arch=x86-64
OBJS=objs/options.o objs/options_serial.o objs/options_ispc.o \
objs/options_ispc_sse2.o objs/options_ispc_sse4.o \
objs/options_ispc_avx.o $(TASK_OBJ)
default: options
@@ -14,13 +23,16 @@ dirs:
clean:
/bin/rm -rf objs *~ options
options: dirs objs/options.o objs/options_serial.o objs/options_ispc.o
$(CXX) $(CXXFLAGS) -o $@ objs/options.o objs/options_ispc.o objs/options_serial.o -lm
options: dirs $(OBJS)
$(CXX) $(CXXFLAGS) -o $@ $(OBJS) -lm $(TASK_LIB)
objs/%.o: %.cpp
$(CXX) $< $(CXXFLAGS) -c -o $@
objs/%.o: ../%.cpp
$(CXX) $< $(CXXFLAGS) -c -o $@
objs/options.o: objs/options_ispc.h options_defs.h
objs/%_ispc.h objs/%_ispc.o: %.ispc options_defs.h
objs/%_ispc.h objs/%_ispc.o objs/%_ispc_sse2.o objs/%_ispc_sse4.o objs/%_ispc_avx.o: %.ispc options_defs.h
$(ISPC) $(ISPCFLAGS) $< -o objs/$*_ispc.o -h objs/$*_ispc.h

View File

@@ -31,15 +31,14 @@
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define NOMINMAX
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <algorithm>
#ifndef __APPLE__
#include <malloc.h>
#endif // !__APPLE__
using std::max;
#include "options_defs.h"
@@ -48,23 +47,6 @@ using std::max;
#include "options_ispc.h"
using namespace ispc;
// Allocate memory with 64-byte alignment.
float *AllocFloats(int count) {
int size = count * sizeof(float);
#if defined(_WIN32) || defined(_WIN64)
return (float *)_aligned_malloc(size, 64);
#elif defined (__APPLE__)
// Allocate excess memory to ensure an aligned pointer can be returned
void *mem = malloc(size + (64-1) + sizeof(void*));
char *amem = ((char*)mem) + sizeof(void*);
amem += 64 - (reinterpret_cast<uint64_t>(amem) & (64 - 1));
((void**)amem)[-1] = mem;
return (float *)amem;
#else
return (float *)memalign(64, size);
#endif
}
extern void black_scholes_serial(float Sa[], float Xa[], float Ta[],
float ra[], float va[],
float result[], int count);
@@ -73,17 +55,32 @@ extern void binomial_put_serial(float Sa[], float Xa[], float Ta[],
float ra[], float va[],
float result[], int count);
int main() {
// Pointers passed to ispc code must have alignment of the target's
// vector width at minimum.
float *S = AllocFloats(N_OPTIONS);
float *X = AllocFloats(N_OPTIONS);
float *T = AllocFloats(N_OPTIONS);
float *r = AllocFloats(N_OPTIONS);
float *v = AllocFloats(N_OPTIONS);
float *result = AllocFloats(N_OPTIONS);
static void usage() {
printf("usage: options [--count=<num options>]\n");
}
for (int i = 0; i < N_OPTIONS; ++i) {
int main(int argc, char *argv[]) {
int nOptions = 128*1024;
for (int i = 1; i < argc; ++i) {
if (strncmp(argv[i], "--count=", 8) == 0) {
nOptions = atoi(argv[i] + 8);
if (nOptions <= 0) {
usage();
exit(1);
}
}
}
float *S = new float[nOptions];
float *X = new float[nOptions];
float *T = new float[nOptions];
float *r = new float[nOptions];
float *v = new float[nOptions];
float *result = new float[nOptions];
for (int i = 0; i < nOptions; ++i) {
S[i] = 100; // stock price
X[i] = 98; // option strike price
T[i] = 2; // time (years)
@@ -91,61 +88,109 @@ int main() {
v[i] = 5; // volatility
}
double sum;
//
// Binomial options pricing model, ispc implementation
//
reset_and_start_timer();
binomial_put_ispc(S, X, T, r, v, result, N_OPTIONS);
double binomial_ispc = get_elapsed_mcycles();
float sum = 0.f;
for (int i = 0; i < N_OPTIONS; ++i)
sum += result[i];
printf("[binomial ispc]:\t\t[%.3f] million cycles (avg %f)\n",
binomial_ispc, sum / N_OPTIONS);
double binomial_ispc = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
binomial_put_ispc(S, X, T, r, v, result, nOptions);
double dt = get_elapsed_mcycles();
sum = 0.;
for (int i = 0; i < nOptions; ++i)
sum += result[i];
binomial_ispc = std::min(binomial_ispc, dt);
}
printf("[binomial ispc, 1 thread]:\t[%.3f] million cycles (avg %f)\n",
binomial_ispc, sum / nOptions);
//
// Binomial options pricing model, ispc implementation, tasks
//
double binomial_tasks = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
binomial_put_ispc_tasks(S, X, T, r, v, result, nOptions);
double dt = get_elapsed_mcycles();
sum = 0.;
for (int i = 0; i < nOptions; ++i)
sum += result[i];
binomial_tasks = std::min(binomial_tasks, dt);
}
printf("[binomial ispc, tasks]:\t\t[%.3f] million cycles (avg %f)\n",
binomial_tasks, sum / nOptions);
//
// Binomial options, serial implementation
//
reset_and_start_timer();
binomial_put_serial(S, X, T, r, v, result, N_OPTIONS);
double binomial_serial = get_elapsed_mcycles();
sum = 0.f;
for (int i = 0; i < N_OPTIONS; ++i)
sum += result[i];
printf("[binomial serial]:\t\t[%.3f] million cycles (avg %f)\n",
binomial_serial, sum / N_OPTIONS);
printf("\t\t\t\t(%.2fx speedup from ISPC)\n", binomial_serial / binomial_ispc);
//
// Black-Scholes options pricing model, ispc implementation
//
sum = 0.f;
reset_and_start_timer();
for (int a = 0; a < N_BLACK_SCHOLES_ROUNDS; ++a) {
black_scholes_ispc(S, X, T, r, v, result, N_OPTIONS);
for (int i = 0; i < N_OPTIONS; ++i)
double binomial_serial = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
binomial_put_serial(S, X, T, r, v, result, nOptions);
double dt = get_elapsed_mcycles();
sum = 0.;
for (int i = 0; i < nOptions; ++i)
sum += result[i];
binomial_serial = std::min(binomial_serial, dt);
}
double bs_ispc = get_elapsed_mcycles();
printf("[black-scholes ispc]:\t\t[%.3f] million cycles (avg %f)\n",
bs_ispc, sum / (N_BLACK_SCHOLES_ROUNDS * N_OPTIONS));
printf("[binomial serial]:\t\t[%.3f] million cycles (avg %f)\n",
binomial_serial, sum / nOptions);
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n",
binomial_serial / binomial_ispc, binomial_serial / binomial_tasks);
//
// Black-Scholes options pricing model, ispc implementation, 1 thread
//
double bs_ispc = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
black_scholes_ispc(S, X, T, r, v, result, nOptions);
double dt = get_elapsed_mcycles();
sum = 0.;
for (int i = 0; i < nOptions; ++i)
sum += result[i];
bs_ispc = std::min(bs_ispc, dt);
}
printf("[black-scholes ispc, 1 thread]:\t[%.3f] million cycles (avg %f)\n",
bs_ispc, sum / nOptions);
//
// Black-Scholes options pricing model, ispc implementation, tasks
//
double bs_ispc_tasks = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
black_scholes_ispc_tasks(S, X, T, r, v, result, nOptions);
double dt = get_elapsed_mcycles();
sum = 0.;
for (int i = 0; i < nOptions; ++i)
sum += result[i];
bs_ispc_tasks = std::min(bs_ispc_tasks, dt);
}
printf("[black-scholes ispc, tasks]:\t[%.3f] million cycles (avg %f)\n",
bs_ispc_tasks, sum / nOptions);
//
// Black-Scholes options pricing model, serial implementation
//
sum = 0.f;
reset_and_start_timer();
for (int a = 0; a < N_BLACK_SCHOLES_ROUNDS; ++a) {
black_scholes_serial(S, X, T, r, v, result, N_OPTIONS);
for (int i = 0; i < N_OPTIONS; ++i)
double bs_serial = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
black_scholes_serial(S, X, T, r, v, result, nOptions);
double dt = get_elapsed_mcycles();
sum = 0.;
for (int i = 0; i < nOptions; ++i)
sum += result[i];
bs_serial = std::min(bs_serial, dt);
}
double bs_serial = get_elapsed_mcycles();
printf("[black-scholes serial]:\t\t[%.3f] million cycles (avg %f)\n", bs_serial,
sum / (N_BLACK_SCHOLES_ROUNDS * N_OPTIONS));
sum / nOptions);
printf("\t\t\t\t(%.2fx speedup from ISPC)\n", bs_serial / bs_ispc);
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n",
bs_serial / bs_ispc, bs_serial / bs_ispc_tasks);
return 0;
}

View File

@@ -55,49 +55,100 @@ CND(float X) {
return w;
}
export void
black_scholes_ispc(uniform float Sa[], uniform float Xa[], uniform float Ta[],
uniform float ra[], uniform float va[],
uniform float result[], uniform int count) {
for (uniform int i = 0; i < count; i += programCount) {
float S = Sa[i + programIndex], X = Xa[i + programIndex];
float T = Ta[i + programIndex], r = ra[i + programIndex];
float v = va[i + programIndex];
task void
bs_task(uniform float Sa[], uniform float Xa[], uniform float Ta[],
uniform float ra[], uniform float va[],
uniform float result[], uniform int count) {
uniform int first = taskIndex * (count/taskCount);
uniform int last = min(count, (int)((taskIndex+1) * (count/taskCount)));
foreach (i = first ... last) {
float S = Sa[i], X = Xa[i], T = Ta[i], r = ra[i], v = va[i];
float d1 = (log(S/X) + (r + v * v * .5f) * T) / (v * sqrt(T));
float d2 = d1 - v * sqrt(T);
result[i + programIndex] = S * CND(d1) - X * exp(-r * T) * CND(d2);
result[i] = S * CND(d1) - X * exp(-r * T) * CND(d2);
}
}
export void
black_scholes_ispc_tasks(uniform float Sa[], uniform float Xa[], uniform float Ta[],
uniform float ra[], uniform float va[],
uniform float result[], uniform int count) {
uniform int nTasks = max((int)64, (int)count/16384);
launch[nTasks] < bs_task(Sa, Xa, Ta, ra, va, result, count) >;
}
export void
black_scholes_ispc(uniform float Sa[], uniform float Xa[], uniform float Ta[],
uniform float ra[], uniform float va[],
uniform float result[], uniform int count) {
foreach (i = 0 ... count) {
float S = Sa[i], X = Xa[i], T = Ta[i], r = ra[i], v = va[i];
float d1 = (log(S/X) + (r + v * v * .5f) * T) / (v * sqrt(T));
float d2 = d1 - v * sqrt(T);
result[i] = S * CND(d1) - X * exp(-r * T) * CND(d2);
}
}
static inline float
binomial_put(float S, float X, float T, float r, float v) {
float V[BINOMIAL_NUM];
float dt = T / BINOMIAL_NUM;
float u = exp(v * sqrt(dt));
float d = 1. / u;
float disc = exp(r * dt);
float Pu = (disc - d) / (u - d);
for (uniform int j = 0; j < BINOMIAL_NUM; ++j) {
float upow = pow(u, (float)(2*j-BINOMIAL_NUM));
V[j] = max(0., X - S * upow);
}
for (uniform int j = BINOMIAL_NUM-1; j >= 0; --j)
for (uniform int k = 0; k < j; ++k)
V[k] = ((1 - Pu) * V[k] + Pu * V[k + 1]) / disc;
return V[0];
}
export void
binomial_put_ispc(uniform float Sa[], uniform float Xa[], uniform float Ta[],
uniform float ra[], uniform float va[],
uniform float result[], uniform int count) {
float V[BINOMIAL_NUM];
for (uniform int i = 0; i < count; i += programCount) {
float S = Sa[i + programIndex], X = Xa[i + programIndex];
float T = Ta[i + programIndex], r = ra[i + programIndex];
float v = va[i + programIndex];
float dt = T / BINOMIAL_NUM;
float u = exp(v * sqrt(dt));
float d = 1. / u;
float disc = exp(r * dt);
float Pu = (disc - d) / (u - d);
for (uniform int j = 0; j < BINOMIAL_NUM; ++j) {
float upow = pow(u, (float)(2*j-BINOMIAL_NUM));
V[j] = max(0., X - S * upow);
}
for (uniform int j = BINOMIAL_NUM-1; j >= 0; --j)
for (uniform int k = 0; k < j; ++k)
V[k] = ((1 - Pu) * V[k] + Pu * V[k + 1]) / disc;
result[i + programIndex] = V[0];
foreach (i = 0 ... count) {
float S = Sa[i], X = Xa[i], T = Ta[i], r = ra[i], v = va[i];
result[i] = binomial_put(S, X, T, r, v);
}
}
task void
binomial_task(uniform float Sa[], uniform float Xa[],
uniform float Ta[], uniform float ra[],
uniform float va[], uniform float result[],
uniform int count) {
uniform int first = taskIndex * (count/taskCount);
uniform int last = min(count, (int)((taskIndex+1) * (count/taskCount)));
foreach (i = first ... last) {
float S = Sa[i], X = Xa[i], T = Ta[i], r = ra[i], v = va[i];
result[i] = binomial_put(S, X, T, r, v);
}
}
export void
binomial_put_ispc_tasks(uniform float Sa[], uniform float Xa[],
uniform float Ta[], uniform float ra[],
uniform float va[], uniform float result[],
uniform int count) {
uniform int nTasks = max((int)64, (int)count/16384);
launch[nTasks] < binomial_task(Sa, Xa, Ta, ra, va, result, count) >;
}

31
examples/options/options.vcxproj Executable file → Normal file
View File

@@ -64,15 +64,19 @@
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
@@ -81,7 +85,10 @@
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<DisableSpecificWarnings>4305</DisableSpecificWarnings>
<IntrinsicFunctions>true</IntrinsicFunctions>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -95,7 +102,10 @@
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<DisableSpecificWarnings>4305</DisableSpecificWarnings>
<IntrinsicFunctions>true</IntrinsicFunctions>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -111,7 +121,9 @@
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<DisableSpecificWarnings>4305</DisableSpecificWarnings>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -129,7 +141,9 @@
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<DisableSpecificWarnings>4305</DisableSpecificWarnings>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -141,22 +155,23 @@
<ItemGroup>
<ClCompile Include="options.cpp" />
<ClCompile Include="options_serial.cpp" />
<ClCompile Include="../tasksys.cpp" />
</ItemGroup>
<ItemGroup>
<CustomBuild Include="options.ispc">
<FileType>Document</FileType>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --arch=x86 --target=sse4x2
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --arch=x86 --target=sse2,sse4-x2,avx-x2
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --target=sse4x2
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --target=sse2,sse4-x2,avx-x2
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">%(Filename).obj;%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">%(Filename).obj;%(Filename)_ispc.h</Outputs>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --arch=x86 --target=sse4x2
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --arch=x86 --target=sse2,sse4-x2,avx-x2
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|x64'">cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --target=sse4x2
<Command Condition="'$(Configuration)|$(Platform)'=='Release|x64'">ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --target=sse2,sse4-x2,avx-x2
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">%(Filename).obj;%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|x64'">%(Filename).obj;%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|x64'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
</CustomBuild>
</ItemGroup>
<ItemGroup>

View File

@@ -35,8 +35,6 @@
#define OPTIONS_DEFS_H 1
#define BINOMIAL_NUM 64
#define N_OPTIONS 65536
#define N_BLACK_SCHOLES_ROUNDS 20
#endif // OPTIONS_DEFS_H

View File

@@ -47,7 +47,7 @@ static inline float
CND(float X) {
float L = fabsf(X);
float k = 1.0 / (1.0 + 0.2316419 * L);
float k = 1.f / (1.f + 0.2316419f * L);
float k2 = k*k;
float k3 = k2*k;
float k4 = k2*k2;
@@ -59,7 +59,7 @@ CND(float X) {
w *= invSqrt2Pi * expf(-L * L * .5f);
if (X > 0.f)
w = 1.0 - w;
w = 1.f - w;
return w;
}
@@ -94,7 +94,7 @@ binomial_put_serial(float Sa[], float Xa[], float Ta[],
float dt = T / BINOMIAL_NUM;
float u = expf(v * sqrtf(dt));
float d = 1. / u;
float d = 1.f / u;
float disc = expf(r * dt);
float Pu = (disc - d) / (u - d);

2
examples/rt/.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
rt
*.ppm

View File

@@ -1,8 +1,17 @@
ARCH = $(shell uname)
TASK_CXX=../tasksys.cpp
TASK_LIB=-lpthread
TASK_OBJ=$(addprefix objs/, $(subst ../,, $(TASK_CXX:.cpp=.o)))
CXX=g++
CXXFLAGS=-Iobjs/ -O3 -Wall
CXXFLAGS=-Iobjs/ -O3 -Wall -m64
ISPC=ispc
ISPCFLAGS=-O2 --target=sse4x2
ISPCFLAGS=-O2 --target=sse2,sse4-x2,avx --arch=x86-64
OBJS=objs/rt.o objs/rt_serial.o $(TASK_OBJ) objs/rt_ispc.o objs/rt_ispc_sse2.o \
objs/rt_ispc_sse4.o objs/rt_ispc_avx.o
default: rt
@@ -14,11 +23,16 @@ dirs:
clean:
/bin/rm -rf objs *~ rt
rt: dirs objs/rt.o objs/rt_serial.o objs/rt_ispc.o
$(CXX) $(CXXFLAGS) -o $@ objs/rt.o objs/rt_ispc.o objs/rt_serial.o -lm
rt: dirs $(OBJS)
$(CXX) $(CXXFLAGS) -o $@ $(OBJS) -lm $(TASK_LIB)
objs/%.o: %.cpp objs/rt_ispc.h
objs/%.o: %.cpp
$(CXX) $< $(CXXFLAGS) -c -o $@
objs/%_ispc.h objs/%_ispc.o: %.ispc
objs/%.o: ../%.cpp
$(CXX) $< $(CXXFLAGS) -c -o $@
objs/rt.o: objs/rt_ispc.h
objs/%_ispc.h objs/%_ispc.o objs/%_ispc_sse2.o objs/%_ispc_sse4.o objs/%_ispc_avx.o: %.ispc
$(ISPC) $(ISPCFLAGS) $< -o objs/$*_ispc.o -h objs/$*_ispc.h

View File

@@ -42,10 +42,8 @@
#include <math.h>
#include <algorithm>
#include <assert.h>
#include <string.h>
#include <sys/types.h>
#ifndef __APPLE__
#include <malloc.h>
#endif
#include "../timing.h"
#include "rt_ispc.h"
@@ -53,24 +51,8 @@ using namespace ispc;
typedef unsigned int uint;
template <typename T>
T *AllocAligned(int count) {
int size = count * sizeof(T);
#if defined(_WIN32) || defined(_WIN64)
return (T *)_aligned_malloc(size, 64);
#elif defined (__APPLE__)
// Allocate excess memory to ensure an aligned pointer can be returned
void *mem = malloc(size + (64-1) + sizeof(void*));
char *amem = ((char*)mem) + sizeof(void*);
amem += 64 - (reinterpret_cast<uint64_t>(amem) & (64 - 1));
((void**)amem)[-1] = mem;
return (T *)amem;
#else
return (T *)memalign(64, size);
#endif
}
extern void raytrace_serial(int width, int height, const float raster2camera[4][4],
extern void raytrace_serial(int width, int height, int baseWidth, int baseHeight,
const float raster2camera[4][4],
const float camera2world[4][4], float image[],
int id[], const LinearBVHNode nodes[],
const Triangle triangles[]);
@@ -109,14 +91,32 @@ static void writeImage(int *idImage, float *depthImage, int width, int height,
}
}
fclose(f);
printf("Wrote image file %s\n", filename);
}
static void usage() {
fprintf(stderr, "rt [--scale=<factor>] <scene name base>\n");
exit(1);
}
int main(int argc, char *argv[]) {
if (argc != 2) {
fprintf(stderr, "usage: rt <filename base>\n");
exit(1);
float scale = 1.f;
const char *filename = NULL;
for (int i = 1; i < argc; ++i) {
if (strncmp(argv[i], "--scale=", 8) == 0) {
scale = atof(argv[i] + 8);
if (scale == 0.f)
usage();
}
else if (filename != NULL)
usage();
else
filename = argv[i];
}
if (filename == NULL)
usage();
#define READ(var, n) \
if (fread(&(var), sizeof(var), n, f) != (unsigned int)n) { \
@@ -128,10 +128,10 @@ int main(int argc, char *argv[]) {
// Read the camera specification information from the camera file
//
char fnbuf[1024];
sprintf(fnbuf, "%s.camera", argv[1]);
sprintf(fnbuf, "%s.camera", filename);
FILE *f = fopen(fnbuf, "rb");
if (!f) {
perror(argv[1]);
perror(fnbuf);
return 1;
}
@@ -139,20 +139,20 @@ int main(int argc, char *argv[]) {
// Nothing fancy, and trouble if we run on a big-endian system, just
// fread in the bits
//
int width, height;
int baseWidth, baseHeight;
float camera2world[4][4], raster2camera[4][4];
READ(width, 1);
READ(height, 1);
READ(baseWidth, 1);
READ(baseHeight, 1);
READ(camera2world[0][0], 16);
READ(raster2camera[0][0], 16);
//
// Read in the serialized BVH
//
sprintf(fnbuf, "%s.bvh", argv[1]);
sprintf(fnbuf, "%s.bvh", filename);
f = fopen(fnbuf, "rb");
if (!f) {
perror(argv[2]);
perror(fnbuf);
return 1;
}
@@ -161,46 +161,46 @@ int main(int argc, char *argv[]) {
uint nNodes;
READ(nNodes, 1);
LinearBVHNode *nodes = AllocAligned<LinearBVHNode>(nNodes);
LinearBVHNode *nodes = new LinearBVHNode[nNodes];
for (unsigned int i = 0; i < nNodes; ++i) {
// Each node is 6x floats for a boox, then an integer for an offset
// to the second child node, then an integer that encodes the type
// of node, the total number of int it if a leaf node, etc.
float b[6];
READ(b[0], 6);
nodes[i].bounds[0].v[0] = b[0];
nodes[i].bounds[0].v[1] = b[1];
nodes[i].bounds[0].v[2] = b[2];
nodes[i].bounds[1].v[0] = b[3];
nodes[i].bounds[1].v[1] = b[4];
nodes[i].bounds[1].v[2] = b[5];
nodes[i].bounds[0][0] = b[0];
nodes[i].bounds[0][1] = b[1];
nodes[i].bounds[0][2] = b[2];
nodes[i].bounds[1][0] = b[3];
nodes[i].bounds[1][1] = b[4];
nodes[i].bounds[1][2] = b[5];
READ(nodes[i].offset, 1);
READ(nodes[i].primsAxis, 1);
READ(nodes[i].nPrimitives, 1);
READ(nodes[i].splitAxis, 1);
READ(nodes[i].pad, 1);
}
// And then read the triangles
uint nTris;
READ(nTris, 1);
Triangle *triangles = AllocAligned<Triangle>(nTris);
Triangle *triangles = new Triangle[nTris];
for (uint i = 0; i < nTris; ++i) {
// 9x floats for the 3 vertices
float v[9];
READ(v[0], 9);
float *vp = v;
for (int j = 0; j < 3; ++j) {
triangles[i].p[j].v[0] = *vp++;
triangles[i].p[j].v[1] = *vp++;
triangles[i].p[j].v[2] = *vp++;
triangles[i].p[j][0] = *vp++;
triangles[i].p[j][1] = *vp++;
triangles[i].p[j][2] = *vp++;
}
// And create an object id
triangles[i].id = i+1;
}
fclose(f);
// round image resolution up to multiple of 4 to makethings easy for
// the code that assigns pixels to ispc program instances
height = (height + 3) & ~3;
width = (width + 3) & ~3;
int height = int(baseHeight * scale);
int width = int(baseWidth * scale);
// allocate images; one to hold hit object ids, one to hold depth to
// the first interseciton
@@ -208,19 +208,42 @@ int main(int argc, char *argv[]) {
float *image = new float[width*height];
//
// Run 3 iterations with ispc, record the minimum time
// Run 3 iterations with ispc + 1 core, record the minimum time
//
double minTimeISPC = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
raytrace(width, height, raster2camera, camera2world,
image, id, nodes, triangles);
raytrace_ispc(width, height, baseWidth, baseHeight, raster2camera,
camera2world, image, id, nodes, triangles);
double dt = get_elapsed_mcycles();
minTimeISPC = std::min(dt, minTimeISPC);
}
printf("[rt ispc]:\t\t\t[%.3f] million cycles for %d x %d image\n", minTimeISPC, width, height);
printf("[rt ispc, 1 core]:\t\t[%.3f] million cycles for %d x %d image\n",
minTimeISPC, width, height);
writeImage(id, image, width, height, "rt-ispc.ppm");
writeImage(id, image, width, height, "rt-ispc-1core.ppm");
memset(id, 0, width*height*sizeof(int));
memset(image, 0, width*height*sizeof(float));
//
// Run 3 iterations with ispc + 1 core, record the minimum time
//
double minTimeISPCtasks = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
raytrace_ispc_tasks(width, height, baseWidth, baseHeight, raster2camera,
camera2world, image, id, nodes, triangles);
double dt = get_elapsed_mcycles();
minTimeISPCtasks = std::min(dt, minTimeISPCtasks);
}
printf("[rt ispc + tasks]:\t\t[%.3f] million cycles for %d x %d image\n",
minTimeISPCtasks, width, height);
writeImage(id, image, width, height, "rt-ispc-tasks.ppm");
memset(id, 0, width*height*sizeof(int));
memset(image, 0, width*height*sizeof(float));
//
// And 3 iterations with the serial implementation, reporting the
@@ -229,14 +252,15 @@ int main(int argc, char *argv[]) {
double minTimeSerial = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
raytrace_serial(width, height, raster2camera, camera2world,
image, id, nodes, triangles);
raytrace_serial(width, height, baseWidth, baseHeight, raster2camera,
camera2world, image, id, nodes, triangles);
double dt = get_elapsed_mcycles();
minTimeSerial = std::min(dt, minTimeSerial);
}
printf("[rt serial]:\t\t\t[%.3f] million cycles for %d x %d image\n",
minTimeSerial, width, height);
printf("\t\t\t\t(%.2fx speedup from ISPC)\n", minTimeSerial / minTimeISPC);
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2f from ISPC + tasks)\n",
minTimeSerial / minTimeISPC, minTimeSerial / minTimeISPCtasks);
writeImage(id, image, width, height, "rt-serial.ppm");

View File

@@ -43,28 +43,19 @@ struct Ray {
};
struct Triangle {
uniform float3 p[3];
uniform float p[3][4];
uniform int id;
uniform int pad[3];
};
struct LinearBVHNode {
uniform float3 bounds[2];
uniform float bounds[2][3];
uniform unsigned int offset; // num primitives for leaf, second child for interior
uniform unsigned int primsAxis; // 0:7 nPrimitives, 8:15 split axis, 16:31 padding
uniform unsigned int8 nPrimitives;
uniform unsigned int8 splitAxis;
uniform unsigned int16 pad;
};
static inline uniform int nPrims(const reference LinearBVHNode node) {
return (node.primsAxis & 0xff);
}
static inline uniform int axis(const reference LinearBVHNode node) {
return ((node.primsAxis >> 8) & 0xff);
}
static inline uniform bool isInterior(const reference LinearBVHNode node) {
return nPrims(node) == 0;
}
static inline float3 Cross(const float3 v1, const float3 v2) {
float v1x = v1.x, v1y = v1.y, v1z = v1.z;
float v2x = v2.x, v2y = v2.y, v2z = v2.z;
@@ -82,7 +73,7 @@ static inline float Dot(const float3 a, const float3 b) {
static void generateRay(uniform const float raster2camera[4][4],
uniform const float camera2world[4][4],
float x, float y, reference Ray ray) {
float x, float y, Ray &ray) {
ray.mint = 0.f;
ray.maxt = 1e30f;
@@ -113,14 +104,16 @@ static void generateRay(uniform const float raster2camera[4][4],
}
static inline bool BBoxIntersect(const reference uniform float3 bounds[2],
const reference Ray ray) {
static inline bool BBoxIntersect(const uniform float bounds[2][3],
const Ray &ray) {
uniform float3 bounds0 = { bounds[0][0], bounds[0][1], bounds[0][2] };
uniform float3 bounds1 = { bounds[1][0], bounds[1][1], bounds[1][2] };
float t0 = ray.mint, t1 = ray.maxt;
// Check all three axis-aligned slabs. Don't try to early out; it's
// not worth the trouble
float3 tNear = (bounds[0] - ray.origin) * ray.invDir;
float3 tFar = (bounds[1] - ray.origin) * ray.invDir;
float3 tNear = (bounds0 - ray.origin) * ray.invDir;
float3 tFar = (bounds1 - ray.origin) * ray.invDir;
if (tNear.x > tFar.x) {
float tmp = tNear.x;
tNear.x = tFar.x;
@@ -150,9 +143,12 @@ static inline bool BBoxIntersect(const reference uniform float3 bounds[2],
static inline bool TriIntersect(const reference Triangle tri, reference Ray ray) {
uniform float3 e1 = tri.p[1] - tri.p[0];
uniform float3 e2 = tri.p[2] - tri.p[0];
static inline bool TriIntersect(const Triangle &tri, Ray &ray) {
uniform float3 p0 = { tri.p[0][0], tri.p[0][1], tri.p[0][2] };
uniform float3 p1 = { tri.p[1][0], tri.p[1][1], tri.p[1][2] };
uniform float3 p2 = { tri.p[2][0], tri.p[2][1], tri.p[2][2] };
uniform float3 e1 = p1 - p0;
uniform float3 e2 = p2 - p0;
float3 s1 = Cross(ray.dir, e2);
float divisor = Dot(s1, e1);
@@ -163,7 +159,7 @@ static inline bool TriIntersect(const reference Triangle tri, reference Ray ray)
float invDivisor = 1.f / divisor;
// Compute first barycentric coordinate
float3 d = ray.origin - tri.p[0];
float3 d = ray.origin - p0;
float b1 = Dot(d, s1) * invDivisor;
if (b1 < 0. || b1 > 1.)
hit = false;
@@ -188,7 +184,7 @@ static inline bool TriIntersect(const reference Triangle tri, reference Ray ray)
bool BVHIntersect(const LinearBVHNode nodes[], const Triangle tris[],
reference Ray r) {
Ray &r) {
Ray ray = r;
bool hit = false;
// Follow ray through BVH nodes to find primitive intersections
@@ -199,7 +195,7 @@ bool BVHIntersect(const LinearBVHNode nodes[], const Triangle tris[],
// Check ray against BVH node
LinearBVHNode node = nodes[nodeNum];
if (any(BBoxIntersect(node.bounds, ray))) {
uniform unsigned int nPrimitives = nPrims(node);
uniform unsigned int nPrimitives = node.nPrimitives;
if (nPrimitives > 0) {
// Intersect ray with primitives in leaf BVH node
uniform unsigned int primitivesOffset = node.offset;
@@ -213,7 +209,7 @@ bool BVHIntersect(const LinearBVHNode nodes[], const Triangle tris[],
}
else {
// Put far BVH node on _todo_ stack, advance to near node
if (r.dirIsNeg[axis(node)]) {
if (r.dirIsNeg[node.splitAxis]) {
todo[todoOffset++] = nodeNum + 1;
nodeNum = node.offset;
}
@@ -236,38 +232,77 @@ bool BVHIntersect(const LinearBVHNode nodes[], const Triangle tris[],
}
export void raytrace(uniform int width, uniform int height,
const uniform float raster2camera[4][4],
const uniform float camera2world[4][4],
uniform float image[], uniform int id[],
const LinearBVHNode nodes[],
const Triangle triangles[]) {
static const uniform float udx[16] = { 0, 1, 0, 1, 2, 3, 2, 3,
0, 1, 0, 1, 2, 3, 2, 3 };
static const uniform float udy[16] = { 0, 0, 1, 1, 0, 0, 1, 1,
2, 2, 3, 3, 2, 2, 3, 3 };
static void raytrace_tile(uniform int x0, uniform int x1,
uniform int y0, uniform int y1,
uniform int width, uniform int height,
uniform int baseWidth, uniform int baseHeight,
const uniform float raster2camera[4][4],
const uniform float camera2world[4][4],
uniform float image[], uniform int id[],
const LinearBVHNode nodes[],
const Triangle triangles[]) {
uniform float widthScale = (float)(baseWidth) / (float)(width);
uniform float heightScale = (float)(baseHeight) / (float)(height);
// The outer loops are always over blocks of 4x4 pixels
for (uniform int y = 0; y < height; y += 4) {
for (uniform int x = 0; x < width; x += 4) {
// Now we have a block of 4x4=16 pixels to process; it will
// take 16/programCount iterations of this loop to process
// them.
for (uniform int o = 0; o < 16 / programCount; ++o) {
// Map program instances to samples in the udx/udy arrays
// to figure out which pixel each program instance is
// responsible for
const float dx = udx[o * programCount + programIndex];
const float dy = udy[o * programCount + programIndex];
foreach_tiled (y = y0 ... y1, x = x0 ... x1) {
Ray ray;
generateRay(raster2camera, camera2world, x*widthScale,
y*heightScale, ray);
BVHIntersect(nodes, triangles, ray);
Ray ray;
generateRay(raster2camera, camera2world, x+dx, y+dy, ray);
BVHIntersect(nodes, triangles, ray);
int offset = (y + (int)dy) * width + (x + (int)dx);
image[offset] = ray.maxt;
id[offset] = ray.hitId;
}
}
int offset = y * width + x;
image[offset] = ray.maxt;
id[offset] = ray.hitId;
}
}
export void raytrace_ispc(uniform int width, uniform int height,
uniform int baseWidth, uniform int baseHeight,
const uniform float raster2camera[4][4],
const uniform float camera2world[4][4],
uniform float image[], uniform int id[],
const LinearBVHNode nodes[],
const Triangle triangles[]) {
raytrace_tile(0, width, 0, height, width, height, baseWidth, baseHeight,
raster2camera, camera2world, image,
id, nodes, triangles);
}
task void raytrace_tile_task(uniform int width, uniform int height,
uniform int baseWidth, uniform int baseHeight,
const uniform float raster2camera[4][4],
const uniform float camera2world[4][4],
uniform float image[], uniform int id[],
const LinearBVHNode nodes[],
const Triangle triangles[]) {
uniform int dx = 16, dy = 16; // must match dx, dy below
uniform int xBuckets = (width + (dx-1)) / dx;
uniform int x0 = (taskIndex % xBuckets) * dx;
uniform int x1 = min(x0 + dx, width);
uniform int y0 = (taskIndex / xBuckets) * dy;
uniform int y1 = min(y0 + dy, height);
raytrace_tile(x0, x1, y0, y1, width, height, baseWidth, baseHeight,
raster2camera, camera2world, image,
id, nodes, triangles);
}
export void raytrace_ispc_tasks(uniform int width, uniform int height,
uniform int baseWidth, uniform int baseHeight,
const uniform float raster2camera[4][4],
const uniform float camera2world[4][4],
uniform float image[], uniform int id[],
const LinearBVHNode nodes[],
const Triangle triangles[]) {
uniform int dx = 16, dy = 16;
uniform int xBuckets = (width + (dx-1)) / dx;
uniform int yBuckets = (height + (dy-1)) / dy;
uniform int nTasks = xBuckets * yBuckets;
launch[nTasks] < raytrace_tile_task(width, height, baseWidth, baseHeight,
raster2camera, camera2world,
image, id, nodes, triangles) >;
}

31
examples/rt/rt.vcxproj Executable file → Normal file
View File

@@ -64,15 +64,19 @@
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
@@ -81,6 +85,9 @@
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<IntrinsicFunctions>true</IntrinsicFunctions>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -94,6 +101,9 @@
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<IntrinsicFunctions>true</IntrinsicFunctions>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -109,6 +119,8 @@
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -126,6 +138,8 @@
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
<FloatingPointModel>Fast</FloatingPointModel>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -138,26 +152,27 @@
<CustomBuild Include="rt.ispc">
<FileType>Document</FileType>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --arch=x86
ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --arch=x86 --target=sse2,sse4-x2,avx
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h
ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --target=sse2,sse4-x2,avx
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">%(Filename).obj</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">%(Filename).obj</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --arch=x86
ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --arch=x86 --target=sse2,sse4-x2,avx
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h
ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --target=sse2,sse4-x2,avx
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">%(Filename).obj</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|x64'">%(Filename).obj</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|x64'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_sse2.obj;$(TargetDir)%(Filename)_sse4.obj;$(TargetDir)%(Filename)_avx.obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
</CustomBuild>
</ItemGroup>
<ItemGroup>
<ClCompile Include="rt.cpp" />
<ClCompile Include="rt_serial.cpp" />
<ClCompile Include="../tasksys.cpp" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">

View File

@@ -39,6 +39,7 @@
#endif
#include <algorithm>
#include <stdint.h>
// Just enough of a float3 class to do what we need in this file.
#ifdef _MSC_VER
@@ -74,31 +75,22 @@ struct Ray {
// Declare these in a namespace so the mangling matches
namespace ispc {
struct Triangle {
float3 p[3];
int id;
float p[3][4]; // extra float pad after each vertex
int32_t id;
int32_t pad[3]; // make 16 x 32-bits
};
struct LinearBVHNode {
float3 bounds[2];
unsigned int offset; // primitives for leaf, second child for interior
unsigned int primsAxis; // 0:7 nPrimitives, 8:15 split axis, 16:31 padding
float bounds[2][3];
int32_t offset; // primitives for leaf, second child for interior
uint8_t nPrimitives;
uint8_t splitAxis;
uint16_t pad;
};
}
using namespace ispc;
inline int nPrims(const LinearBVHNode &node) {
return (node.primsAxis & 0xff);
}
inline int axis(const LinearBVHNode &node) {
return ((node.primsAxis >> 8) & 0xff);
}
inline bool isInterior(const LinearBVHNode &node) {
return nPrims(node) == 0;
}
inline float3 Cross(const float3 &v1, const float3 &v2) {
float v1x = v1.x, v1y = v1.y, v1z = v1.z;
float v2x = v2.x, v2y = v2.y, v2z = v2.z;
@@ -149,12 +141,14 @@ static void generateRay(const float raster2camera[4][4],
}
static inline bool BBoxIntersect(const float3 bounds[2],
static inline bool BBoxIntersect(const float bounds[2][3],
const Ray &ray) {
float3 bounds0(bounds[0][0], bounds[0][1], bounds[0][2]);
float3 bounds1(bounds[1][0], bounds[1][1], bounds[1][2]);
float t0 = ray.mint, t1 = ray.maxt;
float3 tNear = (bounds[0] - ray.origin) * ray.invDir;
float3 tFar = (bounds[1] - ray.origin) * ray.invDir;
float3 tNear = (bounds0 - ray.origin) * ray.invDir;
float3 tFar = (bounds1 - ray.origin) * ray.invDir;
if (tNear.x > tFar.x) {
float tmp = tNear.x;
tNear.x = tFar.x;
@@ -185,8 +179,11 @@ static inline bool BBoxIntersect(const float3 bounds[2],
inline bool TriIntersect(const Triangle &tri, Ray &ray) {
float3 e1 = tri.p[1] - tri.p[0];
float3 e2 = tri.p[2] - tri.p[0];
float3 p0(tri.p[0][0], tri.p[0][1], tri.p[0][2]);
float3 p1(tri.p[1][0], tri.p[1][1], tri.p[1][2]);
float3 p2(tri.p[2][0], tri.p[2][1], tri.p[2][2]);
float3 e1 = p1 - p0;
float3 e2 = p2 - p0;
float3 s1 = Cross(ray.dir, e2);
float divisor = Dot(s1, e1);
@@ -196,7 +193,7 @@ inline bool TriIntersect(const Triangle &tri, Ray &ray) {
float invDivisor = 1.f / divisor;
// Compute first barycentric coordinate
float3 d = ray.origin - tri.p[0];
float3 d = ray.origin - p0;
float b1 = Dot(d, s1) * invDivisor;
if (b1 < 0. || b1 > 1.)
return false;
@@ -230,7 +227,7 @@ bool BVHIntersect(const LinearBVHNode nodes[], const Triangle tris[],
// Check ray against BVH node
const LinearBVHNode &node = nodes[nodeNum];
if (BBoxIntersect(node.bounds, ray)) {
unsigned int nPrimitives = nPrims(node);
unsigned int nPrimitives = node.nPrimitives;
if (nPrimitives > 0) {
// Intersect ray with primitives in leaf BVH node
unsigned int primitivesOffset = node.offset;
@@ -244,7 +241,7 @@ bool BVHIntersect(const LinearBVHNode nodes[], const Triangle tris[],
}
else {
// Put far BVH node on _todo_ stack, advance to near node
if (r.dirIsNeg[axis(node)]) {
if (r.dirIsNeg[node.splitAxis]) {
todo[todoOffset++] = nodeNum + 1;
nodeNum = node.offset;
}
@@ -267,17 +264,21 @@ bool BVHIntersect(const LinearBVHNode nodes[], const Triangle tris[],
}
void raytrace_serial(int width, int height,
void raytrace_serial(int width, int height, int baseWidth, int baseHeight,
const float raster2camera[4][4],
const float camera2world[4][4],
float image[],
int id[],
const LinearBVHNode nodes[],
const Triangle triangles[]) {
float widthScale = float(baseWidth) / float(width);
float heightScale = float(baseHeight) / float(height);
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
Ray ray;
generateRay(raster2camera, camera2world, x, y, ray);
generateRay(raster2camera, camera2world, x * widthScale,
y * heightScale, ray);
BVHIntersect(nodes, triangles, ray);
int offset = y * width + x;

2
examples/simple/.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
simple
objs

View File

@@ -1,8 +1,8 @@
CXX=g++
CXX=g++ -m64
CXXFLAGS=-Iobjs/ -O3 -Wall
ISPC=ispc
ISPCFLAGS=-O2
ISPCFLAGS=-O2 --arch=x86-64 --target=sse2
default: simple

View File

@@ -32,21 +32,14 @@
*/
#include <stdio.h>
#include <stdlib.h>
// Include the header file that the ispc compiler generates
#include "simple_ispc.h"
using namespace ispc;
int main() {
// Pointers passed to ispc-compiled code are currently required to have
// alignment equal to the target's native vector size. Here we align
// to 32 bytes to be safe for both SSE and AVX targets.
#ifdef _MSC_VER
__declspec(align(32)) float vin[16], vout[16];
#else
float vin[16] __attribute__((aligned(32)));
float vout[16] __attribute__((aligned(32)));
#endif
float vin[16], vout[16];
// Initialize input buffer
for (int i = 0; i < 16; ++i)

View File

@@ -34,9 +34,7 @@
export void simple(uniform float vin[], uniform float vout[],
uniform int count) {
// Compute the result for 'programCount' values in parallel
for (uniform int i = 0; i < count; i += programCount) {
int index = i + programIndex;
foreach (index = 0 ... count) {
// Load the appropriate input value for this program instance.
float v = vin[index];

26
examples/simple/simple.vcxproj Executable file → Normal file
View File

@@ -1,4 +1,4 @@
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|Win32">
@@ -25,21 +25,21 @@
<CustomBuild Include="simple.ispc">
<FileType>Document</FileType>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --arch=x86
ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --arch=x86 --target=sse2
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
cl /E /TP %(Filename).ispc | ispc -O2 -o %(Filename).obj -h %(Filename)_ispc.h
ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --target=sse2
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">%(Filename).obj</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">%(Filename).obj</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h --arch=x86
ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --arch=x86 --target=sse2
</Command>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h
ispc -O2 %(Filename).ispc -o $(TargetDir)%(Filename).obj -h $(TargetDir)%(Filename)_ispc.h --target=sse2
</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">%(Filename).obj</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|x64'">%(Filename).obj</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|x64'">$(TargetDir)%(Filename).obj;$(TargetDir)%(Filename)_ispc.h</Outputs>
</CustomBuild>
</ItemGroup>
<PropertyGroup Label="Globals">
@@ -88,15 +88,19 @@ cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>false</LinkIncremental>
<ExecutablePath>$(ProjectDir)..\..;$(ExecutablePath)</ExecutablePath>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
@@ -105,6 +109,7 @@ cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -118,6 +123,7 @@ cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -133,6 +139,7 @@ cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -150,6 +157,7 @@ cl /E /TP %(Filename).ispc | ispc -O2 - -o %(Filename).obj -h %(Filename)_ispc.h
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(TargetDir)</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>

2
examples/stencil/.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
stencil
objs

39
examples/stencil/Makefile Normal file
View File

@@ -0,0 +1,39 @@
ARCH = $(shell uname)
TASK_CXX=../tasksys.cpp
TASK_LIB=-lpthread
TASK_OBJ=$(addprefix objs/, $(subst ../,, $(TASK_CXX:.cpp=.o)))
CXX=g++
CXXFLAGS=-Iobjs/ -O3 -Wall -m64
ISPC=ispc
ISPCFLAGS=-O2 --target=sse2,sse4-x2,avx --arch=x86-64
OBJS=objs/stencil.o objs/stencil_serial.o $(TASK_OBJ) objs/stencil_ispc.o \
objs/stencil_ispc_sse2.o objs/stencil_ispc_sse4.o \
objs/stencil_ispc_avx.o
default: stencil
.PHONY: dirs clean
dirs:
/bin/mkdir -p objs/
clean:
/bin/rm -rf objs *~ stencil
stencil: dirs $(OBJS)
$(CXX) $(CXXFLAGS) -o $@ $(OBJS) -lm $(TASK_LIB)
objs/%.o: %.cpp
$(CXX) $< $(CXXFLAGS) -c -o $@
objs/%.o: ../%.cpp
$(CXX) $< $(CXXFLAGS) -c -o $@
objs/stencil.o: objs/stencil_ispc.h
objs/%_ispc.h objs/%_ispc.o objs/%_ispc_sse2.o objs/%_ispc_sse4.o objs/%_ispc_avx.o: %.ispc
$(ISPC) $(ISPCFLAGS) $< -o objs/$*_ispc.o -h objs/$*_ispc.h

View File

@@ -0,0 +1,151 @@
/*
Copyright (c) 2010-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#define NOMINMAX
#pragma warning (disable: 4244)
#pragma warning (disable: 4305)
#endif
#include <stdio.h>
#include <algorithm>
#include <math.h>
#include "../timing.h"
#include "stencil_ispc.h"
using namespace ispc;
extern void loop_stencil_serial(int t0, int t1, int x0, int x1,
int y0, int y1, int z0, int z1,
int Nx, int Ny, int Nz,
const float coef[5],
const float vsq[],
float Aeven[], float Aodd[]);
void InitData(int Nx, int Ny, int Nz, float *A[2], float *vsq) {
int offset = 0;
for (int z = 0; z < Nz; ++z)
for (int y = 0; y < Ny; ++y)
for (int x = 0; x < Nx; ++x, ++offset) {
A[0][offset] = (x < Nx / 2) ? x / float(Nx) : y / float(Ny);
A[1][offset] = 0;
vsq[offset] = x*y*z / float(Nx * Ny * Nz);
}
}
int main() {
int Nx = 256, Ny = 256, Nz = 256;
int width = 4;
float *Aserial[2], *Aispc[2];
Aserial[0] = new float [Nx * Ny * Nz];
Aserial[1] = new float [Nx * Ny * Nz];
Aispc[0] = new float [Nx * Ny * Nz];
Aispc[1] = new float [Nx * Ny * Nz];
float *vsq = new float [Nx * Ny * Nz];
float coeff[4] = { 0.5, -.25, .125, -.0625 };
InitData(Nx, Ny, Nz, Aispc, vsq);
//
// Compute the image using the ispc implementation on one core; report
// the minimum time of three runs.
//
double minTimeISPC = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
loop_stencil_ispc(0, 6, width, Nx - width, width, Ny - width,
width, Nz - width, Nx, Ny, Nz, coeff, vsq,
Aispc[0], Aispc[1]);
double dt = get_elapsed_mcycles();
minTimeISPC = std::min(minTimeISPC, dt);
}
printf("[stencil ispc 1 core]:\t\t[%.3f] million cycles\n", minTimeISPC);
InitData(Nx, Ny, Nz, Aispc, vsq);
//
// Compute the image using the ispc implementation with tasks; report
// the minimum time of three runs.
//
double minTimeISPCTasks = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
loop_stencil_ispc_tasks(0, 6, width, Nx - width, width, Ny - width,
width, Nz - width, Nx, Ny, Nz, coeff, vsq,
Aispc[0], Aispc[1]);
double dt = get_elapsed_mcycles();
minTimeISPCTasks = std::min(minTimeISPCTasks, dt);
}
printf("[stencil ispc + tasks]:\t\t[%.3f] million cycles\n", minTimeISPCTasks);
InitData(Nx, Ny, Nz, Aserial, vsq);
//
// And run the serial implementation 3 times, again reporting the
// minimum time.
//
double minTimeSerial = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
loop_stencil_serial(0, 6, width, Nx-width, width, Ny - width,
width, Nz - width, Nx, Ny, Nz, coeff, vsq,
Aserial[0], Aserial[1]);
double dt = get_elapsed_mcycles();
minTimeSerial = std::min(minTimeSerial, dt);
}
printf("[stencil serial]:\t\t[%.3f] millon cycles\n", minTimeSerial);
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2f from ISPC + tasks)\n",
minTimeSerial / minTimeISPC, minTimeSerial / minTimeISPCTasks);
// Check for agreement
int offset = 0;
for (int z = 0; z < Nz; ++z)
for (int y = 0; y < Ny; ++y)
for (int x = 0; x < Nx; ++x, ++offset) {
float error = fabsf((Aserial[1][offset] - Aispc[1][offset]) /
Aserial[1][offset]);
if (error > 1e-4)
printf("Error @ (%d,%d,%d): ispc = %f, serial = %f\n",
x, y, z, Aispc[1][offset], Aserial[1][offset]);
}
return 0;
}

Some files were not shown because too many files have changed in this diff Show More