Add support for in-memory half float data. Fixes issue #10
This commit is contained in:
27
LICENSE.txt
27
LICENSE.txt
@@ -114,3 +114,30 @@ CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
|
||||
SOFTWARE.
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
ispc's code to convert to and from half-precision floats is based on James
|
||||
Tursa's code, which is covered by the following license:
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in
|
||||
the documentation and/or other materials provided with the distribution
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
@@ -687,10 +687,15 @@ DefineStdlib(SymbolTable *symbolTable, llvm::LLVMContext *ctx, llvm::Module *mod
|
||||
|
||||
if (includeStdlibISPC) {
|
||||
// If the user wants the standard library to be included, parse the
|
||||
// serialized version of the stdlib.ispc file to get its definitions
|
||||
// added.
|
||||
// serialized version of the stdlib.ispc file to get its
|
||||
// definitions added. Disable emission of performance warnings for
|
||||
// now, since the user doesn't care about any of that in the stdlib
|
||||
// implementation...
|
||||
bool epf = g->emitPerfWarnings;
|
||||
g->emitPerfWarnings = false;
|
||||
extern char stdlib_code[];
|
||||
yy_scan_string(stdlib_code);
|
||||
yyparse();
|
||||
g->emitPerfWarnings = epf;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -77,6 +77,7 @@ Contents:
|
||||
+ `Output Functions`_
|
||||
+ `Cross-Program Instance Operations`_
|
||||
+ `Packed Load and Store Operations`_
|
||||
+ `Conversions To and From Half-Precision Floats`_
|
||||
+ `Atomic Operations and Memory Fences`_
|
||||
+ `Low-Level Bits`_
|
||||
|
||||
@@ -1890,6 +1891,28 @@ where the ``i`` th element of ``x`` has been replaced with the value ``v``
|
||||
float insert(float x, uniform int i, uniform float v)
|
||||
|
||||
|
||||
Conversions To and From Half-Precision Floats
|
||||
---------------------------------------------
|
||||
|
||||
There are functions to convert to and from the IEEE 16-bit floating-point
|
||||
format. Note that there is no ``half`` data-type, and it isn't possible
|
||||
to do floating-point math directly with ``half`` types in ``ispc``; these
|
||||
functions facilitate converting to and from half-format data in memory.
|
||||
|
||||
To use them, half-format data should be loaded into an ``int16`` and the
|
||||
``half_to_float()`` function used to convert it the a 32-bit floating point
|
||||
value. To store a value to memory in half format, the ``float_to_half()``
|
||||
function returns the 16 bits that are the closest match to the given
|
||||
``float``, in half format.
|
||||
|
||||
::
|
||||
|
||||
float half_to_float(unsigned int16 h)
|
||||
uniform float half_to_float(uniform unsigned int16 h)
|
||||
int16 float_to_half(float f)
|
||||
uniform int16 float_to_half(uniform float f)
|
||||
|
||||
|
||||
Atomic Operations and Memory Fences
|
||||
-----------------------------------
|
||||
|
||||
|
||||
250
stdlib.ispc
250
stdlib.ispc
@@ -2350,6 +2350,256 @@ static inline uniform double pow(uniform double a, uniform double b) {
|
||||
return __stdlib_pow(a, b);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// half-precision floats
|
||||
|
||||
static inline uniform float half_to_float(uniform unsigned int16 h) {
|
||||
if ((h & 0x7FFFu) == 0)
|
||||
// Signed zero
|
||||
return floatbits(((unsigned int32) h) << 16);
|
||||
else {
|
||||
// Though these are int16 quantities, we get much better code
|
||||
// with them stored as int32s...
|
||||
uniform unsigned int32 hs = h & (int32)0x8000u; // Pick off sign bit
|
||||
uniform unsigned int32 he = h & (int32)0x7C00u; // Pick off exponent bits
|
||||
uniform unsigned int32 hm = h & (int32)0x03FFu; // Pick off mantissa bits
|
||||
cif (he == 0) {
|
||||
// Denormal will convert to normalized
|
||||
uniform int e = -1;
|
||||
// The following loop figures out how much extra to adjust the exponent
|
||||
// Shift until leading bit overflows into exponent bit
|
||||
do {
|
||||
e++;
|
||||
hm <<= 1;
|
||||
} while((hm & 0x0400u) == 0);
|
||||
|
||||
// Sign bit
|
||||
uniform unsigned int32 xs = ((unsigned int32) hs) << 16;
|
||||
// Exponent: unbias the halfp, then bias the single
|
||||
uniform int32 xes = ((int32)(he >> 10)) - 15 + 127 - e;
|
||||
// Exponent
|
||||
uniform unsigned int32 xe = (unsigned int32) (xes << 23);
|
||||
// Mantissa
|
||||
uniform unsigned int32 xm = ((unsigned int32) (hm & 0x03FFu)) << 13;
|
||||
return floatbits(xs | xe | xm);
|
||||
}
|
||||
else {
|
||||
if (he == 0x7C00u) {
|
||||
// Inf or NaN (all the exponent bits are set)
|
||||
if (hm == 0)
|
||||
// Zero mantissa -> signed inf
|
||||
return floatbits((((unsigned int32) hs) << 16) |
|
||||
((unsigned int32) 0x7F800000u));
|
||||
else
|
||||
// NaN
|
||||
return floatbits(0xFFC00000u);
|
||||
}
|
||||
else {
|
||||
// Normalized number
|
||||
// sign
|
||||
uniform unsigned int32 xs = ((unsigned int32) hs) << 16;
|
||||
// Exponent: unbias the halfp, then bias the single
|
||||
uniform int32 xes = ((int32) (he >> 10)) - 15 + 127;
|
||||
// Exponent
|
||||
uniform unsigned int32 xe = (unsigned int32) (xes << 23);
|
||||
// Mantissa
|
||||
uniform unsigned int32 xm = ((unsigned int32) hm) << 13;
|
||||
return floatbits(xs | xe | xm);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static inline float half_to_float(unsigned int16 h) {
|
||||
if ((h & 0x7FFFu) == 0)
|
||||
// Signed zero
|
||||
return floatbits(((unsigned int32) h) << 16);
|
||||
else {
|
||||
// Though these are int16 quantities, we get much better code
|
||||
// with them stored as int32s...
|
||||
unsigned int32 hs = h & (int32)0x8000u; // Pick off sign bit
|
||||
unsigned int32 he = h & (int32)0x7C00u; // Pick off exponent bits
|
||||
unsigned int32 hm = h & (int32)0x03FFu; // Pick off mantissa bits
|
||||
cif (he == 0) {
|
||||
// Denormal will convert to normalized
|
||||
int e = -1;
|
||||
// The following loop figures out how much extra to adjust the exponent
|
||||
// Shift until leading bit overflows into exponent bit
|
||||
do {
|
||||
e++;
|
||||
hm <<= 1;
|
||||
} while((hm & 0x0400u) == 0);
|
||||
|
||||
// Sign bit
|
||||
unsigned int32 xs = ((unsigned int32) hs) << 16;
|
||||
// Exponent: unbias the halfp, then bias the single
|
||||
int32 xes = ((int32)(he >> 10)) - 15 + 127 - e;
|
||||
// Exponent
|
||||
unsigned int32 xe = (unsigned int32) (xes << 23);
|
||||
// Mantissa
|
||||
unsigned int32 xm = ((unsigned int32) (hm & 0x03FFu)) << 13;
|
||||
return floatbits(xs | xe | xm);
|
||||
}
|
||||
else {
|
||||
if (he == 0x7C00u) {
|
||||
// Inf or NaN (all the exponent bits are set)
|
||||
if (hm == 0)
|
||||
// Zero mantissa -> signed inf
|
||||
return floatbits((((unsigned int32) hs) << 16) |
|
||||
((unsigned int32) 0x7F800000u));
|
||||
else
|
||||
// NaN
|
||||
return floatbits(0xFFC00000u);
|
||||
}
|
||||
else {
|
||||
// Normalized number
|
||||
// sign
|
||||
unsigned int32 xs = ((unsigned int32) hs) << 16;
|
||||
// Exponent: unbias the halfp, then bias the single
|
||||
int32 xes = ((int32) (he >> 10)) - 15 + 127;
|
||||
// Exponent
|
||||
unsigned int32 xe = (unsigned int32) (xes << 23);
|
||||
// Mantissa
|
||||
unsigned int32 xm = ((unsigned int32) hm) << 13;
|
||||
return floatbits(xs | xe | xm);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static inline uniform int16 float_to_half(uniform float f) {
|
||||
uniform int32 x = intbits(f);
|
||||
// Store the return value in an int32 until the very end; this ends up
|
||||
// generating better code...
|
||||
uniform int32 ret;
|
||||
if ((x & 0x7FFFFFFFu) == 0)
|
||||
// Signed zero
|
||||
ret = (x >> 16);
|
||||
else {
|
||||
uniform unsigned int32 xs = x & 0x80000000u; // Pick off sign bit
|
||||
uniform unsigned int32 xe = x & 0x7F800000u; // Pick off exponent bits
|
||||
uniform unsigned int32 xm = x & 0x007FFFFFu; // Pick off mantissa bits
|
||||
if (xe == 0) {
|
||||
// Denormal will underflow, return a signed zero
|
||||
ret = (xs >> 16);
|
||||
}
|
||||
else {
|
||||
cif (xe == 0x7F800000u) {
|
||||
// Inf or NaN (all the exponent bits are set)
|
||||
if (xm == 0)
|
||||
// Zero mantissa -> signed infinity
|
||||
ret = ((xs >> 16) | 0x7C00u);
|
||||
else
|
||||
// NaN, only 1st mantissa bit set
|
||||
ret = 0xFE00u;
|
||||
}
|
||||
else {
|
||||
// Normalized number
|
||||
uniform unsigned int32 hs = (xs >> 16); // Sign bit
|
||||
uniform unsigned int32 hm;
|
||||
// Exponent unbias the single, then bias the halfp
|
||||
uniform int32 hes = ((int)(xe >> 23)) - 127 + 15;
|
||||
if (hes >= 0x1F)
|
||||
// Overflow: return signed infinity
|
||||
ret = ((xs >> 16) | 0x7C00u);
|
||||
else if (hes <= 0) {
|
||||
// Underflow
|
||||
if ((14 - hes) > 24) {
|
||||
// Mantissa shifted all the way off & no rounding possibility
|
||||
hm = 0u; // Set mantissa to zero
|
||||
}
|
||||
else {
|
||||
xm |= 0x00800000u; // Add the hidden leading bit
|
||||
hm = (xm >> (14 - hes)); // Mantissa
|
||||
if ((xm >> (13 - hes)) & 0x00000001u) // Check for rounding
|
||||
// Round, might overflow into exp bit, but this is OK
|
||||
hm += 1u;
|
||||
}
|
||||
ret = (hs | hm);
|
||||
}
|
||||
else {
|
||||
uniform unsigned int32 he = (hes << 10); // Exponent
|
||||
hm = (xm >> 13); // Mantissa
|
||||
if (xm & 0x00001000u) // Check for rounding
|
||||
// Round, might overflow to inf, this is OK
|
||||
ret = (hs | he | hm) + 1u;
|
||||
else
|
||||
ret = (hs | he | hm);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return (int16)ret;
|
||||
}
|
||||
|
||||
|
||||
static inline int16 float_to_half(float f) {
|
||||
int32 x = intbits(f);
|
||||
// Store the return value in an int32 until the very end; this ends up
|
||||
// generating better code...
|
||||
int32 ret;
|
||||
if ((x & 0x7FFFFFFFu) == 0)
|
||||
// Signed zero
|
||||
ret = (x >> 16);
|
||||
else {
|
||||
unsigned int32 xs = x & 0x80000000u; // Pick off sign bit
|
||||
unsigned int32 xe = x & 0x7F800000u; // Pick off exponent bits
|
||||
unsigned int32 xm = x & 0x007FFFFFu; // Pick off mantissa bits
|
||||
if (xe == 0) {
|
||||
// Denormal will underflow, return a signed zero
|
||||
ret = (xs >> 16);
|
||||
}
|
||||
else {
|
||||
cif (xe == 0x7F800000u) {
|
||||
// Inf or NaN (all the exponent bits are set)
|
||||
if (xm == 0)
|
||||
// Zero mantissa -> signed infinity
|
||||
ret = ((xs >> 16) | 0x7C00u);
|
||||
else
|
||||
// NaN, only 1st mantissa bit set
|
||||
ret = 0xFE00u;
|
||||
}
|
||||
else {
|
||||
// Normalized number
|
||||
unsigned int32 hs = (xs >> 16); // Sign bit
|
||||
unsigned int32 hm;
|
||||
// Exponent unbias the single, then bias the halfp
|
||||
int32 hes = ((int)(xe >> 23)) - 127 + 15;
|
||||
if (hes >= 0x1F)
|
||||
// Overflow: return signed infinity
|
||||
ret = ((xs >> 16) | 0x7C00u);
|
||||
else if (hes <= 0) {
|
||||
// Underflow
|
||||
if ((14 - hes) > 24) {
|
||||
// Mantissa shifted all the way off & no rounding possibility
|
||||
hm = 0u; // Set mantissa to zero
|
||||
}
|
||||
else {
|
||||
xm |= 0x00800000u; // Add the hidden leading bit
|
||||
hm = (xm >> (14 - hes)); // Mantissa
|
||||
if ((xm >> (13 - hes)) & 0x00000001u) // Check for rounding
|
||||
// Round, might overflow into exp bit, but this is OK
|
||||
hm += 1u;
|
||||
}
|
||||
ret = (hs | hm);
|
||||
}
|
||||
else {
|
||||
unsigned int32 he = (hes << 10); // Exponent
|
||||
hm = (xm >> 13); // Mantissa
|
||||
if (xm & 0x00001000u) // Check for rounding
|
||||
// Round, might overflow to inf, this is OK
|
||||
ret = (hs | he | hm) + 1u;
|
||||
else
|
||||
ret = (hs | he | hm);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return (int16)ret;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// RNG stuff
|
||||
|
||||
|
||||
21
tests/half-1.ispc
Normal file
21
tests/half-1.ispc
Normal file
@@ -0,0 +1,21 @@
|
||||
|
||||
export uniform int width() { return programCount; }
|
||||
|
||||
export void f_v(uniform float RET[]) {
|
||||
float sum = 0;
|
||||
int errors = 0;
|
||||
for (uniform int i = 0; i <= 0xffff; ++i) {
|
||||
uniform unsigned int16 h = i;
|
||||
uniform float f = half_to_float(i);
|
||||
h = float_to_half(f);
|
||||
|
||||
// may return a different value back for NaNs..
|
||||
if (f == f && i != h)
|
||||
++errors;
|
||||
}
|
||||
RET[programIndex] = errors;
|
||||
}
|
||||
|
||||
export void result(uniform float RET[]) {
|
||||
RET[programIndex] = 0;
|
||||
}
|
||||
21
tests/half.ispc
Normal file
21
tests/half.ispc
Normal file
@@ -0,0 +1,21 @@
|
||||
|
||||
export uniform int width() { return programCount; }
|
||||
|
||||
export void f_v(uniform float RET[]) {
|
||||
float sum = 0;
|
||||
int errors = 0;
|
||||
for (uniform int i = 0; i <= 0xffff; ++i) {
|
||||
unsigned int16 h = i;
|
||||
float f = half_to_float(i);
|
||||
h = float_to_half(f);
|
||||
|
||||
// may return a different value back for NaNs..
|
||||
if (f == f && i != h)
|
||||
++errors;
|
||||
}
|
||||
RET[programIndex] = errors;
|
||||
}
|
||||
|
||||
export void result(uniform float RET[]) {
|
||||
RET[programIndex] = 0;
|
||||
}
|
||||
Reference in New Issue
Block a user