Add double-pumped AVX target (i.e., run 16-wide). Not yet tested.

This commit is contained in:
Matt Pharr
2011-08-20 11:28:22 +01:00
parent f841b775c3
commit 7756265503
8 changed files with 1178 additions and 203 deletions

View File

@@ -44,7 +44,8 @@ CXX_SRC=builtins.cpp ctx.cpp decl.cpp expr.cpp ispc.cpp \
util.cpp
HEADERS=builtins.h ctx.h decl.h expr.h ispc.h llvmutil.h module.h \
opt.h stmt.h sym.h type.h util.h
BUILTINS_SRC=builtins-avx.ll builtins-sse2.ll builtins-sse4.ll builtins-sse4x2.ll
BUILTINS_SRC=builtins-avx.ll builtins-avx-x2.ll builtins-sse2.ll \
builtins-sse4.ll builtins-sse4x2.ll
BISON_SRC=parse.yy
FLEX_SRC=lex.ll
@@ -105,7 +106,7 @@ objs/lex.o: objs/lex.cpp $(HEADERS) objs/parse.cc
@echo Compiling $<
@$(CXX) $(CXXFLAGS) -o $@ -c $<
objs/builtins-%.cpp: builtins-%.ll builtins.m4 builtins-sse.ll
objs/builtins-%.cpp: builtins-%.ll builtins.m4 builtins-sse.ll builtins-avx-common.ll
@echo Creating C++ source from builtin definitions file $<
@m4 -DLLVM_VERSION=$(LLVM_VERSION) builtins.m4 $< | ./bitcode2cpp.py $< > $@

278
builtins-avx-common.ll Normal file
View File

@@ -0,0 +1,278 @@
;; Copyright (c) 2010-2011, Intel Corporation
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;;
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;;
;; * Neither the name of Intel Corporation nor the names of its
;; contributors may be used to endorse or promote products derived from
;; this software without specific prior written permission.
;;
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; *** Untested *** AVX target implementation.
;;
;; The LLVM AVX code generator is incomplete, so the ispc AVX target
;; hasn't yet been tested. There is therefore a higher-than-normal
;; chance that there are bugs in the code in this file.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rcp
declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone
define internal float @__rcp_uniform_float(float) nounwind readonly alwaysinline {
; uniform float iv = extract(__rcp_u(v), 0);
; return iv * (2. - v * iv);
%vecval = insertelement <4 x float> undef, float %0, i32 0
%call = call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %vecval)
%scall = extractelement <4 x float> %call, i32 0
; do one N-R iteration
%v_iv = fmul float %0, %scall
%two_minus = fsub float 2., %v_iv
%iv_mul = fmul float %scall, %two_minus
ret float %iv_mul
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding floats
declare <4 x float> @llvm.x86.sse.round.ss(<4 x float>, <4 x float>, i32) nounwind readnone
define internal float @__round_uniform_float(float) nounwind readonly alwaysinline {
; roundss, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
; the roundss intrinsic is a total mess--docs say:
;
; __m128 _mm_round_ss (__m128 a, __m128 b, const int c)
;
; b is a 128-bit parameter. The lowest 32 bits are the result of the rounding function
; on b0. The higher order 96 bits are copied directly from input parameter a. The
; return value is described by the following equations:
;
; r0 = RND(b0)
; r1 = a1
; r2 = a2
; r3 = a3
;
; It doesn't matter what we pass as a, since we only need the r0 value
; here. So we pass the same register for both.
%xi = insertelement <4 x float> undef, float %0, i32 0
%xr = call <4 x float> @llvm.x86.sse.round.ss(<4 x float> %xi, <4 x float> %xi, i32 8)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
define internal float @__floor_uniform_float(float) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <4 x float> undef, float %0, i32 0
; roundps, round down 0b01 | don't signal precision exceptions 0b1000 = 9
%xr = call <4 x float> @llvm.x86.sse.round.ss(<4 x float> %xi, <4 x float> %xi, i32 9)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
define internal float @__ceil_uniform_float(float) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <4 x float> undef, float %0, i32 0
; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10
%xr = call <4 x float> @llvm.x86.sse.round.ss(<4 x float> %xi, <4 x float> %xi, i32 10)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding doubles
declare <2 x double> @llvm.x86.sse41.round.sd(<2 x double>, <2 x double>, i32) nounwind readnone
define internal double @__round_uniform_double(double) nounwind readonly alwaysinline {
%xi = insertelement <2 x double> undef, double %0, i32 0
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 8)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
define internal double @__floor_uniform_double(double) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <2 x double> undef, double %0, i32 0
; roundpd, round down 0b01 | don't signal precision exceptions 0b1000 = 9
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 9)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
define internal double @__ceil_uniform_double(double) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <2 x double> undef, double %0, i32 0
; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 10)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rsqrt
declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone
define internal float @__rsqrt_uniform_float(float) nounwind readonly alwaysinline {
; uniform float is = extract(__rsqrt_u(v), 0);
%v = insertelement <4 x float> undef, float %0, i32 0
%vis = call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %v)
%is = extractelement <4 x float> %vis, i32 0
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul float %0, %is
%v_is_is = fmul float %v_is, %is
%three_sub = fsub float 3., %v_is_is
%is_mul = fmul float %is, %three_sub
%half_scale = fmul float 0.5, %is_mul
ret float %half_scale
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; sqrt
declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone
define internal float @__sqrt_uniform_float(float) nounwind readonly alwaysinline {
sse_unary_scalar(ret, 4, float, @llvm.x86.sse.sqrt.ss, %0)
ret float %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; fastmath
declare void @llvm.x86.sse.stmxcsr(i8 *) nounwind
declare void @llvm.x86.sse.ldmxcsr(i8 *) nounwind
define internal void @__fastmath() nounwind alwaysinline {
%ptr = alloca i32
%ptr8 = bitcast i32 * %ptr to i8 *
call void @llvm.x86.sse.stmxcsr(i8 * %ptr8)
%oldval = load i32 *%ptr
; turn on DAZ (64)/FTZ (32768) -> 32832
%update = or i32 %oldval, 32832
store i32 %update, i32 *%ptr
call void @llvm.x86.sse.ldmxcsr(i8 * %ptr8)
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; float min/max
declare <4 x float> @llvm.x86.sse.max.ss(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.min.ss(<4 x float>, <4 x float>) nounwind readnone
define internal float @__max_uniform_float(float, float) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.max.ss, %0, %1)
ret float %ret
}
define internal float @__min_uniform_float(float, float) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.min.ss, %0, %1)
ret float %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; int min/max
declare <4 x i32> @llvm.x86.sse41.pminsd(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.x86.sse41.pmaxsd(<4 x i32>, <4 x i32>) nounwind readnone
define internal i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminsd, %0, %1)
ret i32 %ret
}
define internal i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxsd, %0, %1)
ret i32 %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unsigned int min/max
declare <4 x i32> @llvm.x86.sse41.pminud(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.x86.sse41.pmaxud(<4 x i32>, <4 x i32>) nounwind readnone
define internal i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminud, %0, %1)
ret i32 %ret
}
define internal i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxud, %0, %1)
ret i32 %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops
declare i32 @llvm.ctpop.i32(i32) nounwind readnone
define internal i32 @__popcnt_int32(i32) nounwind readonly alwaysinline {
%call = call i32 @llvm.ctpop.i32(i32 %0)
ret i32 %call
}
declare i64 @llvm.ctpop.i64(i64) nounwind readnone
define internal i64 @__popcnt_int64(i64) nounwind readonly alwaysinline {
%call = call i64 @llvm.ctpop.i64(i64 %0)
ret i64 %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision sqrt
declare <2 x double> @llvm.x86.sse.sqrt.sd(<2 x double>) nounwind readnone
define internal double @__sqrt_uniform_double(double) nounwind alwaysinline {
sse_unary_scalar(ret, 2, double, @llvm.x86.sse.sqrt.sd, %0)
ret double %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision min/max
declare <2 x double> @llvm.x86.sse2.max.sd(<2 x double>, <2 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.min.sd(<2 x double>, <2 x double>) nounwind readnone
define internal double @__min_uniform_double(double, double) nounwind readnone alwaysinline {
sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.min.sd, %0, %1)
ret double %ret
}
define internal double @__max_uniform_double(double, double) nounwind readnone alwaysinline {
sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.max.sd, %0, %1)
ret double %ret
}

665
builtins-avx-x2.ll Normal file
View File

@@ -0,0 +1,665 @@
;; Copyright (c) 2010-2011, Intel Corporation
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;;
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;;
;; * Neither the name of Intel Corporation nor the names of its
;; contributors may be used to endorse or promote products derived from
;; this software without specific prior written permission.
;;
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; *** Untested *** AVX target implementation.
;;
;; The LLVM AVX code generator is incomplete, so the ispc AVX target
;; hasn't yet been tested. There is therefore a higher-than-normal
;; chance that there are bugs in the code in this file.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Basic 16-wide definitions
stdlib_core(16)
packed_load_and_store(16)
scans(16)
int64minmax(16)
include(`builtins-avx-common.ll')
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rcp
declare <8 x float> @llvm.x86.avx.rcp.ps.256(<8 x float>) nounwind readnone
define internal <16 x float> @__rcp_varying_float(<16 x float>) nounwind readonly alwaysinline {
; float iv = __rcp_v(v);
; return iv * (2. - v * iv);
unary8to16(call, float, @llvm.x86.avx.rcp.ps.256, %0)
; do one N-R iteration
%v_iv = fmul <16 x float> %0, %call
%two_minus = fsub <16 x float> <float 2., float 2., float 2., float 2.,
float 2., float 2., float 2., float 2.,
float 2., float 2., float 2., float 2.,
float 2., float 2., float 2., float 2.>, %v_iv
%iv_mul = fmul <16 x float> %call, %two_minus
ret <16 x float> %iv_mul
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding floats
declare <8 x float> @llvm.x86.avx.round.ps.256(<8 x float>, i32) nounwind readnone
define internal <16 x float> @__round_varying_float(<16 x float>) nounwind readonly alwaysinline {
; roundps, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
round8to16(%0, 8)
}
define internal <16 x float> @__floor_varying_float(<16 x float>) nounwind readonly alwaysinline {
; roundps, round down 0b01 | don't signal precision exceptions 0b1001 = 9
round8to16(%0, 9)
}
define internal <16 x float> @__ceil_varying_float(<16 x float>) nounwind readonly alwaysinline {
; roundps, round up 0b10 | don't signal precision exceptions 0b1010 = 10
round8to16(%0, 10)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding doubles
declare <4 x double> @llvm.x86.avx.round.pd.256(<4 x double>, i32) nounwind readnone
define internal <16 x double> @__round_varying_double(<16 x double>) nounwind readonly alwaysinline {
round4to16double(%0, 8)
}
define internal <16 x double> @__floor_varying_double(<16 x double>) nounwind readonly alwaysinline {
round4to16double(%0, 9)
}
define internal <16 x double> @__ceil_varying_double(<16 x double>) nounwind readonly alwaysinline {
round4to16double(%0, 10)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rsqrt
declare <8 x float> @llvm.x86.avx.rsqrt.ps.256(<8 x float>) nounwind readnone
define internal <16 x float> @__rsqrt_varying_float(<16 x float> %v) nounwind readonly alwaysinline {
; float is = __rsqrt_v(v);
unary8to16(is, float, @llvm.x86.avx.rsqrt.ps.256, %v)
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul <16 x float> %v, %is
%v_is_is = fmul <16 x float> %v_is, %is
%three_sub = fsub <16 x float> <float 3., float 3., float 3., float 3.,
float 3., float 3., float 3., float 3.,
float 3., float 3., float 3., float 3.,
float 3., float 3., float 3., float 3.>, %v_is_is
%is_mul = fmul <16 x float> %is, %three_sub
%half_scale = fmul <16 x float> <float 0.5, float 0.5, float 0.5, float 0.5,
float 0.5, float 0.5, float 0.5, float 0.5,
float 0.5, float 0.5, float 0.5, float 0.5,
float 0.5, float 0.5, float 0.5, float 0.5>, %is_mul
ret <16 x float> %half_scale
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; sqrt
declare <8 x float> @llvm.x86.avx.sqrt.ps.256(<8 x float>) nounwind readnone
define internal <16 x float> @__sqrt_varying_float(<16 x float>) nounwind readonly alwaysinline {
unary8to16(call, float, @llvm.x86.avx.sqrt.ps.256, %0)
ret <16 x float> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; svml
; FIXME: need either to wire these up to the 8-wide SVML entrypoints,
; or, use the macro to call the 4-wide ones 4x with our 16-wide
; vectors...
declare <16 x float> @__svml_sin(<16 x float>)
declare <16 x float> @__svml_cos(<16 x float>)
declare void @__svml_sincos(<16 x float>, <16 x float> *, <16 x float> *)
declare <16 x float> @__svml_tan(<16 x float>)
declare <16 x float> @__svml_atan(<16 x float>)
declare <16 x float> @__svml_atan2(<16 x float>, <16 x float>)
declare <16 x float> @__svml_exp(<16 x float>)
declare <16 x float> @__svml_log(<16 x float>)
declare <16 x float> @__svml_pow(<16 x float>, <16 x float>)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; float min/max
declare <8 x float> @llvm.x86.avx.max.ps.256(<8 x float>, <8 x float>) nounwind readnone
declare <8 x float> @llvm.x86.avx.min.ps.256(<8 x float>, <8 x float>) nounwind readnone
define internal <16 x float> @__max_varying_float(<16 x float>,
<16 x float>) nounwind readonly alwaysinline {
binary8to16(call, float, @llvm.x86.avx.max.ps.256, %0, %1)
ret <16 x float> %call
}
define internal <16 x float> @__min_varying_float(<16 x float>,
<16 x float>) nounwind readonly alwaysinline {
binary8to16(call, float, @llvm.x86.avx.min.ps.256, %0, %1)
ret <16 x float> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; int min/max
define internal <16 x i32> @__min_varying_int32(<16 x i32>, <16 x i32>) nounwind readonly alwaysinline {
binary4to16(ret, i32, @llvm.x86.sse41.pminsd, %0, %1)
ret <16 x i32> %ret
}
define internal <16 x i32> @__max_varying_int32(<16 x i32>, <16 x i32>) nounwind readonly alwaysinline {
binary4to16(ret, i32, @llvm.x86.sse41.pmaxsd, %0, %1)
ret <16 x i32> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unsigned int min/max
define internal <16 x i32> @__min_varying_uint32(<16 x i32>, <16 x i32>) nounwind readonly alwaysinline {
binary4to16(ret, i32, @llvm.x86.sse41.pminud, %0, %1)
ret <16 x i32> %ret
}
define internal <16 x i32> @__max_varying_uint32(<16 x i32>, <16 x i32>) nounwind readonly alwaysinline {
binary4to16(ret, i32, @llvm.x86.sse41.pmaxud, %0, %1)
ret <16 x i32> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops
declare i32 @llvm.x86.avx.movmsk.ps.256(<8 x float>) nounwind readnone
define internal i32 @__movmsk(<16 x i32>) nounwind readnone alwaysinline {
%floatmask = bitcast <16 x i32> %0 to <16 x float>
%mask0 = shufflevector <16 x float> %floatmask, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%v0 = call i32 @llvm.x86.avx.movmsk.ps.256(<8 x float> %mask0) nounwind readnone
%mask1 = shufflevector <16 x float> %floatmask, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%v1 = call i32 @llvm.x86.avx.movmsk.ps.256(<8 x float> %mask1) nounwind readnone
%v1shift = shl i32 %v1, 8
%v = or i32 %v1shift, %v0
ret i32 %v
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; horizontal float ops
declare <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float>, <8 x float>) nounwind readnone
define internal float @__reduce_add_float(<16 x float>) nounwind readonly alwaysinline {
%va = shufflevector <16 x float> %0, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%vb = shufflevector <16 x float> %0, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%v1 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %va, <8 x float> %vb)
%v2 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %v1, <8 x float> %v1)
%v3 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %v2, <8 x float> %v2)
%scalar1 = extractelement <8 x float> %v2, i32 0
%scalar2 = extractelement <8 x float> %v2, i32 4
%sum = fadd float %scalar1, %scalar2
ret float %sum
}
define internal float @__reduce_min_float(<16 x float>) nounwind readnone alwaysinline {
reduce16(float, @__min_varying_float, @__min_uniform_float)
}
define internal float @__reduce_max_float(<16 x float>) nounwind readnone alwaysinline {
reduce16(float, @__max_varying_float, @__max_uniform_float)
}
reduce_equal(16)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; horizontal int32 ops
define internal <16 x i32> @__add_varying_int32(<16 x i32>,
<16 x i32>) nounwind readnone alwaysinline {
%s = add <16 x i32> %0, %1
ret <16 x i32> %s
}
define internal i32 @__add_uniform_int32(i32, i32) nounwind readnone alwaysinline {
%s = add i32 %0, %1
ret i32 %s
}
define internal i32 @__reduce_add_int32(<16 x i32>) nounwind readnone alwaysinline {
reduce16(i32, @__add_varying_int32, @__add_uniform_int32)
}
define internal i32 @__reduce_min_int32(<16 x i32>) nounwind readnone alwaysinline {
reduce16(i32, @__min_varying_int32, @__min_uniform_int32)
}
define internal i32 @__reduce_max_int32(<16 x i32>) nounwind readnone alwaysinline {
reduce16(i32, @__max_varying_int32, @__max_uniform_int32)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; horizontal uint32 ops
define internal i32 @__reduce_add_uint32(<16 x i32> %v) nounwind readnone alwaysinline {
%r = call i32 @__reduce_add_int32(<16 x i32> %v)
ret i32 %r
}
define internal i32 @__reduce_min_uint32(<16 x i32>) nounwind readnone alwaysinline {
reduce16(i32, @__min_varying_uint32, @__min_uniform_uint32)
}
define internal i32 @__reduce_max_uint32(<16 x i32>) nounwind readnone alwaysinline {
reduce16(i32, @__max_varying_uint32, @__max_uniform_uint32)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; horizontal double ops
declare <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double>, <4 x double>) nounwind readnone
define internal double @__reduce_add_double(<16 x double>) nounwind readonly alwaysinline {
%va = shufflevector <16 x double> %0, <16 x double> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%vb = shufflevector <16 x double> %0, <16 x double> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%vc = shufflevector <16 x double> %0, <16 x double> undef,
<4 x i32> <i32 8, i32 9, i32 10, i32 11>
%vd = shufflevector <16 x double> %0, <16 x double> undef,
<4 x i32> <i32 12, i32 13, i32 14, i32 15>
%vab = fadd <4 x double> %va, %vb
%vcd = fadd <4 x double> %vc, %vd
%sum0 = call <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double> %vab, <4 x double> %vcd)
%sum1 = call <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double> %sum0, <4 x double> %sum0)
%scalar1 = extractelement <4 x double> %sum0, i32 0
%scalar2 = extractelement <4 x double> %sum1, i32 1
%sum = fadd double %scalar1, %scalar2
ret double %sum
}
define internal double @__reduce_min_double(<16 x double>) nounwind readnone alwaysinline {
reduce16(double, @__min_varying_double, @__min_uniform_double)
}
define internal double @__reduce_max_double(<16 x double>) nounwind readnone alwaysinline {
reduce16(double, @__max_varying_double, @__max_uniform_double)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; horizontal int64 ops
define internal <16 x i64> @__add_varying_int64(<16 x i64>,
<16 x i64>) nounwind readnone alwaysinline {
%s = add <16 x i64> %0, %1
ret <16 x i64> %s
}
define internal i64 @__add_uniform_int64(i64, i64) nounwind readnone alwaysinline {
%s = add i64 %0, %1
ret i64 %s
}
define internal i64 @__reduce_add_int64(<16 x i64>) nounwind readnone alwaysinline {
reduce16(i64, @__add_varying_int64, @__add_uniform_int64)
}
define internal i64 @__reduce_min_int64(<16 x i64>) nounwind readnone alwaysinline {
reduce16(i64, @__min_varying_int64, @__min_uniform_int64)
}
define internal i64 @__reduce_max_int64(<16 x i64>) nounwind readnone alwaysinline {
reduce16(i64, @__max_varying_int64, @__max_uniform_int64)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; horizontal uint64 ops
define internal i64 @__reduce_add_uint64(<16 x i64> %v) nounwind readnone alwaysinline {
%r = call i64 @__reduce_add_int64(<16 x i64> %v)
ret i64 %r
}
define internal i64 @__reduce_min_uint64(<16 x i64>) nounwind readnone alwaysinline {
reduce16(i64, @__min_varying_uint64, @__min_uniform_uint64)
}
define internal i64 @__reduce_max_uint64(<16 x i64>) nounwind readnone alwaysinline {
reduce16(i64, @__max_varying_uint64, @__max_uniform_uint64)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unaligned loads/loads+broadcasts
load_and_broadcast(16, i8, 8)
load_and_broadcast(16, i16, 16)
load_and_broadcast(16, i32, 32)
load_and_broadcast(16, i64, 64)
; no masked load instruction for i8 and i16 types??
load_masked(16, i8, 8, 1)
load_masked(16, i16, 16, 2)
declare <8 x float> @llvm.x86.avx.maskload.ps.256(i8 *, <8 x float> %mask)
declare <4 x double> @llvm.x86.avx.maskload.pd.256(i8 *, <4 x double> %mask)
define <16 x i32> @__load_masked_32(i8 *, <16 x i32> %mask) nounwind alwaysinline {
%floatmask = bitcast <16 x i32> %mask to <16 x float>
%mask0 = shufflevector <16 x float> %floatmask, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%val0 = call <8 x float> @llvm.x86.avx.maskload.ps.256(i8 * %0, <8 x float> %mask0)
%mask1 = shufflevector <16 x float> %floatmask, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%ptr1 = getelementptr i8 * %0, i32 32 ;; 8x4 bytes = 32
%val1 = call <8 x float> @llvm.x86.avx.maskload.ps.256(i8 * %ptr1, <8 x float> %mask1)
%retval = shufflevector <8 x float> %val0, <8 x float> %val1,
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%reti32 = bitcast <16 x float> %retval to <16 x i32>
ret <16 x i32> %reti32
}
define <16 x i64> @__load_masked_64(i8 *, <16 x i32> %mask) nounwind alwaysinline {
; double up masks, bitcast to doubles
%mask0 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 2, i32 2, i32 3, i32 3>
%mask1 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 4, i32 4, i32 5, i32 5, i32 6, i32 6, i32 7, i32 7>
%mask2 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 8, i32 8, i32 9, i32 9, i32 10, i32 10, i32 11, i32 11>
%mask3 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 12, i32 12, i32 13, i32 13, i32 14, i32 14, i32 15, i32 15>
%mask0d = bitcast <8 x i32> %mask0 to <4 x double>
%mask1d = bitcast <8 x i32> %mask1 to <4 x double>
%mask2d = bitcast <8 x i32> %mask2 to <4 x double>
%mask3d = bitcast <8 x i32> %mask3 to <4 x double>
%val0d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %0, <4 x double> %mask0d)
%ptr1 = getelementptr i8 * %0, i32 32
%val1d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %ptr1, <4 x double> %mask1d)
%ptr2 = getelementptr i8 * %0, i32 64
%val2d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %ptr2, <4 x double> %mask2d)
%ptr3 = getelementptr i8 * %0, i32 96
%val3d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %ptr3, <4 x double> %mask3d)
%val01 = shufflevector <4 x double> %val0d, <4 x double> %val1d,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%val23 = shufflevector <4 x double> %val2d, <4 x double> %val3d,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%val0123 = shufflevector <8 x double> %val01, <8 x double> %val23,
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%val = bitcast <16 x double> %val0123 to <16 x i64>
ret <16 x i64> %val
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; masked store
; FIXME: there is no AVX instruction for these, but we could be clever
; by packing the bits down and setting the last 3/4 or half, respectively,
; of the mask to zero... Not sure if this would be a win in the end
gen_masked_store(16, i8, 8)
gen_masked_store(16, i16, 16)
; note that mask is the 2nd parameter, not the 3rd one!!
declare void @llvm.x86.avx.maskstore.ps.256(i8 *, <8 x float>, <8 x float>)
declare void @llvm.x86.avx.maskstore.pd.256(i8 *, <4 x double>, <4 x double>)
define void @__masked_store_32(<16 x i32>* nocapture, <16 x i32>,
<16 x i32>) nounwind alwaysinline {
%ptr = bitcast <16 x i32> * %0 to i8 *
%val = bitcast <16 x i32> %1 to <16 x float>
%mask = bitcast <16 x i32> %2 to <16 x float>
%val0 = shufflevector <16 x float> %val, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%val1 = shufflevector <16 x float> %val, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%mask0 = shufflevector <16 x float> %mask, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%mask1 = shufflevector <16 x float> %mask, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
call void @llvm.x86.avx.maskstore.ps.256(i8 * %ptr, <8 x float> %mask0, <8 x float> %val0)
%ptr1 = getelementptr i8 * %ptr, i32 32
call void @llvm.x86.avx.maskstore.ps.256(i8 * %ptr1, <8 x float> %mask1, <8 x float> %val1)
ret void
}
define void @__masked_store_64(<16 x i64>* nocapture, <16 x i64>,
<16 x i32> %mask) nounwind alwaysinline {
%ptr = bitcast <16 x i64> * %0 to i8 *
%val = bitcast <16 x i64> %1 to <16 x double>
; double up masks, bitcast to doubles
%mask0 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 2, i32 2, i32 3, i32 3>
%mask1 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 4, i32 4, i32 5, i32 5, i32 6, i32 6, i32 7, i32 7>
%mask2 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 8, i32 8, i32 9, i32 9, i32 10, i32 10, i32 11, i32 11>
%mask3 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 12, i32 12, i32 13, i32 13, i32 14, i32 14, i32 15, i32 15>
%mask0d = bitcast <8 x i32> %mask0 to <4 x double>
%mask1d = bitcast <8 x i32> %mask1 to <4 x double>
%mask2d = bitcast <8 x i32> %mask2 to <4 x double>
%mask3d = bitcast <8 x i32> %mask3 to <4 x double>
%val0 = shufflevector <16 x double> %val, <16 x double> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%val1 = shufflevector <16 x double> %val, <16 x double> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%val2 = shufflevector <16 x double> %val, <16 x double> undef,
<4 x i32> <i32 8, i32 9, i32 10, i32 11>
%val3 = shufflevector <16 x double> %val, <16 x double> undef,
<4 x i32> <i32 12, i32 13, i32 14, i32 15>
call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr, <4 x double> %mask0d, <4 x double> %val0)
%ptr1 = getelementptr i8 * %ptr, i32 32
call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr1, <4 x double> %mask1d, <4 x double> %val1)
%ptr2 = getelementptr i8 * %ptr, i32 64
call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr2, <4 x double> %mask2d, <4 x double> %val2)
%ptr3 = getelementptr i8 * %ptr, i32 96
call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr3, <4 x double> %mask3d, <4 x double> %val3)
ret void
}
masked_store_blend_8_16_by_16()
declare <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float>, <8 x float>,
<8 x float>) nounwind readnone
define void @__masked_store_blend_32(<16 x i32>* nocapture, <16 x i32>,
<16 x i32>) nounwind alwaysinline {
%maskAsFloat = bitcast <16 x i32> %2 to <16 x float>
%oldValue = load <16 x i32>* %0, align 4
%oldAsFloat = bitcast <16 x i32> %oldValue to <16 x float>
%newAsFloat = bitcast <16 x i32> %1 to <16 x float>
%old0 = shufflevector <16 x float> %oldAsFloat, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%old1 = shufflevector <16 x float> %oldAsFloat, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%new0 = shufflevector <16 x float> %newAsFloat, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%new1 = shufflevector <16 x float> %newAsFloat, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%mask0 = shufflevector <16 x float> %maskAsFloat, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%mask1 = shufflevector <16 x float> %maskAsFloat, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%blend0 = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %old0,
<8 x float> %new0,
<8 x float> %mask0)
%blend1 = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %old1,
<8 x float> %new1,
<8 x float> %mask1)
%blend = shufflevector <8 x float> %blend0, <8 x float> %blend1,
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%blendAsInt = bitcast <16 x float> %blend to <16 x i32>
store <16 x i32> %blendAsInt, <16 x i32>* %0, align 4
ret void
}
declare <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double>, <4 x double>,
<4 x double>) nounwind readnone
define void @__masked_store_blend_64(<16 x i64>* nocapture %ptr, <16 x i64> %newi64,
<16 x i32> %mask) nounwind alwaysinline {
%oldValue = load <16 x i64>* %ptr, align 8
%old = bitcast <16 x i64> %oldValue to <16 x double>
%old0d = shufflevector <16 x double> %old, <16 x double> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%old1d = shufflevector <16 x double> %old, <16 x double> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%old2d = shufflevector <16 x double> %old, <16 x double> undef,
<4 x i32> <i32 8, i32 9, i32 10, i32 11>
%old3d = shufflevector <16 x double> %old, <16 x double> undef,
<4 x i32> <i32 12, i32 13, i32 14, i32 15>
%new = bitcast <16 x i64> %newi64 to <16 x double>
%new0d = shufflevector <16 x double> %new, <16 x double> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%new1d = shufflevector <16 x double> %new, <16 x double> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%new2d = shufflevector <16 x double> %new, <16 x double> undef,
<4 x i32> <i32 8, i32 9, i32 10, i32 11>
%new3d = shufflevector <16 x double> %new, <16 x double> undef,
<4 x i32> <i32 12, i32 13, i32 14, i32 15>
%mask0 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 2, i32 2, i32 3, i32 3>
%mask1 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 4, i32 4, i32 5, i32 5, i32 6, i32 6, i32 7, i32 7>
%mask2 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 8, i32 8, i32 9, i32 9, i32 10, i32 10, i32 11, i32 11>
%mask3 = shufflevector <16 x i32> %mask, <16 x i32> undef,
<8 x i32> <i32 12, i32 12, i32 13, i32 13, i32 14, i32 14, i32 15, i32 15>
%mask0d = bitcast <8 x i32> %mask0 to <4 x double>
%mask1d = bitcast <8 x i32> %mask1 to <4 x double>
%mask2d = bitcast <8 x i32> %mask2 to <4 x double>
%mask3d = bitcast <8 x i32> %mask3 to <4 x double>
%result0d = call <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double> %old0d,
<4 x double> %new0d, <4 x double> %mask0d)
%result1d = call <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double> %old1d,
<4 x double> %new1d, <4 x double> %mask1d)
%result2d = call <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double> %old2d,
<4 x double> %new2d, <4 x double> %mask2d)
%result3d = call <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double> %old3d,
<4 x double> %new3d, <4 x double> %mask3d)
%result01 = shufflevector <4 x double> %result0d, <4 x double> %result1d,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%result23 = shufflevector <4 x double> %result2d, <4 x double> %result3d,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%result = shufflevector <8 x double> %result01, <8 x double> %result23,
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%result64 = bitcast <16 x double> %result to <16 x i64>
store <16 x i64> %result64, <16 x i64> * %ptr
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; gather/scatter
gen_gather(16, i8)
gen_gather(16, i16)
gen_gather(16, i32)
gen_gather(16, i64)
gen_scatter(16, i8)
gen_scatter(16, i16)
gen_scatter(16, i32)
gen_scatter(16, i64)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision sqrt
declare <4 x double> @llvm.x86.avx.sqrt.pd.256(<4 x double>) nounwind readnone
define internal <16 x double> @__sqrt_varying_double(<16 x double>) nounwind alwaysinline {
unary4to16(ret, double, @llvm.x86.avx.sqrt.pd.256, %0)
ret <16 x double> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision min/max
declare <4 x double> @llvm.x86.avx.max.pd.256(<4 x double>, <4 x double>) nounwind readnone
declare <4 x double> @llvm.x86.avx.min.pd.256(<4 x double>, <4 x double>) nounwind readnone
define internal <16 x double> @__min_varying_double(<16 x double>, <16 x double>) nounwind readnone alwaysinline {
binary4to16(ret, double, @llvm.x86.avx.min.pd.256, %0, %1)
ret <16 x double> %ret
}
define internal <16 x double> @__max_varying_double(<16 x double>, <16 x double>) nounwind readnone alwaysinline {
binary4to16(ret, double, @llvm.x86.avx.max.pd.256, %0, %1)
ret <16 x double> %ret
}

View File

@@ -44,11 +44,12 @@ packed_load_and_store(8)
scans(8)
int64minmax(8)
include(`builtins-avx-common.ll')
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rcp
declare <8 x float> @llvm.x86.avx.rcp.ps.256(<8 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone
define internal <8 x float> @__rcp_varying_float(<8 x float>) nounwind readonly alwaysinline {
; float iv = __rcp_v(v);
@@ -63,25 +64,10 @@ define internal <8 x float> @__rcp_varying_float(<8 x float>) nounwind readonly
ret <8 x float> %iv_mul
}
define internal float @__rcp_uniform_float(float) nounwind readonly alwaysinline {
; uniform float iv = extract(__rcp_u(v), 0);
; return iv * (2. - v * iv);
%vecval = insertelement <4 x float> undef, float %0, i32 0
%call = call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %vecval)
%scall = extractelement <4 x float> %call, i32 0
; do one N-R iteration
%v_iv = fmul float %0, %scall
%two_minus = fsub float 2., %v_iv
%iv_mul = fmul float %scall, %two_minus
ret float %iv_mul
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding floats
declare <8 x float> @llvm.x86.avx.round.ps.256(<8 x float>, i32) nounwind readnone
declare <4 x float> @llvm.x86.sse.round.ss(<4 x float>, <4 x float>, i32) nounwind readnone
define internal <8 x float> @__round_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
@@ -89,111 +75,43 @@ define internal <8 x float> @__round_varying_float(<8 x float>) nounwind readonl
ret <8 x float> %call
}
define internal float @__round_uniform_float(float) nounwind readonly alwaysinline {
; roundss, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
; the roundss intrinsic is a total mess--docs say:
;
; __m128 _mm_round_ss (__m128 a, __m128 b, const int c)
;
; b is a 128-bit parameter. The lowest 32 bits are the result of the rounding function
; on b0. The higher order 96 bits are copied directly from input parameter a. The
; return value is described by the following equations:
;
; r0 = RND(b0)
; r1 = a1
; r2 = a2
; r3 = a3
;
; It doesn't matter what we pass as a, since we only need the r0 value
; here. So we pass the same register for both.
%xi = insertelement <4 x float> undef, float %0, i32 0
%xr = call <4 x float> @llvm.x86.sse.round.ss(<4 x float> %xi, <4 x float> %xi, i32 8)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
define internal <8 x float> @__floor_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round down 0b01 | don't signal precision exceptions 0b1000 = 9
%call = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %0, i32 9)
ret <8 x float> %call
}
define internal float @__floor_uniform_float(float) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <4 x float> undef, float %0, i32 0
; roundps, round down 0b01 | don't signal precision exceptions 0b1000 = 9
%xr = call <4 x float> @llvm.x86.sse.round.ss(<4 x float> %xi, <4 x float> %xi, i32 9)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
define internal <8 x float> @__ceil_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10
%call = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %0, i32 10)
ret <8 x float> %call
}
define internal float @__ceil_uniform_float(float) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <4 x float> undef, float %0, i32 0
; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10
%xr = call <4 x float> @llvm.x86.sse.round.ss(<4 x float> %xi, <4 x float> %xi, i32 10)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding doubles
declare <4 x double> @llvm.x86.avx.round.pd.256(<4 x double>, i32) nounwind readnone
declare <2 x double> @llvm.x86.sse41.round.sd(<2 x double>, <2 x double>, i32) nounwind readnone
define internal <8 x double> @__round_varying_double(<8 x double>) nounwind readonly alwaysinline {
round4to8double(%0, 8)
}
define internal double @__round_uniform_double(double) nounwind readonly alwaysinline {
%xi = insertelement <2 x double> undef, double %0, i32 0
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 8)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
define internal <8 x double> @__floor_varying_double(<8 x double>) nounwind readonly alwaysinline {
; roundpd, round down 0b01 | don't signal precision exceptions 0b1000 = 9
round4to8double(%0, 9)
}
define internal double @__floor_uniform_double(double) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <2 x double> undef, double %0, i32 0
; roundpd, round down 0b01 | don't signal precision exceptions 0b1000 = 9
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 9)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
define internal <8 x double> @__ceil_varying_double(<8 x double>) nounwind readonly alwaysinline {
; roundpd, round up 0b10 | don't signal precision exceptions 0b1000 = 10
round4to8double(%0, 10)
}
define internal double @__ceil_uniform_double(double) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <2 x double> undef, double %0, i32 0
; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 10)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rsqrt
declare <8 x float> @llvm.x86.avx.rsqrt.ps.256(<8 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone
define internal <8 x float> @__rsqrt_varying_float(<8 x float> %v) nounwind readonly alwaysinline {
; float is = __rsqrt_v(v);
@@ -207,58 +125,16 @@ define internal <8 x float> @__rsqrt_varying_float(<8 x float> %v) nounwind read
ret <8 x float> %half_scale
}
define internal float @__rsqrt_uniform_float(float) nounwind readonly alwaysinline {
; uniform float is = extract(__rsqrt_u(v), 0);
%v = insertelement <4 x float> undef, float %0, i32 0
%vis = call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %v)
%is = extractelement <4 x float> %vis, i32 0
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul float %0, %is
%v_is_is = fmul float %v_is, %is
%three_sub = fsub float 3., %v_is_is
%is_mul = fmul float %is, %three_sub
%half_scale = fmul float 0.5, %is_mul
ret float %half_scale
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; sqrt
declare <8 x float> @llvm.x86.avx.sqrt.ps.256(<8 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone
define internal <8 x float> @__sqrt_varying_float(<8 x float>) nounwind readonly alwaysinline {
%call = call <8 x float> @llvm.x86.avx.sqrt.ps.256(<8 x float> %0)
ret <8 x float> %call
}
define internal float @__sqrt_uniform_float(float) nounwind readonly alwaysinline {
sse_unary_scalar(ret, 4, float, @llvm.x86.sse.sqrt.ss, %0)
ret float %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; fastmath
declare void @llvm.x86.sse.stmxcsr(i8 *) nounwind
declare void @llvm.x86.sse.ldmxcsr(i8 *) nounwind
define internal void @__fastmath() nounwind alwaysinline {
%ptr = alloca i32
%ptr8 = bitcast i32 * %ptr to i8 *
call void @llvm.x86.sse.stmxcsr(i8 * %ptr8)
%oldval = load i32 *%ptr
; turn on DAZ (64)/FTZ (32768) -> 32832
%update = or i32 %oldval, 32832
store i32 %update, i32 *%ptr
call void @llvm.x86.sse.ldmxcsr(i8 * %ptr8)
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; svml
@@ -280,9 +156,7 @@ declare <8 x float> @__svml_pow(<8 x float>, <8 x float>)
;; float min/max
declare <8 x float> @llvm.x86.avx.max.ps.256(<8 x float>, <8 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.max.ss(<4 x float>, <4 x float>) nounwind readnone
declare <8 x float> @llvm.x86.avx.min.ps.256(<8 x float>, <8 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.min.ss(<4 x float>, <4 x float>) nounwind readnone
define internal <8 x float> @__max_varying_float(<8 x float>,
<8 x float>) nounwind readonly alwaysinline {
@@ -290,94 +164,43 @@ define internal <8 x float> @__max_varying_float(<8 x float>,
ret <8 x float> %call
}
define internal float @__max_uniform_float(float, float) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.max.ss, %0, %1)
ret float %ret
}
define internal <8 x float> @__min_varying_float(<8 x float>,
<8 x float>) nounwind readonly alwaysinline {
%call = call <8 x float> @llvm.x86.avx.min.ps.256(<8 x float> %0, <8 x float> %1)
ret <8 x float> %call
}
define internal float @__min_uniform_float(float, float) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.min.ss, %0, %1)
ret float %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; int min/max
; no 8-wide integer stuff in avx1...
declare <4 x i32> @llvm.x86.sse41.pminsd(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.x86.sse41.pmaxsd(<4 x i32>, <4 x i32>) nounwind readnone
define internal <8 x i32> @__min_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
binary4to8(ret, i32, @llvm.x86.sse41.pminsd, %0, %1)
ret <8 x i32> %ret
}
define internal i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminsd, %0, %1)
ret i32 %ret
}
define internal <8 x i32> @__max_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
binary4to8(ret, i32, @llvm.x86.sse41.pmaxsd, %0, %1)
ret <8 x i32> %ret
}
define internal i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxsd, %0, %1)
ret i32 %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unsigned int min/max
declare <4 x i32> @llvm.x86.sse41.pminud(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.x86.sse41.pmaxud(<4 x i32>, <4 x i32>) nounwind readnone
define internal <8 x i32> @__min_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
binary4to8(ret, i32, @llvm.x86.sse41.pminud, %0, %1)
ret <8 x i32> %ret
}
define internal i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminud, %0, %1)
ret i32 %ret
}
define internal <8 x i32> @__max_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
binary4to8(ret, i32, @llvm.x86.sse41.pmaxud, %0, %1)
ret <8 x i32> %ret
}
define internal i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxud, %0, %1)
ret i32 %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops
declare i32 @llvm.ctpop.i32(i32) nounwind readnone
define internal i32 @__popcnt_int32(i32) nounwind readonly alwaysinline {
%call = call i32 @llvm.ctpop.i32(i32 %0)
ret i32 %call
}
declare i64 @llvm.ctpop.i64(i64) nounwind readnone
define internal i64 @__popcnt_int64(i64) nounwind readonly alwaysinline {
%call = call i64 @llvm.ctpop.i64(i64 %0)
ret i64 %call
}
declare i32 @llvm.x86.avx.movmsk.ps.256(<8 x float>) nounwind readnone
define internal i32 @__movmsk(<8 x i32>) nounwind readnone alwaysinline {
@@ -711,43 +534,26 @@ gen_scatter(8, i64)
;; double precision sqrt
declare <4 x double> @llvm.x86.avx.sqrt.pd.256(<4 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse.sqrt.sd(<2 x double>) nounwind readnone
define internal <8 x double> @__sqrt_varying_double(<8 x double>) nounwind alwaysinline {
unary4to8(ret, double, @llvm.x86.avx.sqrt.pd.256, %0)
ret <8 x double> %ret
}
define internal double @__sqrt_uniform_double(double) nounwind alwaysinline {
sse_unary_scalar(ret, 2, double, @llvm.x86.sse.sqrt.sd, %0)
ret double %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision min/max
declare <4 x double> @llvm.x86.avx.max.pd.256(<4 x double>, <4 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.max.sd(<2 x double>, <2 x double>) nounwind readnone
declare <4 x double> @llvm.x86.avx.min.pd.256(<4 x double>, <4 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.min.sd(<2 x double>, <2 x double>) nounwind readnone
define internal <8 x double> @__min_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
binary4to8(ret, double, @llvm.x86.avx.min.pd.256, %0, %1)
ret <8 x double> %ret
}
define internal double @__min_uniform_double(double, double) nounwind readnone alwaysinline {
sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.min.sd, %0, %1)
ret double %ret
}
define internal <8 x double> @__max_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
binary4to8(ret, double, @llvm.x86.avx.max.pd.256, %0, %1)
ret <8 x double> %ret
}
define internal double @__max_uniform_double(double, double) nounwind readnone alwaysinline {
sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.max.sd, %0, %1)
ret double %ret
}

View File

@@ -454,10 +454,22 @@ DefineStdlib(SymbolTable *symbolTable, llvm::LLVMContext *ctx, llvm::Module *mod
}
break;
case Target::AVX:
extern unsigned char builtins_bitcode_avx[];
extern int builtins_bitcode_avx_length;
lAddBitcode(builtins_bitcode_avx, builtins_bitcode_avx_length, module,
symbolTable);
switch (g->target.vectorWidth) {
case 8:
extern unsigned char builtins_bitcode_avx[];
extern int builtins_bitcode_avx_length;
lAddBitcode(builtins_bitcode_avx, builtins_bitcode_avx_length, module,
symbolTable);
break;
case 16:
extern unsigned char builtins_bitcode_avx_x2[];
extern int builtins_bitcode_avx_x2_length;
lAddBitcode(builtins_bitcode_avx_x2, builtins_bitcode_avx_x2_length,
module, symbolTable);
break;
default:
FATAL("logic error in DefineStdlib");
}
break;
default:
FATAL("logic error");

View File

@@ -111,6 +111,32 @@ define(`reduce8', `
'
)
define(`reduce16', `
%v1 = shufflevector <16 x $1> %0, <16 x $1> undef,
<16 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15,
i32 undef, i32 undef, i32 undef, i32 undef,
i32 undef, i32 undef, i32 undef, i32 undef>
%m1 = call <16 x $1> $2(<16 x $1> %v1, <16 x $1> %0)
%v2 = shufflevector <16 x $1> %m1, <16 x $1> undef,
<16 x i32> <i32 4, i32 5, i32 6, i32 7,
i32 undef, i32 undef, i32 undef, i32 undef,
i32 undef, i32 undef, i32 undef, i32 undef,
i32 undef, i32 undef, i32 undef, i32 undef>
%m2 = call <16 x $1> $2(<16 x $1> %v2, <16 x $1> %m1)
%v3 = shufflevector <16 x $1> %m2, <16 x $1> undef,
<16 x i32> <i32 2, i32 3, i32 undef, i32 undef,
i32 undef, i32 undef, i32 undef, i32 undef,
i32 undef, i32 undef, i32 undef, i32 undef,
i32 undef, i32 undef, i32 undef, i32 undef>
%m3 = call <16 x $1> $2(<16 x $1> %v3, <16 x $1> %m2)
%m3a = extractelement <16 x $1> %m3, i32 0
%m3b = extractelement <16 x $1> %m3, i32 1
%m = call $1 $3($1 %m3a, $1 %m3b)
ret $1 %m
'
)
;; Do an reduction over an 8-wide vector, using a vector reduction function
;; that only takes 4-wide vectors
;; $1: type of final scalar result
@@ -211,6 +237,45 @@ define(`unary4to8', `
'
)
define(`unary4to16', `
%$1_0 = shufflevector <16 x $2> $4, <16 x $2> undef, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
%v$1_0 = call <4 x $2> $3(<4 x $2> %$1_0)
%$1_1 = shufflevector <16 x $2> $4, <16 x $2> undef, <4 x i32> <i32 4, i32 5, i32 6, i32 7>
%v$1_1 = call <4 x $2> $3(<4 x $2> %$1_1)
%$1_2 = shufflevector <16 x $2> $4, <16 x $2> undef, <4 x i32> <i32 8, i32 9, i32 10, i32 11>
%v$1_2 = call <4 x $2> $3(<4 x $2> %$1_2)
%$1_3 = shufflevector <16 x $2> $4, <16 x $2> undef, <4 x i32> <i32 12, i32 13, i32 14, i32 15>
%v$1_3 = call <4 x $2> $3(<4 x $2> %$1_3)
%$1a = shufflevector <4 x $2> %v$1_0, <4 x $2> %v$1_1,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%$1b = shufflevector <4 x $2> %v$1_2, <4 x $2> %v$1_3,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%$1 = shufflevector <8 x $2> %$1a, <8 x $2> %$1b,
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
'
)
;; And so forth...
;; $1: name of variable into which the final result should go
;; $2: scalar type of the vector elements
;; $3: 8-wide unary vector function to apply
;; $4: 16-wide operand value
define(`unary8to16', `
%$1_0 = shufflevector <16 x $2> $4, <16 x $2> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%v$1_0 = call <8 x $2> $3(<8 x $2> %$1_0)
%$1_1 = shufflevector <16 x $2> $4, <16 x $2> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%v$1_1 = call <8 x $2> $3(<8 x $2> %$1_1)
%$1 = shufflevector <8 x $2> %v$1_0, <8 x $2> %v$1_1,
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
'
)
;; And along the lines of `binary2to4', this maps a 4-wide binary function to
;; two 8-wide vector operands
;; $1: name of variable into which the final result should go
@@ -231,6 +296,57 @@ define(`binary4to8', `
'
)
define(`binary8to16', `
%$1_0a = shufflevector <16 x $2> $4, <16 x $2> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%$1_0b = shufflevector <16 x $2> $5, <16 x $2> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%v$1_0 = call <8 x $2> $3(<8 x $2> %$1_0a, <8 x $2> %$1_0b)
%$1_1a = shufflevector <16 x $2> $4, <16 x $2> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%$1_1b = shufflevector <16 x $2> $5, <16 x $2> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%v$1_1 = call <8 x $2> $3(<8 x $2> %$1_1a, <8 x $2> %$1_1b)
%$1 = shufflevector <8 x $2> %v$1_0, <8 x $2> %v$1_1,
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
'
)
define(`binary4to16', `
%$1_0a = shufflevector <16 x $2> $4, <16 x $2> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%$1_0b = shufflevector <16 x $2> $5, <16 x $2> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%r$1_0 = call <4 x $2> $3(<4 x $2> %$1_0a, <4 x $2> %$1_0b)
%$1_1a = shufflevector <16 x $2> $4, <16 x $2> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%$1_1b = shufflevector <16 x $2> $5, <16 x $2> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%r$1_1 = call <4 x $2> $3(<4 x $2> %$1_1a, <4 x $2> %$1_1b)
%$1_2a = shufflevector <16 x $2> $4, <16 x $2> undef,
<4 x i32> <i32 8, i32 9, i32 10, i32 11>
%$1_2b = shufflevector <16 x $2> $5, <16 x $2> undef,
<4 x i32> <i32 8, i32 9, i32 10, i32 11>
%r$1_2 = call <4 x $2> $3(<4 x $2> %$1_2a, <4 x $2> %$1_2b)
%$1_3a = shufflevector <16 x $2> $4, <16 x $2> undef,
<4 x i32> <i32 12, i32 13, i32 14, i32 15>
%$1_3b = shufflevector <16 x $2> $5, <16 x $2> undef,
<4 x i32> <i32 12, i32 13, i32 14, i32 15>
%r$1_3 = call <4 x $2> $3(<4 x $2> %$1_3a, <4 x $2> %$1_3b)
%r$1_01 = shufflevector <4 x $2> %r$1_0, <4 x $2> %r$1_1,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%r$1_23 = shufflevector <4 x $2> %r$1_2, <4 x $2> %r$1_3,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%$1 = shufflevector <8 x $2> %r$1_01, <8 x $2> %r$1_23,
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
')
;; Maps a 2-wide unary function to an 8-wide vector operand, returning an
;; 8-wide vector result
@@ -306,6 +422,20 @@ ret <8 x float> %ret
'
)
define(`round8to16', `
%v0 = shufflevector <16 x float> $1, <16 x float> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%v1 = shufflevector <16 x float> $1, <16 x float> undef,
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
%r0 = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %v0, i32 $2)
%r1 = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %v1, i32 $2)
%ret = shufflevector <8 x float> %r0, <8 x float> %r1,
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
ret <16 x float> %ret
'
)
define(`round4to8double', `
%v0 = shufflevector <8 x double> $1, <8 x double> undef, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
%v1 = shufflevector <8 x double> $1, <8 x double> undef, <4 x i32> <i32 4, i32 5, i32 6, i32 7>
@@ -349,6 +479,30 @@ ret <8 x double> %ret
'
)
define(`round4to16double', `
%v0 = shufflevector <16 x double> $1, <16 x double> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%v1 = shufflevector <16 x double> $1, <16 x double> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%v2 = shufflevector <16 x double> $1, <16 x double> undef,
<4 x i32> <i32 8, i32 9, i32 10, i32 11>
%v3 = shufflevector <16 x double> $1, <16 x double> undef,
<4 x i32> <i32 12, i32 13, i32 14, i32 15>
%r0 = call <4 x double> @llvm.x86.avx.round.pd.256(<4 x double> %v0, i32 $2)
%r1 = call <4 x double> @llvm.x86.avx.round.pd.256(<4 x double> %v1, i32 $2)
%r2 = call <4 x double> @llvm.x86.avx.round.pd.256(<4 x double> %v2, i32 $2)
%r3 = call <4 x double> @llvm.x86.avx.round.pd.256(<4 x double> %v3, i32 $2)
%ret0 = shufflevector <4 x double> %r0, <4 x double> %r1,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%ret1 = shufflevector <4 x double> %r2, <4 x double> %r3,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%ret = shufflevector <8 x double> %ret0, <8 x double> %ret1,
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
ret <16 x double> %ret
'
)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; forloop macro
@@ -1260,6 +1414,46 @@ define void @__masked_store_blend_16(<8 x i16>* nocapture, <8 x i16>,
}
')
define(`masked_store_blend_8_16_by_16', `
define void @__masked_store_blend_8(<16 x i8>* nocapture, <16 x i8>,
<16 x i32>) nounwind alwaysinline {
%old = load <16 x i8> * %0
%old128 = bitcast <16 x i8> %old to i128
%new128 = bitcast <16 x i8> %1 to i128
%mask8 = trunc <16 x i32> %2 to <16 x i8>
%mask128 = bitcast <16 x i8> %mask8 to i128
%notmask128 = xor i128 %mask128, -1
%newmasked = and i128 %new128, %mask128
%oldmasked = and i128 %old128, %notmask128
%result = or i128 %newmasked, %oldmasked
%resultvec = bitcast i128 %result to <16 x i8>
store <16 x i8> %resultvec, <16 x i8> * %0
ret void
}
define void @__masked_store_blend_16(<16 x i16>* nocapture, <16 x i16>,
<16 x i32>) nounwind alwaysinline {
%old = load <16 x i16> * %0
%old256 = bitcast <16 x i16> %old to i256
%new256 = bitcast <16 x i16> %1 to i256
%mask16 = trunc <16 x i32> %2 to <16 x i16>
%mask256 = bitcast <16 x i16> %mask16 to i256
%notmask256 = xor i256 %mask256, -1
%newmasked = and i256 %new256, %mask256
%oldmasked = and i256 %old256, %notmask256
%result = or i256 %newmasked, %oldmasked
%resultvec = bitcast i256 %result to <16 x i16>
store <16 x i16> %resultvec, <16 x i16> * %0
ret void
}
')
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; packed load and store functions

View File

@@ -16,6 +16,7 @@
<ClCompile Include="decl.cpp" />
<ClCompile Include="expr.cpp" />
<ClCompile Include="gen-bitcode-avx.cpp" />
<ClCompile Include="gen-bitcode-avx-x2.cpp" />
<ClCompile Include="gen-bitcode-c-32.cpp" />
<ClCompile Include="gen-bitcode-c-64.cpp" />
<ClCompile Include="gen-bitcode-sse2.cpp" />
@@ -120,6 +121,19 @@
<Message Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">Building gen-bitcode-avx.cpp</Message>
</CustomBuild>
</ItemGroup>
<ItemGroup>
<CustomBuild Include="builtins-avx-x2.ll">
<FileType>Document</FileType>
<Command Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">m4 builtins.m4 builtins-avx-x2.ll | python bitcode2cpp.py builtins-avx-x2.ll &gt; gen-bitcode-avx-x2.cpp</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">gen-bitcode-avx-x2.cpp</Outputs>
<AdditionalInputs Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">builtins.m4;builtins-sse.ll</AdditionalInputs>
<Command Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">m4 builtins.m4 builtins-avx-x2.ll | python bitcode2cpp.py builtins-avx-x2.ll &gt; gen-bitcode-avx-x2.cpp</Command>
<Outputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">gen-bitcode-avx-x2.cpp</Outputs>
<AdditionalInputs Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">builtins.m4;builtins-sse.ll</AdditionalInputs>
<Message Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">Building gen-bitcode-avx-x2.cpp</Message>
<Message Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">Building gen-bitcode-avx-x2.cpp</Message>
</CustomBuild>
</ItemGroup>
<ItemGroup>
<CustomBuild Include="lex.ll">
<FileType>Document</FileType>

View File

@@ -92,7 +92,7 @@ static void usage(int ret) {
printf(" disable-uniform-memory-optimizations\tDisable uniform-based coherent memory access\n");
printf(" disable-masked-store-optimizations\tDisable lowering to regular stores when possible\n");
#if defined(LLVM_3_0) || defined(LLVM_3_0svn)
printf(" [--target={sse2,sse4,sse4x2,avx}] Select target ISA (SSE4 is default unless compiling for atom; then SSE2 is.)\n");
printf(" [--target={sse2,sse4,sse4x2,avx,avx-x2}] Select target ISA (SSE4 is default unless compiling for atom; then SSE2 is.)\n");
#else
printf(" [--target={sse2,sse4,sse4x2}] Select target ISA (SSE4 is default unless compiling for atom; then SSE2 is.)\n");
#endif // LLVM 3.0
@@ -128,6 +128,11 @@ static void lDoTarget(const char *target) {
g->target.nativeVectorWidth = 8;
g->target.vectorWidth = 8;
}
else if (!strcasecmp(target, "avx-x2")) {
g->target.isa = Target::AVX;
g->target.nativeVectorWidth = 8;
g->target.vectorWidth = 16;
}
#endif // LLVM 3.0
else
usage(1);