425 lines
12 KiB
C++
Executable File
425 lines
12 KiB
C++
Executable File
/*
|
|
Copyright (c) 2010-2011, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
* Neither the name of Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef _MSC_VER
|
|
#define _CRT_SECURE_NO_WARNINGS
|
|
#define NOMINMAX
|
|
#pragma warning (disable: 4244)
|
|
#pragma warning (disable: 4305)
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#ifdef __linux__
|
|
#include <malloc.h>
|
|
#endif
|
|
#include <math.h>
|
|
#include <map>
|
|
#include <string>
|
|
#include <algorithm>
|
|
#include <sys/types.h>
|
|
|
|
#include "ao_ispc.h"
|
|
using namespace ispc;
|
|
|
|
#include "../timing.h"
|
|
|
|
#include <sys/time.h>
|
|
static inline double rtc(void)
|
|
{
|
|
struct timeval Tvalue;
|
|
double etime;
|
|
struct timezone dummy;
|
|
|
|
gettimeofday(&Tvalue,&dummy);
|
|
etime = (double) Tvalue.tv_sec +
|
|
1.e-6*((double) Tvalue.tv_usec);
|
|
return etime;
|
|
}
|
|
|
|
/******************************/
|
|
#include <cassert>
|
|
#include <iostream>
|
|
#include <cuda.h>
|
|
#include "drvapi_error_string.h"
|
|
|
|
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
|
|
// These are the inline versions for all of the SDK helper functions
|
|
void __checkCudaErrors(CUresult err, const char *file, const int line) {
|
|
if(CUDA_SUCCESS != err) {
|
|
std::cerr << "checkCudeErrors() Driver API error = " << err << "\""
|
|
<< getCudaDrvErrorString(err) << "\" from file <" << file
|
|
<< ", line " << line << "\n";
|
|
exit(-1);
|
|
}
|
|
}
|
|
|
|
/**********************/
|
|
/* Basic CUDriver API */
|
|
CUcontext context;
|
|
|
|
void createContext(const int deviceId = 0)
|
|
{
|
|
CUdevice device;
|
|
int devCount;
|
|
checkCudaErrors(cuInit(0));
|
|
checkCudaErrors(cuDeviceGetCount(&devCount));
|
|
assert(devCount > 0);
|
|
checkCudaErrors(cuDeviceGet(&device, deviceId < devCount ? deviceId : 0));
|
|
|
|
char name[128];
|
|
checkCudaErrors(cuDeviceGetName(name, 128, device));
|
|
std::cout << "Using CUDA Device [0]: " << name << "\n";
|
|
|
|
int devMajor, devMinor;
|
|
checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
|
|
std::cout << "Device Compute Capability: "
|
|
<< devMajor << "." << devMinor << "\n";
|
|
if (devMajor < 2) {
|
|
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
|
|
exit(1);
|
|
}
|
|
|
|
// Create driver context
|
|
checkCudaErrors(cuCtxCreate(&context, 0, device));
|
|
}
|
|
void destroyContext()
|
|
{
|
|
checkCudaErrors(cuCtxDestroy(context));
|
|
}
|
|
|
|
CUmodule loadModule(const char * module)
|
|
{
|
|
CUmodule cudaModule;
|
|
// in this branch we use compilation with parameters
|
|
|
|
const unsigned int jitNumOptions = 1;
|
|
CUjit_option *jitOptions = new CUjit_option[jitNumOptions];
|
|
void **jitOptVals = new void*[jitNumOptions];
|
|
// set up pointer to set the Maximum # of registers for a particular kernel
|
|
jitOptions[0] = CU_JIT_MAX_REGISTERS;
|
|
int jitRegCount = 64;
|
|
jitOptVals[0] = (void *)(size_t)jitRegCount;
|
|
#if 0
|
|
|
|
// set up size of compilation log buffer
|
|
jitOptions[0] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
|
|
int jitLogBufferSize = 1024;
|
|
jitOptVals[0] = (void *)(size_t)jitLogBufferSize;
|
|
|
|
// set up pointer to the compilation log buffer
|
|
jitOptions[1] = CU_JIT_INFO_LOG_BUFFER;
|
|
char *jitLogBuffer = new char[jitLogBufferSize];
|
|
jitOptVals[1] = jitLogBuffer;
|
|
|
|
// set up pointer to set the Maximum # of registers for a particular kernel
|
|
jitOptions[2] = CU_JIT_MAX_REGISTERS;
|
|
int jitRegCount = 32;
|
|
jitOptVals[2] = (void *)(size_t)jitRegCount;
|
|
#endif
|
|
|
|
checkCudaErrors(cuModuleLoadDataEx(&cudaModule, module,jitNumOptions, jitOptions, (void **)jitOptVals));
|
|
return cudaModule;
|
|
}
|
|
void unloadModule(CUmodule &cudaModule)
|
|
{
|
|
checkCudaErrors(cuModuleUnload(cudaModule));
|
|
}
|
|
|
|
CUfunction getFunction(CUmodule &cudaModule, const char * function)
|
|
{
|
|
CUfunction cudaFunction;
|
|
checkCudaErrors(cuModuleGetFunction(&cudaFunction, cudaModule, function));
|
|
return cudaFunction;
|
|
}
|
|
|
|
CUdeviceptr deviceMalloc(const size_t size)
|
|
{
|
|
CUdeviceptr d_buf;
|
|
checkCudaErrors(cuMemAlloc(&d_buf, size));
|
|
return d_buf;
|
|
}
|
|
void deviceFree(CUdeviceptr d_buf)
|
|
{
|
|
checkCudaErrors(cuMemFree(d_buf));
|
|
}
|
|
void memcpyD2H(void * h_buf, CUdeviceptr d_buf, const size_t size)
|
|
{
|
|
checkCudaErrors(cuMemcpyDtoH(h_buf, d_buf, size));
|
|
}
|
|
void memcpyH2D(CUdeviceptr d_buf, void * h_buf, const size_t size)
|
|
{
|
|
checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size));
|
|
}
|
|
#define deviceLaunch(func,nbx,nby,nbz,params) \
|
|
checkCudaErrors(cuFuncSetCacheConfig((func), CU_FUNC_CACHE_PREFER_EQUAL)); \
|
|
checkCudaErrors( \
|
|
cuLaunchKernel( \
|
|
(func), \
|
|
((nbx-1)/(128/32)+1), (nby), (nbz), \
|
|
128, 1, 1, \
|
|
0, NULL, (params), NULL \
|
|
));
|
|
|
|
typedef CUdeviceptr devicePtr;
|
|
|
|
|
|
/**************/
|
|
#include <vector>
|
|
std::vector<char> readBinary(const char * filename)
|
|
{
|
|
std::vector<char> buffer;
|
|
FILE *fp = fopen(filename, "rb");
|
|
if (!fp )
|
|
{
|
|
fprintf(stderr, "file %s not found\n", filename);
|
|
assert(0);
|
|
}
|
|
#if 0
|
|
char c;
|
|
while ((c = fgetc(fp)) != EOF)
|
|
buffer.push_back(c);
|
|
#else
|
|
fseek(fp, 0, SEEK_END);
|
|
const unsigned long long size = ftell(fp); /*calc the size needed*/
|
|
fseek(fp, 0, SEEK_SET);
|
|
buffer.resize(size);
|
|
|
|
if (fp == NULL){ /*ERROR detection if file == empty*/
|
|
fprintf(stderr, "Error: There was an Error reading the file %s \n",filename);
|
|
exit(1);
|
|
}
|
|
else if (fread(&buffer[0], sizeof(char), size, fp) != size){ /* if count of read bytes != calculated size of .bin file -> ERROR*/
|
|
fprintf(stderr, "Error: There was an Error reading the file %s \n", filename);
|
|
exit(1);
|
|
}
|
|
#endif
|
|
fprintf(stderr, " read buffer of size= %d bytes \n", (int)buffer.size());
|
|
return buffer;
|
|
}
|
|
|
|
extern "C"
|
|
{
|
|
|
|
void *CUDAAlloc(void **handlePtr, int64_t size, int32_t alignment)
|
|
{
|
|
return NULL;
|
|
}
|
|
void CUDALaunch(
|
|
void **handlePtr,
|
|
const char * module_name,
|
|
const char * module_1,
|
|
const char * func_name,
|
|
void **func_args,
|
|
int countx, int county, int countz)
|
|
{
|
|
assert(module_name != NULL);
|
|
assert(module_1 != NULL);
|
|
assert(func_name != NULL);
|
|
assert(func_args != NULL);
|
|
#if 0
|
|
const char * module = module_1;
|
|
#else
|
|
const std::vector<char> module_str = readBinary("kernel.cubin");
|
|
const char * module = &module_str[0];
|
|
#endif
|
|
CUmodule cudaModule = loadModule(module);
|
|
CUfunction cudaFunction = getFunction(cudaModule, func_name);
|
|
deviceLaunch(cudaFunction, countx, county, countz, func_args);
|
|
unloadModule(cudaModule);
|
|
}
|
|
void CUDASync(void *handle)
|
|
{
|
|
checkCudaErrors(cuStreamSynchronize(0));
|
|
}
|
|
void ISPCSync(void *handle)
|
|
{
|
|
checkCudaErrors(cuStreamSynchronize(0));
|
|
}
|
|
void CUDAFree(void *handle)
|
|
{
|
|
}
|
|
}
|
|
/******************************/
|
|
|
|
|
|
#define NSUBSAMPLES 2
|
|
|
|
extern void ao_serial(int w, int h, int nsubsamples, float image[]);
|
|
|
|
static unsigned int test_iterations;
|
|
static unsigned int width, height;
|
|
static unsigned char *img;
|
|
static float *fimg;
|
|
|
|
|
|
static unsigned char
|
|
clamp(float f)
|
|
{
|
|
int i = (int)(f * 255.5);
|
|
|
|
if (i < 0) i = 0;
|
|
if (i > 255) i = 255;
|
|
|
|
return (unsigned char)i;
|
|
}
|
|
|
|
|
|
static void
|
|
savePPM(const char *fname, int w, int h)
|
|
{
|
|
for (int y = 0; y < h; y++) {
|
|
for (int x = 0; x < w; x++) {
|
|
img[3 * (y * w + x) + 0] = clamp(fimg[3 *(y * w + x) + 0]);
|
|
img[3 * (y * w + x) + 1] = clamp(fimg[3 *(y * w + x) + 1]);
|
|
img[3 * (y * w + x) + 2] = clamp(fimg[3 *(y * w + x) + 2]);
|
|
}
|
|
}
|
|
|
|
FILE *fp = fopen(fname, "wb");
|
|
if (!fp) {
|
|
perror(fname);
|
|
exit(1);
|
|
}
|
|
|
|
fprintf(fp, "P6\n");
|
|
fprintf(fp, "%d %d\n", w, h);
|
|
fprintf(fp, "255\n");
|
|
fwrite(img, w * h * 3, 1, fp);
|
|
fclose(fp);
|
|
printf("Wrote image file %s\n", fname);
|
|
}
|
|
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
if (argc != 4) {
|
|
printf ("%s\n", argv[0]);
|
|
printf ("Usage: ao [num test iterations] [width] [height]\n");
|
|
getchar();
|
|
exit(-1);
|
|
}
|
|
else {
|
|
test_iterations = atoi(argv[1]);
|
|
width = atoi (argv[2]);
|
|
height = atoi (argv[3]);
|
|
}
|
|
|
|
// Allocate space for output images
|
|
img = new unsigned char[width * height * 3];
|
|
fimg = new float[width * height * 3];
|
|
|
|
//
|
|
// Run the ispc path, test_iterations times, and report the minimum
|
|
// time for any of them.
|
|
//
|
|
double minTimeISPC = 1e30;
|
|
#if 0
|
|
for (unsigned int i = 0; i < test_iterations; i++) {
|
|
memset((void *)fimg, 0, sizeof(float) * width * height * 3);
|
|
assert(NSUBSAMPLES == 2);
|
|
|
|
reset_and_start_timer();
|
|
ao_ispc(width, height, NSUBSAMPLES, fimg);
|
|
double t = get_elapsed_mcycles();
|
|
minTimeISPC = std::min(minTimeISPC, t);
|
|
}
|
|
|
|
// Report results and save image
|
|
printf("[aobench ispc]:\t\t\t[%.3f] million cycles (%d x %d image)\n",
|
|
minTimeISPC, width, height);
|
|
savePPM("ao-ispc.ppm", width, height);
|
|
#endif
|
|
|
|
/*******************/
|
|
createContext();
|
|
/*******************/
|
|
devicePtr d_fimg = deviceMalloc(width*height*3*sizeof(float));
|
|
|
|
//
|
|
// Run the ispc + tasks path, test_iterations times, and report the
|
|
// minimum time for any of them.
|
|
//
|
|
double minTimeISPCTasks = 1e30;
|
|
for (unsigned int i = 0; i < test_iterations; i++) {
|
|
memset((void *)fimg, 0, sizeof(float) * width * height * 3);
|
|
assert(NSUBSAMPLES == 2);
|
|
memcpyH2D(d_fimg, fimg, width*height*3*sizeof(float));
|
|
|
|
reset_and_start_timer();
|
|
const double t0 = rtc();
|
|
ao_ispc_tasks(
|
|
width,
|
|
height,
|
|
NSUBSAMPLES,
|
|
(float*)d_fimg);
|
|
double t = (rtc() - t0); //get_elapsed_mcycles();
|
|
minTimeISPCTasks = std::min(minTimeISPCTasks, t);
|
|
}
|
|
|
|
memcpyD2H(fimg, d_fimg, width*height*3*sizeof(float));
|
|
|
|
// Report results and save image
|
|
printf("[aobench ispc + tasks]:\t\t[%.3f] million cycles (%d x %d image)\n",
|
|
minTimeISPCTasks, width, height);
|
|
savePPM("ao-cuda.ppm", width, height);
|
|
/*******************/
|
|
destroyContext();
|
|
/*******************/
|
|
return 0;
|
|
|
|
//
|
|
// Run the serial path, again test_iteration times, and report the
|
|
// minimum time.
|
|
//
|
|
double minTimeSerial = 1e30;
|
|
for (unsigned int i = 0; i < test_iterations; i++) {
|
|
memset((void *)fimg, 0, sizeof(float) * width * height * 3);
|
|
reset_and_start_timer();
|
|
ao_serial(width, height, NSUBSAMPLES, fimg);
|
|
double t = get_elapsed_mcycles();
|
|
minTimeSerial = std::min(minTimeSerial, t);
|
|
}
|
|
|
|
// Report more results, save another image...
|
|
printf("[aobench serial]:\t\t[%.3f] million cycles (%d x %d image)\n", minTimeSerial,
|
|
width, height);
|
|
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n",
|
|
minTimeSerial / minTimeISPC, minTimeSerial / minTimeISPCTasks);
|
|
savePPM("ao-serial.ppm", width, height);
|
|
|
|
return 0;
|
|
}
|