Files
ispc/examples_cuda/cuda_ispc.h
2013-11-15 17:23:22 +01:00

278 lines
8.1 KiB
C++

#pragma once
/******************************/
#include <sys/time.h>
static inline double rtc(void)
{
struct timeval Tvalue;
double etime;
struct timezone dummy;
gettimeofday(&Tvalue,&dummy);
etime = (double) Tvalue.tv_sec +
1.e-6*((double) Tvalue.tv_usec);
return etime;
}
/******************************/
#include <cassert>
#include <iostream>
#include <cuda.h>
#include "drvapi_error_string.h"
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
// These are the inline versions for all of the SDK helper functions
void __checkCudaErrors(CUresult err, const char *file, const int line) {
if(CUDA_SUCCESS != err) {
std::cerr << "checkCudeErrors() Driver API error = " << err << "\""
<< getCudaDrvErrorString(err) << "\" from file <" << file
<< ", line " << line << "\n";
exit(-1);
}
}
/******************************/
/**** Basic CUDriver API ****/
/******************************/
CUcontext context;
static void createContext(
const int deviceId = 0,
const size_t stackLimit = 4*1024,
const size_t heapLimit = 1024*1024*1024
)
{
CUdevice device;
int devCount;
checkCudaErrors(cuInit(0));
checkCudaErrors(cuDeviceGetCount(&devCount));
assert(devCount > 0);
checkCudaErrors(cuDeviceGet(&device, deviceId < devCount ? deviceId : 0));
char name[128];
checkCudaErrors(cuDeviceGetName(name, 128, device));
std::cout << "Using CUDA Device [0]: " << name << "\n";
int devMajor, devMinor;
checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
std::cout << "Device Compute Capability: "
<< devMajor << "." << devMinor << "\n";
if (devMajor < 2) {
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
exit(1);
}
// Create driver context
checkCudaErrors(cuCtxCreate(&context, 0, device));
#if 0
size_t limit;
checkCudaErrors(cuCtxGetLimit(&limit, CU_LIMIT_STACK_SIZE));
fprintf(stderr, " stack_limit= %llu KB\n", limit/1024);
checkCudaErrors(cuCtxGetLimit(&limit, CU_LIMIT_MALLOC_HEAP_SIZE));
fprintf(stderr, " heap_limit= %llu KB\n", limit/1024);
checkCudaErrors(cuCtxSetLimit(CU_LIMIT_STACK_SIZE,stackLimit));
checkCudaErrors(cuCtxSetLimit(CU_LIMIT_MALLOC_HEAP_SIZE,heapLimit));
#endif
}
static void destroyContext()
{
checkCudaErrors(cuCtxDestroy(context));
}
static CUmodule loadModule(
const char * module,
const int maxrregcount = 64,
const char cudadevrt_lib[] = "libcudadevrt.a",
const size_t log_size = 32768,
const bool print_log = true
)
{
const double t0 = rtc();
CUmodule cudaModule;
// in this branch we use compilation with parameters
CUlinkState CUState;
CUlinkState *lState = &CUState;
const int nOptions = 8;
CUjit_option options[nOptions];
void* optionVals[nOptions];
float walltime;
size_t logSize = log_size;
char error_log[logSize],
info_log[logSize];
void *cuOut;
size_t outSize;
int myErr = 0;
// Setup linker options
// Return walltime from JIT compilation
options[0] = CU_JIT_WALL_TIME;
optionVals[0] = (void*) &walltime;
// Pass a buffer for info messages
options[1] = CU_JIT_INFO_LOG_BUFFER;
optionVals[1] = (void*) info_log;
// Pass the size of the info buffer
options[2] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
optionVals[2] = (void*) logSize;
// Pass a buffer for error message
options[3] = CU_JIT_ERROR_LOG_BUFFER;
optionVals[3] = (void*) error_log;
// Pass the size of the error buffer
options[4] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES;
optionVals[4] = (void*) logSize;
// Make the linker verbose
options[5] = CU_JIT_LOG_VERBOSE;
optionVals[5] = (void*) 1;
// Max # of registers/pthread
options[6] = CU_JIT_MAX_REGISTERS;
int jitRegCount = maxrregcount;
optionVals[6] = (void *)(size_t)jitRegCount;
// Caching
options[7] = CU_JIT_CACHE_MODE;
optionVals[7] = (void *)CU_JIT_CACHE_OPTION_CA;
// Create a pending linker invocation
// Create a pending linker invocation
checkCudaErrors(cuLinkCreate(nOptions,options, optionVals, lState));
#if 0
if (sizeof(void *)==4)
{
// Load the PTX from the string myPtx32
printf("Loading myPtx32[] program\n");
// PTX May also be loaded from file, as per below.
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)myPtx32, strlen(myPtx32)+1, 0, 0, 0, 0);
}
else
#endif
{
// Load the PTX from the string myPtx (64-bit)
fprintf(stderr, "Loading ptx..\n");
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)module, strlen(module)+1, 0, 0, 0, 0);
myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_LIBRARY, cudadevrt_lib, 0,0,0);
// PTX May also be loaded from file, as per below.
// myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_PTX, "myPtx64.ptx",0,0,0);
}
// Complete the linker step
myErr = cuLinkComplete(*lState, &cuOut, &outSize);
if ( myErr != CUDA_SUCCESS )
{
// Errors will be put in error_log, per CU_JIT_ERROR_LOG_BUFFER option above.
fprintf(stderr,"PTX Linker Error:\n%s\n",error_log);
assert(0);
}
// Linker walltime and info_log were requested in options above.
if (print_log)
fprintf(stderr, "CUDA Link Completed in %fms [ %g ms]. Linker Output:\n%s\n",walltime,info_log,1e3*(rtc() - t0));
// Load resulting cuBin into module
checkCudaErrors(cuModuleLoadData(&cudaModule, cuOut));
// Destroy the linker invocation
checkCudaErrors(cuLinkDestroy(*lState));
fprintf(stderr, " loadModule took %g ms \n", 1e3*(rtc() - t0));
return cudaModule;
}
static void unloadModule(CUmodule &cudaModule)
{
checkCudaErrors(cuModuleUnload(cudaModule));
}
static CUfunction getFunction(CUmodule &cudaModule, const char * function)
{
CUfunction cudaFunction;
checkCudaErrors(cuModuleGetFunction(&cudaFunction, cudaModule, function));
return cudaFunction;
}
static CUdeviceptr deviceMalloc(const size_t size)
{
CUdeviceptr d_buf;
checkCudaErrors(cuMemAlloc(&d_buf, size));
return d_buf;
}
static void deviceFree(CUdeviceptr d_buf)
{
checkCudaErrors(cuMemFree(d_buf));
}
static void memcpyD2H(void * h_buf, CUdeviceptr d_buf, const size_t size)
{
checkCudaErrors(cuMemcpyDtoH(h_buf, d_buf, size));
}
static void memcpyH2D(CUdeviceptr d_buf, void * h_buf, const size_t size)
{
checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size));
}
#define deviceLaunch(func,params) \
checkCudaErrors(cuFuncSetCacheConfig((func), CU_FUNC_CACHE_PREFER_L1)); \
checkCudaErrors( \
cuLaunchKernel( \
(func), \
1,1,1, \
32, 1, 1, \
0, NULL, (params), NULL \
));
typedef CUdeviceptr devicePtr;
/**************/
#include <vector>
static std::vector<char> readBinary(const char * filename, const bool print_size = false)
{
std::vector<char> buffer;
FILE *fp = fopen(filename, "rb");
if (!fp )
{
fprintf(stderr, "file %s not found\n", filename);
assert(0);
}
fseek(fp, 0, SEEK_END);
const unsigned long long size = ftell(fp); /*calc the size needed*/
fseek(fp, 0, SEEK_SET);
buffer.resize(size);
if (fp == NULL){ /*ERROR detection if file == empty*/
fprintf(stderr, "Error: There was an Error reading the file %s \n",filename);
exit(1);
}
else if (fread(&buffer[0], sizeof(char), size, fp) != size){ /* if count of read bytes != calculated size of .bin file -> ERROR*/
fprintf(stderr, "Error: There was an Error reading the file %s \n", filename);
exit(1);
}
if (print_size)
fprintf(stderr, " read buffer of size= %d bytes \n", (int)buffer.size());
return buffer;
}
static double CUDALaunch(
void **handlePtr,
const char * func_name,
void **func_args,
const bool print_log = true,
const int maxrregcount = 64,
const char kernel_file[] = "__kernels.ptx",
const char cudadevrt_lib[] = "libcudadevrt.a",
const int log_size = 32768)
{
const std::vector<char> module_str = readBinary(kernel_file, print_log);
const char * module = &module_str[0];
CUmodule cudaModule = loadModule(module, maxrregcount, cudadevrt_lib, log_size, print_log);
CUfunction cudaFunction = getFunction(cudaModule, func_name);
const double t0 = rtc();
deviceLaunch(cudaFunction, func_args);
checkCudaErrors(cuStreamSynchronize(0));
const double dt = rtc() - t0;
unloadModule(cudaModule);
return dt;
}
/******************************/