Compare commits
5 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 5e6f06cf59 | |||
| bfe723e1b7 | |||
| f65b3e6300 | |||
| 2e28640860 | |||
| 6a91c5d5ac |
2
func.cpp
2
func.cpp
@@ -635,7 +635,7 @@ Function::GenerateIR() {
|
||||
const bool
|
||||
Function::IsPolyFunction() const {
|
||||
for (size_t i = 0; i < args.size(); i++) {
|
||||
if (args[i] && args[i]->type->IsPolymorphicType()) {
|
||||
if (args[i]->type->IsPolymorphicType()) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
12
module.cpp
12
module.cpp
@@ -1061,6 +1061,8 @@ Module::AddFunctionDeclaration(const std::string &name,
|
||||
|
||||
const Type *ret = eft->GetReturnType();
|
||||
if (Type::EqualForReplacement(ret, pt)) {
|
||||
printf("Replaced return type %s\n",
|
||||
ret->GetString().c_str());
|
||||
ret = PolyType::ReplaceType(ret, *te);
|
||||
}
|
||||
|
||||
@@ -1996,13 +1998,11 @@ lPrintPolyFunctionWrappers(FILE *file, const std::vector<std::string> &funcs) {
|
||||
for (size_t j=0; j<poly.size(); j++) {
|
||||
const FunctionType *ftype = CastType<FunctionType>(poly[j]->type);
|
||||
Assert(ftype);
|
||||
if (ftype->isExported || ftype->isExternC) {
|
||||
std::string decl = ftype->GetCDeclaration(funcs[i]);
|
||||
fprintf(file, " %s {\n", decl.c_str());
|
||||
std::string decl = ftype->GetCDeclaration(funcs[i]);
|
||||
fprintf(file, " %s {\n", decl.c_str());
|
||||
|
||||
std::string call = ftype->GetCCall(poly[j]->name);
|
||||
fprintf(file, " return %s;\n }\n", call.c_str());
|
||||
}
|
||||
std::string call = ftype->GetCCall(poly[j]->name);
|
||||
fprintf(file, " return %s;\n }\n", call.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
2
parse.yy
2
parse.yy
@@ -37,7 +37,7 @@
|
||||
/* one for 'if', one for 'cif' */
|
||||
%expect 2
|
||||
|
||||
%define parse.error verbose
|
||||
%error-verbose
|
||||
|
||||
%code requires {
|
||||
|
||||
|
||||
@@ -1,177 +0,0 @@
|
||||
#ifndef _SYRAH_CYCLE_TIMER_H_
|
||||
#define _SYRAH_CYCLE_TIMER_H_
|
||||
|
||||
#if defined(__APPLE__)
|
||||
#if defined(__x86_64__)
|
||||
#include <sys/sysctl.h>
|
||||
#else
|
||||
#include <mach/mach.h>
|
||||
#include <mach/mach_time.h>
|
||||
#endif // __x86_64__ or not
|
||||
|
||||
#include <stdio.h> // fprintf
|
||||
#include <stdlib.h> // exit
|
||||
|
||||
#elif _WIN32
|
||||
# include <windows.h>
|
||||
# include <time.h>
|
||||
#else
|
||||
# include <stdio.h>
|
||||
# include <stdlib.h>
|
||||
# include <string.h>
|
||||
# include <sys/time.h>
|
||||
#endif
|
||||
|
||||
|
||||
// This uses the cycle counter of the processor. Different
|
||||
// processors in the system will have different values for this. If
|
||||
// you process moves across processors, then the delta time you
|
||||
// measure will likely be incorrect. This is mostly for fine
|
||||
// grained measurements where the process is likely to be on the
|
||||
// same processor. For more global things you should use the
|
||||
// Time interface.
|
||||
|
||||
// Also note that if you processors' speeds change (i.e. processors
|
||||
// scaling) or if you are in a heterogenous environment, you will
|
||||
// likely get spurious results.
|
||||
class CycleTimer {
|
||||
public:
|
||||
typedef unsigned long long SysClock;
|
||||
|
||||
//////////
|
||||
// Return the current CPU time, in terms of clock ticks.
|
||||
// Time zero is at some arbitrary point in the past.
|
||||
static SysClock currentTicks() {
|
||||
#if defined(__APPLE__) && !defined(__x86_64__)
|
||||
return mach_absolute_time();
|
||||
#elif defined(_WIN32)
|
||||
LARGE_INTEGER qwTime;
|
||||
QueryPerformanceCounter(&qwTime);
|
||||
return qwTime.QuadPart;
|
||||
#elif defined(__x86_64__)
|
||||
unsigned int a, d;
|
||||
asm volatile("rdtsc" : "=a" (a), "=d" (d));
|
||||
return static_cast<unsigned long long>(a) |
|
||||
(static_cast<unsigned long long>(d) << 32);
|
||||
#elif defined(__ARM_NEON__) && 0 // mrc requires superuser.
|
||||
unsigned int val;
|
||||
asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r"(val));
|
||||
return val;
|
||||
#else
|
||||
timespec spec;
|
||||
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &spec);
|
||||
return CycleTimer::SysClock(static_cast<float>(spec.tv_sec) * 1e9 + static_cast<float>(spec.tv_nsec));
|
||||
#endif
|
||||
}
|
||||
|
||||
//////////
|
||||
// Return the current CPU time, in terms of seconds.
|
||||
// This is slower than currentTicks(). Time zero is at
|
||||
// some arbitrary point in the past.
|
||||
static double currentSeconds() {
|
||||
return currentTicks() * secondsPerTick();
|
||||
}
|
||||
|
||||
//////////
|
||||
// Return the conversion from seconds to ticks.
|
||||
static double ticksPerSecond() {
|
||||
return 1.0/secondsPerTick();
|
||||
}
|
||||
|
||||
static const char* tickUnits() {
|
||||
#if defined(__APPLE__) && !defined(__x86_64__)
|
||||
return "ns";
|
||||
#elif defined(__WIN32__) || defined(__x86_64__)
|
||||
return "cycles";
|
||||
#else
|
||||
return "ns"; // clock_gettime
|
||||
#endif
|
||||
}
|
||||
|
||||
//////////
|
||||
// Return the conversion from ticks to seconds.
|
||||
static double secondsPerTick() {
|
||||
static bool initialized = false;
|
||||
static double secondsPerTick_val;
|
||||
if (initialized) return secondsPerTick_val;
|
||||
#if defined(__APPLE__)
|
||||
#ifdef __x86_64__
|
||||
int args[] = {CTL_HW, HW_CPU_FREQ};
|
||||
unsigned int Hz;
|
||||
size_t len = sizeof(Hz);
|
||||
if (sysctl(args, 2, &Hz, &len, NULL, 0) != 0) {
|
||||
fprintf(stderr, "Failed to initialize secondsPerTick_val!\n");
|
||||
exit(-1);
|
||||
}
|
||||
secondsPerTick_val = 1.0 / (double) Hz;
|
||||
#else
|
||||
mach_timebase_info_data_t time_info;
|
||||
mach_timebase_info(&time_info);
|
||||
|
||||
// Scales to nanoseconds without 1e-9f
|
||||
secondsPerTick_val = (1e-9*static_cast<double>(time_info.numer))/
|
||||
static_cast<double>(time_info.denom);
|
||||
#endif // x86_64 or not
|
||||
#elif defined(_WIN32)
|
||||
LARGE_INTEGER qwTicksPerSec;
|
||||
QueryPerformanceFrequency(&qwTicksPerSec);
|
||||
secondsPerTick_val = 1.0/static_cast<double>(qwTicksPerSec.QuadPart);
|
||||
#else
|
||||
FILE *fp = fopen("/proc/cpuinfo","r");
|
||||
char input[1024];
|
||||
if (!fp) {
|
||||
fprintf(stderr, "CycleTimer::resetScale failed: couldn't find /proc/cpuinfo.");
|
||||
exit(-1);
|
||||
}
|
||||
// In case we don't find it, e.g. on the N900
|
||||
secondsPerTick_val = 1e-9;
|
||||
while (!feof(fp) && fgets(input, 1024, fp)) {
|
||||
// NOTE(boulos): Because reading cpuinfo depends on dynamic
|
||||
// frequency scaling it's better to read the @ sign first
|
||||
float GHz, MHz;
|
||||
if (strstr(input, "model name")) {
|
||||
char* at_sign = strstr(input, "@");
|
||||
if (at_sign) {
|
||||
char* after_at = at_sign + 1;
|
||||
char* GHz_str = strstr(after_at, "GHz");
|
||||
char* MHz_str = strstr(after_at, "MHz");
|
||||
if (GHz_str) {
|
||||
*GHz_str = '\0';
|
||||
if (1 == sscanf(after_at, "%f", &GHz)) {
|
||||
//printf("GHz = %f\n", GHz);
|
||||
secondsPerTick_val = 1e-9f / GHz;
|
||||
break;
|
||||
}
|
||||
} else if (MHz_str) {
|
||||
*MHz_str = '\0';
|
||||
if (1 == sscanf(after_at, "%f", &MHz)) {
|
||||
//printf("MHz = %f\n", MHz);
|
||||
secondsPerTick_val = 1e-6f / GHz;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (1 == sscanf(input, "cpu MHz : %f", &MHz)) {
|
||||
//printf("MHz = %f\n", MHz);
|
||||
secondsPerTick_val = 1e-6f / MHz;
|
||||
break;
|
||||
}
|
||||
}
|
||||
fclose(fp);
|
||||
#endif
|
||||
|
||||
initialized = true;
|
||||
return secondsPerTick_val;
|
||||
}
|
||||
|
||||
//////////
|
||||
// Return the conversion from ticks to milliseconds.
|
||||
static double msPerTick() {
|
||||
return secondsPerTick() * 1000.0;
|
||||
}
|
||||
|
||||
private:
|
||||
CycleTimer();
|
||||
};
|
||||
|
||||
#endif // #ifndef _SYRAH_CYCLE_TIMER_H_
|
||||
@@ -1,15 +1,12 @@
|
||||
CXX=g++
|
||||
CXXFLAGS=-std=c++11 -O3 -lm -lpthread
|
||||
CXXFLAGS=-std=c++11 -O2
|
||||
|
||||
ISPC=../ispc
|
||||
ISPCFLAGS=--target=avx2 -O3 --arch=x86-64
|
||||
ISPCFLAGS=--target=sse4-x2 -O2 --arch=x86-64
|
||||
|
||||
%.out : %.cpp %.o tasksys.o
|
||||
%.out : %.cpp %.o
|
||||
$(CXX) $(CXXFLAGS) -o $@ $^
|
||||
|
||||
tasksys.o : ../examples/tasksys.cpp
|
||||
$(CXX) $(CXXFLAGS) -c -o $@ $^
|
||||
|
||||
$ : $.o
|
||||
|
||||
%.o : %.ispc
|
||||
|
||||
@@ -1,13 +0,0 @@
|
||||
export void array(uniform int N, uniform integer * uniform X) {
|
||||
integer *A = new integer[N/2];
|
||||
|
||||
foreach (i = 0 ... N/2) {
|
||||
A[i] = X[i] + X[N/2 + i];
|
||||
}
|
||||
|
||||
foreach (i = 0 ... N) {
|
||||
X[i] = A[i/2];
|
||||
}
|
||||
|
||||
delete[] A;
|
||||
}
|
||||
@@ -1,17 +0,0 @@
|
||||
//@error
|
||||
|
||||
floating$0 mult(floating$0 x, floating$1 y) {
|
||||
return x * y;
|
||||
}
|
||||
|
||||
export void saxpy(uniform int N,
|
||||
uniform floating$0 scale,
|
||||
uniform floating$1 X[],
|
||||
uniform floating$1 Y[],
|
||||
uniform floating$2 result[])
|
||||
{
|
||||
foreach (i = 0 ... N) {
|
||||
floating$ tmp = mult(scale, X[i]) + Y[i];
|
||||
result[i] = tmp;
|
||||
}
|
||||
}
|
||||
@@ -1,14 +0,0 @@
|
||||
number pow(number b, int a) {
|
||||
number out = b;
|
||||
for (int i = 1; i<a; i++) {
|
||||
out *= b;
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
export void square(uniform int N, uniform number$-1 b[], uniform number$-1 out[]) {
|
||||
foreach (i = 0 ... N) {
|
||||
out[i] = pow(b[i], 2);
|
||||
}
|
||||
}
|
||||
@@ -1,13 +0,0 @@
|
||||
floating foo(floating a, floating b) {
|
||||
floating d = a / b;
|
||||
if (d < 0.)
|
||||
return 0.;
|
||||
|
||||
return d;
|
||||
}
|
||||
|
||||
export void bar(uniform integer * uniform X, uniform int N) {
|
||||
foreach (i = 0 ... N-1) {
|
||||
X[i] = foo(X[i], X[i+1]);
|
||||
}
|
||||
}
|
||||
@@ -1,15 +1,15 @@
|
||||
floating saxpy_helper(floating scale,
|
||||
floating$3 x,
|
||||
floating$3 y) {
|
||||
floating<0> x,
|
||||
floating<0> y) {
|
||||
return scale * x + y;
|
||||
}
|
||||
|
||||
|
||||
export void saxpy(uniform int N,
|
||||
uniform floating$0 scale,
|
||||
uniform floating$1 X[],
|
||||
uniform floating$1 Y[],
|
||||
uniform floating$2 result[])
|
||||
uniform floating<0> scale,
|
||||
uniform floating<1> X[],
|
||||
uniform floating<1> Y[],
|
||||
uniform floating<2> result[])
|
||||
{
|
||||
foreach (i = 0 ... N) {
|
||||
result[i] = saxpy_helper(scale, X[i], Y[i]);
|
||||
|
||||
@@ -1,212 +0,0 @@
|
||||
#include <stdio.h>
|
||||
#include <algorithm>
|
||||
#include <pthread.h>
|
||||
#include <math.h>
|
||||
#include <cmath>
|
||||
|
||||
#include "CycleTimer.h"
|
||||
#include "sqrt.h"
|
||||
|
||||
using namespace ispc;
|
||||
|
||||
void sqrtSerial(int N,
|
||||
float initialGuess,
|
||||
float values[],
|
||||
float output[])
|
||||
{
|
||||
|
||||
static const float kThreshold = 0.00001f;
|
||||
|
||||
for (int i=0; i<N; i++) {
|
||||
|
||||
float x = values[i];
|
||||
float guess = initialGuess;
|
||||
|
||||
float error = fabs(guess * guess * x - 1.f);
|
||||
|
||||
while (error > kThreshold) {
|
||||
guess = (3.f * guess - x * guess * guess * guess) * 0.5f;
|
||||
error = fabs(guess * guess * x - 1.f);
|
||||
}
|
||||
|
||||
output[i] = x * guess;
|
||||
}
|
||||
}
|
||||
|
||||
void sqrtSerial(int N,
|
||||
double initialGuess,
|
||||
double values[],
|
||||
double output[])
|
||||
{
|
||||
|
||||
static const double kThreshold = 0.00001f;
|
||||
|
||||
for (int i=0; i<N; i++) {
|
||||
|
||||
double x = values[i];
|
||||
double guess = initialGuess;
|
||||
|
||||
double error = std::abs(guess * guess * x - 1.);
|
||||
|
||||
while (error > kThreshold) {
|
||||
guess = (3. * guess - x * guess * guess * guess) * 0.5;
|
||||
error = std::abs(guess * guess * x - 1.);
|
||||
}
|
||||
|
||||
output[i] = x * guess;
|
||||
}
|
||||
}
|
||||
|
||||
static void verifyResult(int N, float* result, float* gold) {
|
||||
for (int i=0; i<N; i++) {
|
||||
if (fabs(result[i] - gold[i]) > 1e-4) {
|
||||
printf("Error: [%d] Got %f expected %f\n", i, result[i], gold[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void verifyResult(int N, double* result, double* gold) {
|
||||
for (int i=0; i<N; i++) {
|
||||
if (std::abs(result[i] - gold[i]) > 1e-4) {
|
||||
printf("Error: [%d] Got %f expected %f\n", i, result[i], gold[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int main() {
|
||||
|
||||
const unsigned int N = 20 * 1000 * 1000;
|
||||
const float initialGuess = 1.0f;
|
||||
const double dinitialGuess = 1.0;
|
||||
|
||||
float* values = new float[N];
|
||||
float* output = new float[N];
|
||||
float* gold = new float[N];
|
||||
|
||||
double* dvalues = new double[N];
|
||||
double* doutput = new double[N];
|
||||
double* dgold = new double[N];
|
||||
|
||||
for (unsigned int i=0; i<N; i++)
|
||||
{
|
||||
// random input values
|
||||
values[i] = .001f + 2.998f * static_cast<float>(rand()) / RAND_MAX;
|
||||
dvalues[i] = .001 + 2.998 * static_cast<double>(rand()) / RAND_MAX;
|
||||
output[i] = 0.f;
|
||||
doutput[i] = 0.;
|
||||
}
|
||||
|
||||
// generate a gold version to check results
|
||||
for (unsigned int i=0; i<N; i++) {
|
||||
gold[i] = sqrt(values[i]);
|
||||
dgold[i] = sqrt(dvalues[i]);
|
||||
}
|
||||
|
||||
//
|
||||
// And run the serial implementation 3 times, again reporting the
|
||||
// minimum time.
|
||||
//
|
||||
double minSerial = 1e30;
|
||||
for (int i = 0; i < 5; ++i) {
|
||||
double startTime = CycleTimer::currentSeconds();
|
||||
sqrtSerial(N, initialGuess, values, output);
|
||||
double endTime = CycleTimer::currentSeconds();
|
||||
minSerial = std::min(minSerial, endTime - startTime);
|
||||
}
|
||||
|
||||
printf("[sqrt float serial]:\t\t[%.3f] ms\n", minSerial * 1000);
|
||||
verifyResult(N, output, gold);
|
||||
|
||||
double minDSerial = 1e30;
|
||||
for (int i = 0; i < 5; ++i) {
|
||||
double startTime = CycleTimer::currentSeconds();
|
||||
sqrtSerial(N, dinitialGuess, dvalues, doutput);
|
||||
double endTime = CycleTimer::currentSeconds();
|
||||
minDSerial = std::min(minDSerial, endTime - startTime);
|
||||
}
|
||||
|
||||
printf("[sqrt double serial]:\t\t[%.3f] ms\n", minDSerial * 1000);
|
||||
verifyResult(N, doutput, dgold);
|
||||
|
||||
// Clear out the buffer
|
||||
for (unsigned int i = 0; i < N; ++i) {
|
||||
output[i] = 0;
|
||||
doutput[i] = 0;
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// Compute the image using the ispc implementation; report the minimum
|
||||
// time of three runs.
|
||||
//
|
||||
double minISPC = 1e30;
|
||||
for (int i = 0; i < 5; ++i) {
|
||||
double startTime = CycleTimer::currentSeconds();
|
||||
ispc::sqrt_ispc(N, initialGuess, values, output);
|
||||
double endTime = CycleTimer::currentSeconds();
|
||||
minISPC = std::min(minISPC, endTime - startTime);
|
||||
}
|
||||
|
||||
printf("[sqrt float ispc]:\t\t[%.3f] ms\n", minISPC * 1000);
|
||||
|
||||
verifyResult(N, output, gold);
|
||||
|
||||
double minDISPC = 1e30;
|
||||
for (int i = 0; i < 5; ++i) {
|
||||
double startTime = CycleTimer::currentSeconds();
|
||||
ispc::sqrt_ispc(N, dinitialGuess, dvalues, doutput);
|
||||
double endTime = CycleTimer::currentSeconds();
|
||||
minDISPC = std::min(minDISPC, endTime - startTime);
|
||||
}
|
||||
|
||||
printf("[sqrt double ispc]:\t\t[%.3f] ms\n", minDISPC * 1000);
|
||||
|
||||
verifyResult(N, doutput, dgold);
|
||||
|
||||
// Clear out the buffer
|
||||
for (unsigned int i = 0; i < N; ++i) {
|
||||
output[i] = 0;
|
||||
doutput[i] = 0;
|
||||
}
|
||||
|
||||
//
|
||||
// Tasking version of the ISPC code
|
||||
//
|
||||
double minTaskISPC = 1e30;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
double startTime = CycleTimer::currentSeconds();
|
||||
ispc::sqrt_ispc_withtasks(N, initialGuess, values, output);
|
||||
double endTime = CycleTimer::currentSeconds();
|
||||
minTaskISPC = std::min(minTaskISPC, endTime - startTime);
|
||||
}
|
||||
|
||||
printf("[sqrt float task ispc]:\t\t[%.3f] ms\n", minTaskISPC * 1000);
|
||||
|
||||
verifyResult(N, output, gold);
|
||||
|
||||
double minDTaskISPC = 1e30;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
double startTime = CycleTimer::currentSeconds();
|
||||
ispc::sqrt_ispc_withtasks(N, dinitialGuess, dvalues, doutput);
|
||||
double endTime = CycleTimer::currentSeconds();
|
||||
minDTaskISPC = std::min(minDTaskISPC, endTime - startTime);
|
||||
}
|
||||
|
||||
printf("[sqrt double task ispc]:\t[%.3f] ms\n", minDTaskISPC * 1000);
|
||||
|
||||
verifyResult(N, output, gold);
|
||||
|
||||
printf("\t\t\t\t(%.2fx speedup from ISPC float)\n", minSerial/minISPC);
|
||||
printf("\t\t\t\t(%.2fx speedup from ISPC double)\n", minDSerial/minDISPC);
|
||||
printf("\t\t\t\t(%.2fx speedup from task ISPC float)\n", minSerial/minTaskISPC);
|
||||
printf("\t\t\t\t(%.2fx speedup from task ISPC double)\n", minDSerial/minDTaskISPC);
|
||||
|
||||
delete[] values;
|
||||
delete[] output;
|
||||
delete[] gold;
|
||||
delete[] dvalues;
|
||||
delete[] doutput;
|
||||
delete[] dgold;
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -1,62 +0,0 @@
|
||||
|
||||
static const float kThreshold = 0.00001f;
|
||||
|
||||
export void sqrt_ispc(uniform int N,
|
||||
uniform floating initialGuess,
|
||||
uniform floating values[],
|
||||
uniform floating output[])
|
||||
{
|
||||
foreach (i = 0 ... N) {
|
||||
|
||||
floating x = values[i];
|
||||
floating guess = initialGuess;
|
||||
|
||||
floating pred = abs(guess * guess * x - 1.f);
|
||||
|
||||
while (pred > kThreshold) {
|
||||
guess = (3.f * guess - x * guess * guess * guess) * 0.5f;
|
||||
pred = abs(guess * guess * x - 1.f);
|
||||
}
|
||||
|
||||
output[i] = x * guess;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
task void sqrt_ispc_task(uniform int N,
|
||||
uniform int span,
|
||||
uniform floating initialGuess,
|
||||
uniform floating values[],
|
||||
uniform floating output[])
|
||||
{
|
||||
|
||||
uniform int indexStart = taskIndex * span;
|
||||
uniform int indexEnd = min(N, indexStart + span);
|
||||
|
||||
foreach (i = indexStart ... indexEnd) {
|
||||
|
||||
floating x = values[i];
|
||||
floating guess = initialGuess;
|
||||
|
||||
floating pred = abs(guess * guess * x - 1.f);
|
||||
|
||||
while (pred > kThreshold) {
|
||||
guess = (3.f * guess - x * guess * guess * guess) * 0.5f;
|
||||
pred = abs(guess * guess * x - 1.f);
|
||||
}
|
||||
|
||||
output[i] = x * guess;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
export void sqrt_ispc_withtasks(uniform int N,
|
||||
uniform floating initialGuess,
|
||||
uniform floating values[],
|
||||
uniform floating output[])
|
||||
{
|
||||
|
||||
uniform int span = N / 64; // 64 tasks
|
||||
|
||||
launch[N/span] sqrt_ispc_task(N, span, initialGuess, values, output);
|
||||
}
|
||||
@@ -6,7 +6,7 @@
|
||||
int main() {
|
||||
float A[256];
|
||||
double B[256];
|
||||
float outA[256];
|
||||
double outA[256];
|
||||
double outB[256];
|
||||
|
||||
|
||||
@@ -15,7 +15,7 @@ int main() {
|
||||
B[i] = 1. / (i+1);
|
||||
}
|
||||
|
||||
ispc::square(256, (float*)&A, (float*)&outA);
|
||||
ispc::square(256, (float*)&A, (double*)&outA);
|
||||
|
||||
ispc::square(256, (double*)&B, (double*)&outB);
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
number pow(number b, int a) {
|
||||
number out = b;
|
||||
floating foo(const uniform int a, floating b) {
|
||||
floating out = b;
|
||||
for (int i = 1; i<a; i++) {
|
||||
out *= b;
|
||||
}
|
||||
@@ -7,8 +7,8 @@ number pow(number b, int a) {
|
||||
return out;
|
||||
}
|
||||
|
||||
export void square(uniform int N, uniform number b[], uniform number out[]) {
|
||||
export void square(uniform int N, uniform floating b[], uniform double out[]) {
|
||||
foreach (i = 0 ... N) {
|
||||
out[i] = pow(b[i], 2);
|
||||
out[i] = foo(2, b[i]);
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user