Add support for the generic targets (using the headers in examples/intrinsics
if none is provided.)
Provide option to run valgrind on the compiled code.
Print a list of all failing tests at the end.
Allow <, <=, >, >= comparisons of pointers
Allow explicit type-casting of pointers to and from integers
Fix bug in handling expressions of the form "int + ptr" ("ptr + int"
was fine).
Fix a bug in TypeCastExpr where varying -> uniform typecasts
would be allowed (leading to a crash later)
Pointers can be either uniform or varying, and behave correspondingly.
e.g.: "uniform float * varying" is a varying pointer to uniform float
data in memory, and "float * uniform" is a uniform pointer to varying
data in memory. Like other types, pointers are varying by default.
Pointer-based expressions, & and *, sizeof, ->, pointer arithmetic,
and the array/pointer duality all bahave as in C. Array arguments
to functions are converted to pointers, also like C.
There is a built-in NULL for a null pointer value; conversion from
compile-time constant 0 values to NULL still needs to be implemented.
Other changes:
- Syntax for references has been updated to be C++ style; a useful
warning is now issued if the "reference" keyword is used.
- It is now illegal to pass a varying lvalue as a reference parameter
to a function; references are essentially uniform pointers.
This case had previously been handled via special case call by value
return code. That path has been removed, now that varying pointers
are available to handle this use case (and much more).
- Some stdlib routines have been updated to take pointers as
arguments where appropriate (e.g. prefetch and the atomics).
A number of others still need attention.
- All of the examples have been updated
- Many new tests
TODO: documentation
If a flag along the lines of "--target=sse4,avx-x2" is provided on the command-line,
then the program will be compiled for each of the given targets, with a separate
output file generated for each one. Further, an output file with dispatch functions
that check the current system's CPU and then chooses the best available variant
is also created.
Issue #11.
Old run_tests.sh still lives (for now).
Changes include:
- Tests are run in parallel across all of the available CPU cores
- Option to create a statically-linked executable for each test
(rather than using the LLVM JIT). This is in particular useful
for AVX, which doesn't have good JIT support yet.
- Static executables also makes it possible to test x86, not
just x86-64, codegen.
- Fixed a number of tests in failing_tests, which were actually
failing due to the fact that the expected function signature of
tests had changed.