These make it easier to iterate over arbitrary amounts of data
elements; specifically, they automatically handle the "ragged
extra bits" that come up when the number of elements to be
processed isn't evenly divided by programCount.
TODO: documentation
Allow atomic types to be initialized with single-element expression lists:
int x = { 5 };
Issue an error if a storage class is provided with a function parameter.
Issue an error if two members of a struct have the same name.
Issue an error on trying to assign to a struct with a const member, even if
the struct itself isn't const.
Issue an error if a function is redefined.
Issue an error if a function overload is declared that differs only in return
type from a previously-declared function.
Issue an error if "inline" or "task" qualifiers are used outside of function
declarations.
Allow trailing ',' at the end of enumerator lists.
Multiple tests for all of the above.
Pointers can be either uniform or varying, and behave correspondingly.
e.g.: "uniform float * varying" is a varying pointer to uniform float
data in memory, and "float * uniform" is a uniform pointer to varying
data in memory. Like other types, pointers are varying by default.
Pointer-based expressions, & and *, sizeof, ->, pointer arithmetic,
and the array/pointer duality all bahave as in C. Array arguments
to functions are converted to pointers, also like C.
There is a built-in NULL for a null pointer value; conversion from
compile-time constant 0 values to NULL still needs to be implemented.
Other changes:
- Syntax for references has been updated to be C++ style; a useful
warning is now issued if the "reference" keyword is used.
- It is now illegal to pass a varying lvalue as a reference parameter
to a function; references are essentially uniform pointers.
This case had previously been handled via special case call by value
return code. That path has been removed, now that varying pointers
are available to handle this use case (and much more).
- Some stdlib routines have been updated to take pointers as
arguments where appropriate (e.g. prefetch and the atomics).
A number of others still need attention.
- All of the examples have been updated
- Many new tests
TODO: documentation
Added support for resolving dimensions of multi-dimensional unsized arrays
from their initializer exprerssions (previously, only the first dimension
would be resolved.)
Added checks to make sure that no unsized array dimensions remain after
doing this (except for the first dimensision of array parameters to
functions.)
Both uniform and varying function pointers are supported; when a function
is called through a varying function pointer, each unique function pointer
value across the running program instances is called once for the set of
active program instances that want to call it.
The Expr::TypeConv() method has been replaced with both a
CanConvertTypes() routine that indicates whether one type
can be converted to another and a TypeConvertExpr()
routine that provides the same functionality as
Expr::TypeConv() used to.
This code previously lived in FunctionCallExpr but is now part
of FunctionSymbolExpr. This change doesn't change any current
functionality, but lays groundwork for function pointers in
the language, where we'll want to do function call overload
resolution at other times besides when a function call is
actually being made.
The stuff in decl.h/decl.cpp is messy, largely due to its close mapping
to C-style variable declarations. This checkin has updated code throughout
all of the declaration statement, variable, and function code that operates
on symbols and types directly. Thus, Decl* related stuff is now localized
to decl.h/decl.cpp and the parser.
Issue #13.
We now maintain a the distinction between the value of the mask passed into a
function and the "internal" mask within the function that only accounts for
varying control flow within the function.
The full mask (the AND of the function mask and the internal mask) must be used
for assignments to static and global variables, and reference function parameters.
Further, it is the appropriate mask to use for making decisions about varying
control flow. However, we can use the internal mask for assignments to variables
declared in the current function (including the return value and non-reference
parameters to the function). Doing so allows us to catch a few more cases where
the internal mask is all on, even if the mask coming into the function wasn't all
on, and thence use moves rather than blends for those assignments. (Which in
turn can allow additional optimizations to happen.)
Fixes issue #23.
Go back to running both sides of 'if' statements with masking and without
branching if we can determine that the code is relatively simple (as per
the simple cost model), and is safe to run even if the mask is 'all off'.
This gives a bit of a performance improvement for some of the examples
(most notably, the ray tracer), and is the code that one wants generated
in this case anyhow.
This is currently only used to decide whether it's worth doing an
"are all lanes running" check at the start of functions--for small
functions, it's not worth the overhead.
The cost is estimated relatively early in compilation (e.g. before
we know if an array access is a scatter/gather or not, before
constant folding, etc.), so there are many known shortcomings.
For the case where we have a regular (i.e. non-'cif') 'if' statement,
the generated code just simply checks to see if any program instance
is running before running the corresponding statements. This is a
lighter-weight check than IfStmt::emitMaskMixed() was performing.
Contrary to claims in 0c2048385, that checkin didn't include the changes
to not run if/else blocks if none of the program instances wanted to be
running them. This checkin fixes that and thus actually fixes issue #74.
Using blend to do masked stores is unsafe if all of the lanes are off:
it may read from or write to invalid memory. For now, this workaround
transforms all 'if' statements into coherent 'if's, ensuring that an
instruction only runs if at least on program instance wants to be running
it.
One nice thing about this change is that a number of implementations of
various builtins can be simplified, since they no longer need to confirm
that at least one program instance is running.
It might be nice to re-enable regular if statements in a future checkin,
but we'd want to make sure they don't have any masked loads or blended
masked stores in their statement lists. There isn't a performance
impact for any of the examples with this change, so it's unclear if
this is important.
Note that this only impacts 'if' statements with a varying condition.
- Renamed stdlib-sse.ll to builtins-sse.ll (etc.) in an attempt to better indicate
the fact that the stuff in those files has a role beyond implementing stuff for
the standard library.
- Moved declarations of the various __pseudo_* functions from being done with LLVM
API calls in builtins.cpp to just straight up declarations in LLVM assembly
language in builtins.m4. (Much less code to do it this way, and more clear what's
going on.)
scalar values (that ispc used to smear across the array/struct
elements). Now, initializers in variable declarations must be
{ }-delimited lists, with one element per struct member or array
element, respectively.
There were a few problems with the previous implementation of the
functionality to initialize from scalars. First, the expression
would be evaluated once per value initialized, so if it had side-effects,
the wrong thing would happen. Next, for large multidimensional arrays,
the generated code would be a long series of move instructions, rather
than loops (and this in turn made LLVM take a long time.)
While both of these problems are fixable, it's a non-trivial
amount of re-plumbing for a questionable feature anyway.
Fixes issue #50.