Merge branch 'master' of /Users/mmp/git/ispc
This commit is contained in:
36
ctx.cpp
36
ctx.cpp
@@ -1315,8 +1315,21 @@ FunctionEmitContext::LoadInst(llvm::Value *lvalue, const Type *type,
|
||||
|
||||
if (llvm::isa<const llvm::PointerType>(lvalue->getType())) {
|
||||
// If the lvalue is a straight up regular pointer, then just issue
|
||||
// a regular load
|
||||
llvm::Instruction *inst = new llvm::LoadInst(lvalue, name ? name : "load", bblock);
|
||||
// a regular load. First figure out the alignment; in general we
|
||||
// can just assume the natural alignment (0 here), but for varying
|
||||
// atomic types, we need to make sure that the compiler emits
|
||||
// unaligned vector loads, so we specify a reduced alignment here.
|
||||
int align = 0;
|
||||
const AtomicType *atomicType = dynamic_cast<const AtomicType *>(type);
|
||||
if (atomicType != NULL && atomicType->IsVaryingType())
|
||||
// We actually just want to align to the vector element
|
||||
// alignment, but can't easily get that here, so just tell LLVM
|
||||
// it's totally unaligned. (This shouldn't make any difference
|
||||
// vs the proper alignment in practice.)
|
||||
align = 1;
|
||||
llvm::Instruction *inst = new llvm::LoadInst(lvalue, name ? name : "load",
|
||||
false /* not volatile */,
|
||||
align, bblock);
|
||||
AddDebugPos(inst);
|
||||
return inst;
|
||||
}
|
||||
@@ -1644,7 +1657,16 @@ FunctionEmitContext::StoreInst(llvm::Value *rvalue, llvm::Value *lvalue,
|
||||
return;
|
||||
}
|
||||
|
||||
llvm::Instruction *inst = new llvm::StoreInst(rvalue, lvalue, name, bblock);
|
||||
llvm::Instruction *inst;
|
||||
if (llvm::isa<llvm::VectorType>(rvalue->getType()))
|
||||
// Specify an unaligned store, since we don't know that the lvalue
|
||||
// will in fact be aligned to a vector width here. (Actually
|
||||
// should be aligned to the alignment of the vector elment type...)
|
||||
inst = new llvm::StoreInst(rvalue, lvalue, false /* not volatile */,
|
||||
1, bblock);
|
||||
else
|
||||
inst = new llvm::StoreInst(rvalue, lvalue, bblock);
|
||||
|
||||
AddDebugPos(inst);
|
||||
}
|
||||
|
||||
@@ -1661,8 +1683,8 @@ FunctionEmitContext::StoreInst(llvm::Value *rvalue, llvm::Value *lvalue,
|
||||
|
||||
// Figure out what kind of store we're doing here
|
||||
if (rvalueType->IsUniformType()) {
|
||||
// The easy case; a regular store
|
||||
llvm::Instruction *si = new llvm::StoreInst(rvalue, lvalue, name, bblock);
|
||||
// The easy case; a regular store, natural alignment is fine
|
||||
llvm::Instruction *si = new llvm::StoreInst(rvalue, lvalue, bblock);
|
||||
AddDebugPos(si);
|
||||
}
|
||||
else if (llvm::isa<const llvm::ArrayType>(lvalue->getType()))
|
||||
@@ -1672,9 +1694,7 @@ FunctionEmitContext::StoreInst(llvm::Value *rvalue, llvm::Value *lvalue,
|
||||
else if (storeMask == LLVMMaskAllOn) {
|
||||
// Otherwise it is a masked store unless we can determine that the
|
||||
// mask is all on...
|
||||
llvm::Instruction *si =
|
||||
new llvm::StoreInst(rvalue, lvalue, name, bblock);
|
||||
AddDebugPos(si);
|
||||
StoreInst(rvalue, lvalue, name);
|
||||
}
|
||||
else
|
||||
maskedStore(rvalue, lvalue, rvalueType, storeMask);
|
||||
|
||||
@@ -1970,7 +1970,7 @@ Data Layout
|
||||
|
||||
In general, ``ispc`` tries to ensure that ``struct`` s and other complex
|
||||
datatypes are laid out in the same way in memory as they are in C/C++.
|
||||
Matching alignment is important for easy interoperability between C/C++
|
||||
Matching structure layout is important for easy interoperability between C/C++
|
||||
code and ``ispc`` code.
|
||||
|
||||
The main complexity in sharing data between ``ispc`` and C/C++ often comes
|
||||
@@ -2023,11 +2023,6 @@ It can pass ``array`` to a ``ispc`` function defined as:
|
||||
|
||||
export void foo(uniform float array[], uniform int count)
|
||||
|
||||
(Though the pointer must be aligned to the compilation target's natural
|
||||
vector width; see the discussion of alignment restrictions in `Data
|
||||
Alignment and Aliasing`_ and the aligned allocation routines in
|
||||
``examples/options/options.cpp`` for example.)
|
||||
|
||||
Similarly, ``struct`` s from the application can have embedded pointers.
|
||||
This is handled with similar ``[]`` syntax:
|
||||
|
||||
@@ -2062,55 +2057,20 @@ vector types from C/C++ application code if possible.
|
||||
Data Alignment and Aliasing
|
||||
---------------------------
|
||||
|
||||
There are two important constraints that must be adhered to when passing
|
||||
pointers from the application to ``ispc`` programs.
|
||||
There are are two important constraints that must be adhered to when
|
||||
passing pointers from the application to ``ispc`` programs.
|
||||
|
||||
The first constraint is alignment: any pointers from the host program that
|
||||
are passed to ``ispc`` must be aligned to natural vector alignment of
|
||||
system--for example, 16 byte alignment on a target that supports Intel®
|
||||
SSE, 32-byte on an Intel® AVX target. If this constraint isn't met, the
|
||||
program may abort at runtime with an unaligned memory access error.
|
||||
The first is that it is required that it be valid to read memory at the
|
||||
first element of any array that is passed to ``ispc``. In practice, this
|
||||
should just happen naturally, but it does mean that it is illegal to pass a
|
||||
``NULL`` pointer as a parameter to a ``ispc`` function called from the
|
||||
application.
|
||||
|
||||
For example, in a ``ispc`` function with the following declaration:
|
||||
|
||||
::
|
||||
|
||||
export void foo(uniform float in[], uniform float out[],
|
||||
int count);
|
||||
|
||||
If the application is passing stack-allocated arrays for ``in`` and
|
||||
``out``, these C/C++ compiler must be told to align these arrays.
|
||||
|
||||
::
|
||||
|
||||
// MSVC, SSE target
|
||||
__declspec(align(16)) float in[16], out[16];
|
||||
foo(in, out, 16);
|
||||
|
||||
With the gcc/clang compilers, the syntax for providing alignment is
|
||||
slightly different:
|
||||
|
||||
::
|
||||
|
||||
float x[16] __attribute__ ((__align__(16)));
|
||||
foo(in, out, 16);
|
||||
|
||||
If the data being passed is dynamically allocated, the appropriate system
|
||||
aligned memory allocation routine should be used to allocate it (for
|
||||
example, ``_aligned_malloc()`` with Windows\*, ``memalign()`` with
|
||||
Linux\*; see the ``AllocAligned()`` function in ``examples/rt/rt.cpp`` for
|
||||
an example.)
|
||||
|
||||
It is also required that it be valid to read memory at the first element of
|
||||
any array that is passed to ``ispc``. In practice, this should just
|
||||
happen naturally, but it does mean that it is illegal to pass a ``NULL``
|
||||
pointer as a parameter to a ``ispc`` function called from the application.
|
||||
|
||||
The second key constraint is that pointers and references in ``ispc``
|
||||
programs must not alias. The ``ispc`` compiler assumes that different
|
||||
pointers can't end up pointing to the same memory location, either due to
|
||||
having the same initial value, or through array indexing in the program as
|
||||
it executed.
|
||||
The second constraint is that pointers and references in ``ispc`` programs
|
||||
must not alias. The ``ispc`` compiler assumes that different pointers
|
||||
can't end up pointing to the same memory location, either due to having the
|
||||
same initial value, or through array indexing in the program as it
|
||||
executed.
|
||||
|
||||
This aliasing constraint also applies to ``reference`` parameters to
|
||||
functions. Given a function like:
|
||||
@@ -2127,8 +2087,8 @@ another case of aliasing, and if the caller calls the function as ``func(x,
|
||||
x)``, it's not guaranteed that the ``if`` test will evaluate to true, due
|
||||
to the compiler's requirement of no aliasing.
|
||||
|
||||
(In the future, ``ispc`` will have the ability to work with unaligned
|
||||
memory as well as have a mechanism to indicate that pointers may alias.)
|
||||
(In the future, ``ispc`` will have a mechanism to indicate that pointers
|
||||
may alias.)
|
||||
|
||||
Using ISPC Effectively
|
||||
======================
|
||||
|
||||
@@ -103,24 +103,6 @@ savePPM(const char *fname, int w, int h)
|
||||
}
|
||||
|
||||
|
||||
// Allocate memory with 64-byte alignment.
|
||||
float *
|
||||
AllocAligned(int size) {
|
||||
#if defined(_WIN32) || defined(_WIN64)
|
||||
return (float *)_aligned_malloc(size, 64);
|
||||
#elif defined (__APPLE__)
|
||||
// Allocate excess memory to ensure an aligned pointer can be returned
|
||||
void *mem = malloc(size + (64-1) + sizeof(void*));
|
||||
char *amem = ((char*)mem) + sizeof(void*);
|
||||
amem += 64 - (reinterpret_cast<uint64_t>(amem) & (64 - 1));
|
||||
((void**)amem)[-1] = mem;
|
||||
return (float *)amem;
|
||||
#else
|
||||
return (float *)memalign(64, size);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
if (argc != 4) {
|
||||
@@ -136,8 +118,8 @@ int main(int argc, char **argv)
|
||||
}
|
||||
|
||||
// Allocate space for output images
|
||||
img = (unsigned char *)AllocAligned(width * height * 3);
|
||||
fimg = (float *)AllocAligned(sizeof(float) * width * height * 3);
|
||||
img = new unsigned char[width * height * 3];
|
||||
fimg = new float[width * height * 3];
|
||||
|
||||
//
|
||||
// Run the ispc path, test_iterations times, and report the minimum
|
||||
|
||||
@@ -102,24 +102,6 @@ savePPM(const char *fname, int w, int h)
|
||||
}
|
||||
|
||||
|
||||
// Allocate memory with 64-byte alignment.
|
||||
float *
|
||||
AllocAligned(int size) {
|
||||
#if defined(_WIN32) || defined(_WIN64)
|
||||
return (float *)_aligned_malloc(size, 64);
|
||||
#elif defined (__APPLE__)
|
||||
// Allocate excess memory to ensure an aligned pointer can be returned
|
||||
void *mem = malloc(size + (64-1) + sizeof(void*));
|
||||
char *amem = ((char*)mem) + sizeof(void*);
|
||||
amem += 64 - (reinterpret_cast<uint64_t>(amem) & (64 - 1));
|
||||
((void**)amem)[-1] = mem;
|
||||
return (float *)amem;
|
||||
#else
|
||||
return (float *)memalign(64, size);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
if (argc != 4) {
|
||||
@@ -135,8 +117,8 @@ int main(int argc, char **argv)
|
||||
}
|
||||
|
||||
// Allocate space for output images
|
||||
img = (unsigned char *)AllocAligned(width * height * 3);
|
||||
fimg = (float *)AllocAligned(sizeof(float) * width * height * 3);
|
||||
img = new unsigned char[width * height * 3];
|
||||
fimg = new float[width * height * 3];
|
||||
|
||||
ao_ispc(width, height, NSUBSAMPLES, fimg);
|
||||
|
||||
|
||||
@@ -37,9 +37,6 @@
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include <algorithm>
|
||||
#ifndef __APPLE__
|
||||
#include <malloc.h>
|
||||
#endif // !__APPLE__
|
||||
using std::max;
|
||||
|
||||
#include "options_defs.h"
|
||||
@@ -48,23 +45,6 @@ using std::max;
|
||||
#include "options_ispc.h"
|
||||
using namespace ispc;
|
||||
|
||||
// Allocate memory with 64-byte alignment.
|
||||
float *AllocFloats(int count) {
|
||||
int size = count * sizeof(float);
|
||||
#if defined(_WIN32) || defined(_WIN64)
|
||||
return (float *)_aligned_malloc(size, 64);
|
||||
#elif defined (__APPLE__)
|
||||
// Allocate excess memory to ensure an aligned pointer can be returned
|
||||
void *mem = malloc(size + (64-1) + sizeof(void*));
|
||||
char *amem = ((char*)mem) + sizeof(void*);
|
||||
amem += 64 - (reinterpret_cast<uint64_t>(amem) & (64 - 1));
|
||||
((void**)amem)[-1] = mem;
|
||||
return (float *)amem;
|
||||
#else
|
||||
return (float *)memalign(64, size);
|
||||
#endif
|
||||
}
|
||||
|
||||
extern void black_scholes_serial(float Sa[], float Xa[], float Ta[],
|
||||
float ra[], float va[],
|
||||
float result[], int count);
|
||||
@@ -76,12 +56,12 @@ extern void binomial_put_serial(float Sa[], float Xa[], float Ta[],
|
||||
int main() {
|
||||
// Pointers passed to ispc code must have alignment of the target's
|
||||
// vector width at minimum.
|
||||
float *S = AllocFloats(N_OPTIONS);
|
||||
float *X = AllocFloats(N_OPTIONS);
|
||||
float *T = AllocFloats(N_OPTIONS);
|
||||
float *r = AllocFloats(N_OPTIONS);
|
||||
float *v = AllocFloats(N_OPTIONS);
|
||||
float *result = AllocFloats(N_OPTIONS);
|
||||
float *S = new float[N_OPTIONS];
|
||||
float *X = new float[N_OPTIONS];
|
||||
float *T = new float[N_OPTIONS];
|
||||
float *r = new float[N_OPTIONS];
|
||||
float *v = new float[N_OPTIONS];
|
||||
float *result = new float[N_OPTIONS];
|
||||
|
||||
for (int i = 0; i < N_OPTIONS; ++i) {
|
||||
S[i] = 100; // stock price
|
||||
|
||||
@@ -43,9 +43,6 @@
|
||||
#include <algorithm>
|
||||
#include <assert.h>
|
||||
#include <sys/types.h>
|
||||
#ifndef __APPLE__
|
||||
#include <malloc.h>
|
||||
#endif
|
||||
#include "../timing.h"
|
||||
#include "rt_ispc.h"
|
||||
|
||||
@@ -53,23 +50,6 @@ using namespace ispc;
|
||||
|
||||
typedef unsigned int uint;
|
||||
|
||||
template <typename T>
|
||||
T *AllocAligned(int count) {
|
||||
int size = count * sizeof(T);
|
||||
#if defined(_WIN32) || defined(_WIN64)
|
||||
return (T *)_aligned_malloc(size, 64);
|
||||
#elif defined (__APPLE__)
|
||||
// Allocate excess memory to ensure an aligned pointer can be returned
|
||||
void *mem = malloc(size + (64-1) + sizeof(void*));
|
||||
char *amem = ((char*)mem) + sizeof(void*);
|
||||
amem += 64 - (reinterpret_cast<uint64_t>(amem) & (64 - 1));
|
||||
((void**)amem)[-1] = mem;
|
||||
return (T *)amem;
|
||||
#else
|
||||
return (T *)memalign(64, size);
|
||||
#endif
|
||||
}
|
||||
|
||||
extern void raytrace_serial(int width, int height, const float raster2camera[4][4],
|
||||
const float camera2world[4][4], float image[],
|
||||
int id[], const LinearBVHNode nodes[],
|
||||
@@ -161,7 +141,7 @@ int main(int argc, char *argv[]) {
|
||||
uint nNodes;
|
||||
READ(nNodes, 1);
|
||||
|
||||
LinearBVHNode *nodes = AllocAligned<LinearBVHNode>(nNodes);
|
||||
LinearBVHNode *nodes = new LinearBVHNode[nNodes];
|
||||
for (unsigned int i = 0; i < nNodes; ++i) {
|
||||
// Each node is 6x floats for a boox, then an integer for an offset
|
||||
// to the second child node, then an integer that encodes the type
|
||||
@@ -181,7 +161,7 @@ int main(int argc, char *argv[]) {
|
||||
// And then read the triangles
|
||||
uint nTris;
|
||||
READ(nTris, 1);
|
||||
Triangle *triangles = AllocAligned<Triangle>(nTris);
|
||||
Triangle *triangles = new Triangle[nTris];
|
||||
for (uint i = 0; i < nTris; ++i) {
|
||||
// 9x floats for the 3 vertices
|
||||
float v[9];
|
||||
|
||||
@@ -38,15 +38,7 @@
|
||||
using namespace ispc;
|
||||
|
||||
int main() {
|
||||
// Pointers passed to ispc-compiled code are currently required to have
|
||||
// alignment equal to the target's native vector size. Here we align
|
||||
// to 32 bytes to be safe for both SSE and AVX targets.
|
||||
#ifdef _MSC_VER
|
||||
__declspec(align(32)) float vin[16], vout[16];
|
||||
#else
|
||||
float vin[16] __attribute__((aligned(32)));
|
||||
float vout[16] __attribute__((aligned(32)));
|
||||
#endif
|
||||
float vin[16], vout[16];
|
||||
|
||||
// Initialize input buffer
|
||||
for (int i = 0; i < 16; ++i)
|
||||
|
||||
11
opt.cpp
11
opt.cpp
@@ -1131,10 +1131,17 @@ MaskedStoreOptPass::runOnBasicBlock(llvm::BasicBlock &bb) {
|
||||
}
|
||||
else if (maskAsInt == allOnMask) {
|
||||
// The mask is all on, so turn this into a regular store
|
||||
const llvm::Type *ptrType = llvm::PointerType::get(rvalue->getType(), 0);
|
||||
const llvm::Type *rvalueType = rvalue->getType();
|
||||
const llvm::Type *ptrType = llvm::PointerType::get(rvalueType, 0);
|
||||
// Need to update this when int8/int16 are added
|
||||
int align = (called == pms32Func || called == pms64Func ||
|
||||
called == msb32Func) ? 4 : 8;
|
||||
|
||||
lvalue = new llvm::BitCastInst(lvalue, ptrType, "lvalue_to_ptr_type", callInst);
|
||||
lCopyMetadata(lvalue, callInst);
|
||||
llvm::Instruction *store = new llvm::StoreInst(rvalue, lvalue);
|
||||
llvm::Instruction *store =
|
||||
new llvm::StoreInst(rvalue, lvalue, false /* not volatile */,
|
||||
align);
|
||||
lCopyMetadata(store, callInst);
|
||||
llvm::ReplaceInstWithInst(callInst, store);
|
||||
|
||||
|
||||
@@ -513,14 +513,14 @@ declare <8 x float> @llvm.x86.avx.blendvps(<8 x float>, <8 x float>,
|
||||
define void @__masked_store_blend_32(<8 x i32>* nocapture, <8 x i32>,
|
||||
<8 x i32>) nounwind alwaysinline {
|
||||
%mask_as_float = bitcast <8 x i32> %2 to <8 x float>
|
||||
%oldValue = load <8 x i32>* %0
|
||||
%oldValue = load <8 x i32>* %0, align 4
|
||||
%oldAsFloat = bitcast <8 x i32> %oldValue to <8 x float>
|
||||
%newAsFloat = bitcast <8 x i32> %1 to <8 x float>
|
||||
%blend = call <8 x float> @llvm.x86.avx.blendvps(<8 x float> %oldAsFloat,
|
||||
<8 x float> %newAsFloat,
|
||||
<8 x float> %mask_as_float)
|
||||
%blendAsInt = bitcast <8 x float> %blend to <8 x i32>
|
||||
store <8 x i32> %blendAsInt, <8 x i32>* %0
|
||||
store <8 x i32> %blendAsInt, <8 x i32>* %0, align 4
|
||||
ret void
|
||||
}
|
||||
|
||||
|
||||
@@ -278,15 +278,15 @@ define internal float @__reduce_add_float(<4 x float> %v) nounwind readonly alwa
|
||||
|
||||
define void @__masked_store_blend_32(<4 x i32>* nocapture, <4 x i32>,
|
||||
<4 x i32> %mask) nounwind alwaysinline {
|
||||
%val = load <4 x i32> * %0
|
||||
%val = load <4 x i32> * %0, align 4
|
||||
%newval = call <4 x i32> @__vselect_i32(<4 x i32> %val, <4 x i32> %1, <4 x i32> %mask)
|
||||
store <4 x i32> %newval, <4 x i32> * %0
|
||||
store <4 x i32> %newval, <4 x i32> * %0, align 4
|
||||
ret void
|
||||
}
|
||||
|
||||
define void @__masked_store_blend_64(<4 x i64>* nocapture %ptr, <4 x i64> %new,
|
||||
<4 x i32> %mask) nounwind alwaysinline {
|
||||
%oldValue = load <4 x i64>* %ptr
|
||||
%oldValue = load <4 x i64>* %ptr, align 8
|
||||
|
||||
; Do 4x64-bit blends by doing two <4 x i32> blends, where the <4 x i32> values
|
||||
; are actually bitcast <2 x i64> values
|
||||
@@ -322,7 +322,7 @@ define void @__masked_store_blend_64(<4 x i64>* nocapture %ptr, <4 x i64> %new,
|
||||
; reconstruct the final <4 x i64> vector
|
||||
%final = shufflevector <2 x i64> %result01, <2 x i64> %result23,
|
||||
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
|
||||
store <4 x i64> %final, <4 x i64> * %ptr
|
||||
store <4 x i64> %final, <4 x i64> * %ptr, align 8
|
||||
ret void
|
||||
}
|
||||
|
||||
|
||||
@@ -188,21 +188,21 @@ declare <4 x float> @llvm.x86.sse41.blendvps(<4 x float>, <4 x float>,
|
||||
define void @__masked_store_blend_32(<4 x i32>* nocapture, <4 x i32>,
|
||||
<4 x i32> %mask) nounwind alwaysinline {
|
||||
%mask_as_float = bitcast <4 x i32> %mask to <4 x float>
|
||||
%oldValue = load <4 x i32>* %0
|
||||
%oldValue = load <4 x i32>* %0, align 4
|
||||
%oldAsFloat = bitcast <4 x i32> %oldValue to <4 x float>
|
||||
%newAsFloat = bitcast <4 x i32> %1 to <4 x float>
|
||||
%blend = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %oldAsFloat,
|
||||
<4 x float> %newAsFloat,
|
||||
<4 x float> %mask_as_float)
|
||||
%blendAsInt = bitcast <4 x float> %blend to <4 x i32>
|
||||
store <4 x i32> %blendAsInt, <4 x i32>* %0
|
||||
store <4 x i32> %blendAsInt, <4 x i32>* %0, align 4
|
||||
ret void
|
||||
}
|
||||
|
||||
|
||||
define void @__masked_store_blend_64(<4 x i64>* nocapture %ptr, <4 x i64> %new,
|
||||
<4 x i32> %i32mask) nounwind alwaysinline {
|
||||
%oldValue = load <4 x i64>* %ptr
|
||||
%oldValue = load <4 x i64>* %ptr, align 8
|
||||
%mask = bitcast <4 x i32> %i32mask to <4 x float>
|
||||
|
||||
; Do 4x64-bit blends by doing two <4 x i32> blends, where the <4 x i32> values
|
||||
@@ -243,6 +243,6 @@ define void @__masked_store_blend_64(<4 x i64>* nocapture %ptr, <4 x i64> %new,
|
||||
; reconstruct the final <4 x i64> vector
|
||||
%final = shufflevector <2 x i64> %result01, <2 x i64> %result23,
|
||||
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
|
||||
store <4 x i64> %final, <4 x i64> * %ptr
|
||||
store <4 x i64> %final, <4 x i64> * %ptr, align 8
|
||||
ret void
|
||||
}
|
||||
|
||||
@@ -566,7 +566,7 @@ define void @__masked_store_blend_32(<8 x i32>* nocapture, <8 x i32>,
|
||||
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
|
||||
%mask_b = shufflevector <8 x float> %mask_as_float, <8 x float> undef,
|
||||
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
|
||||
%oldValue = load <8 x i32>* %0
|
||||
%oldValue = load <8 x i32>* %0, align 4
|
||||
%oldAsFloat = bitcast <8 x i32> %oldValue to <8 x float>
|
||||
%newAsFloat = bitcast <8 x i32> %1 to <8 x float>
|
||||
%old_a = shufflevector <8 x float> %oldAsFloat, <8 x float> undef,
|
||||
@@ -584,7 +584,7 @@ define void @__masked_store_blend_32(<8 x i32>* nocapture, <8 x i32>,
|
||||
%blend = shufflevector <4 x float> %blend_a, <4 x float> %blend_b,
|
||||
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
|
||||
%blendAsInt = bitcast <8 x float> %blend to <8 x i32>
|
||||
store <8 x i32> %blendAsInt, <8 x i32>* %0
|
||||
store <8 x i32> %blendAsInt, <8 x i32>* %0, align 4
|
||||
ret void
|
||||
}
|
||||
|
||||
@@ -595,7 +595,7 @@ define void @__masked_store_blend_64(<8 x i64>* nocapture %ptr, <8 x i64> %new,
|
||||
|
||||
%mask_as_float = bitcast <8 x i32> %mask to <8 x float>
|
||||
|
||||
%old = load <8 x i64>* %ptr
|
||||
%old = load <8 x i64>* %ptr, align 8
|
||||
|
||||
; set up the first two 64-bit values
|
||||
%old01 = shufflevector <8 x i64> %old, <8 x i64> undef, <2 x i32> <i32 0, i32 1>
|
||||
@@ -651,7 +651,7 @@ define void @__masked_store_blend_64(<8 x i64>* nocapture %ptr, <8 x i64> %new,
|
||||
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
|
||||
%final = shufflevector <4 x i64> %final0123, <4 x i64> %final4567,
|
||||
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
|
||||
store <8 x i64> %final, <8 x i64> * %ptr
|
||||
store <8 x i64> %final, <8 x i64> * %ptr, align 8
|
||||
ret void
|
||||
}
|
||||
|
||||
|
||||
10
stdlib.m4
10
stdlib.m4
@@ -452,7 +452,7 @@ define internal <$1 x i32> @__load_uint16([0 x i32] *, i32 %offset) nounwind alw
|
||||
%ptr16 = bitcast [0 x i32] *%0 to i16 *
|
||||
%ptr = getelementptr i16 * %ptr16, i32 %offset
|
||||
%ptr64 = bitcast i16 * %ptr to i`'eval(16*$1) *
|
||||
%val = load i`'eval(16*$1) * %ptr64, align 1
|
||||
%val = load i`'eval(16*$1) * %ptr64, align 2
|
||||
|
||||
%vval = bitcast i`'eval(16*$1) %val to <$1 x i16>
|
||||
; unsigned, so use zero-extent...
|
||||
@@ -479,7 +479,7 @@ define internal void @__store_uint8([0 x i32] *, i32 %offset, <$1 x i32> %val32,
|
||||
%oldmasked = and i`'eval(8*$1) %old, %notmask
|
||||
%newmasked = and i`'eval(8*$1) %val64, %mask64
|
||||
%final = or i`'eval(8*$1) %oldmasked, %newmasked
|
||||
store i`'eval(8*$1) %final, i`'eval(8*$1) * %ptr64
|
||||
store i`'eval(8*$1) %final, i`'eval(8*$1) * %ptr64, align 1
|
||||
|
||||
ret void
|
||||
}
|
||||
@@ -498,11 +498,11 @@ define internal void @__store_uint16([0 x i32] *, i32 %offset, <$1 x i32> %val32
|
||||
%ptr64 = bitcast i16 * %ptr to i`'eval(16*$1) *
|
||||
|
||||
;; as above, use mask to do blending with logical ops...
|
||||
%old = load i`'eval(16*$1) * %ptr64, align 1
|
||||
%old = load i`'eval(16*$1) * %ptr64, align 2
|
||||
%oldmasked = and i`'eval(16*$1) %old, %notmask
|
||||
%newmasked = and i`'eval(16*$1) %val64, %mask64
|
||||
%final = or i`'eval(16*$1) %oldmasked, %newmasked
|
||||
store i`'eval(16*$1) %final, i`'eval(16*$1) * %ptr64
|
||||
store i`'eval(16*$1) %final, i`'eval(16*$1) * %ptr64, align 2
|
||||
|
||||
ret void
|
||||
}
|
||||
@@ -544,7 +544,7 @@ all_on:
|
||||
;; vector load
|
||||
%vecptr = bitcast i32 *%startptr to <$1 x i32> *
|
||||
%vec_load = load <$1 x i32> *%vecptr, align 4
|
||||
store <$1 x i32> %vec_load, <$1 x i32> * %val_ptr
|
||||
store <$1 x i32> %vec_load, <$1 x i32> * %val_ptr, align 4
|
||||
ret i32 $1
|
||||
|
||||
not_all_on:
|
||||
|
||||
Reference in New Issue
Block a user