added Makefile_gpu
This commit is contained in:
52
examples_cuda/rt/Makefile_gpu
Normal file
52
examples_cuda/rt/Makefile_gpu
Normal file
@@ -0,0 +1,52 @@
|
||||
PROG=rt_cu
|
||||
ISPC_SRC=rt1.ispc
|
||||
CXX_SRC=rt_cu.cpp
|
||||
|
||||
CXX=g++
|
||||
CXXFLAGS=-O3 -I$(CUDATK)/include
|
||||
LD=g++
|
||||
LDFLAGS=-lcuda
|
||||
|
||||
ISPC=ispc
|
||||
ISPCFLAGS=-O3 --math-lib=default --target=nvptx64,avx
|
||||
|
||||
LLVM32 = $(HOME)/usr/local/llvm/bin-3.2
|
||||
LLVM = $(HOME)/usr/local/llvm/bin-3.3
|
||||
PTXGEN = $(HOME)/ptxgen
|
||||
|
||||
LLVM32DIS=$(LLVM32)/bin/llvm-dis
|
||||
|
||||
.SUFFIXES: .bc .o .ptx .cu _ispc_nvptx64.bc
|
||||
|
||||
|
||||
ISPC_OBJ=$(ISPC_SRC:%.ispc=%_ispc.o)
|
||||
ISPC_BC=$(ISPC_SRC:%.ispc=%_ispc_nvptx64.bc)
|
||||
PTXSRC=$(ISPC_SRC:%.ispc=%_ispc_nvptx64.ptx)
|
||||
CXX_OBJ=$(CXX_SRC:%.cpp=%.o)
|
||||
|
||||
all: $(PROG)
|
||||
|
||||
|
||||
$(PROG): $(CXX_OBJ) kernel.ptx
|
||||
/bin/cp kernel.ptx __kernels.ptx
|
||||
$(LD) -o $@ $(CXX_OBJ) $(LDFLAGS)
|
||||
|
||||
%.o: %.cpp
|
||||
$(CXX) $(CXXFLAGS) -o $@ -c $<
|
||||
|
||||
|
||||
%_ispc_nvptx64.bc: %.ispc
|
||||
$(ISPC) $(ISPCFLAGS) --emit-llvm -o `basename $< .ispc`_ispc.bc -h `basename $< .ispc`_ispc.h $< --emit-llvm
|
||||
|
||||
%.ptx: %.bc
|
||||
$(LLVM32DIS) $<
|
||||
$(PTXGEN) `basename $< .bc`.ll > $@
|
||||
|
||||
kernel.ptx: $(PTXSRC)
|
||||
cat $^ > kernel.ptx
|
||||
|
||||
clean:
|
||||
/bin/rm -rf *.ptx *.bc *.ll $(PROG)
|
||||
|
||||
|
||||
|
||||
370
examples_cuda/rt/drvapi_error_string.h
Normal file
370
examples_cuda/rt/drvapi_error_string.h
Normal file
@@ -0,0 +1,370 @@
|
||||
/*
|
||||
* Copyright 1993-2012 NVIDIA Corporation. All rights reserved.
|
||||
*
|
||||
* Please refer to the NVIDIA end user license agreement (EULA) associated
|
||||
* with this source code for terms and conditions that govern your use of
|
||||
* this software. Any use, reproduction, disclosure, or distribution of
|
||||
* this software and related documentation outside the terms of the EULA
|
||||
* is strictly prohibited.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef _DRVAPI_ERROR_STRING_H_
|
||||
#define _DRVAPI_ERROR_STRING_H_
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
// Error Code string definitions here
|
||||
typedef struct
|
||||
{
|
||||
char const *error_string;
|
||||
int error_id;
|
||||
} s_CudaErrorStr;
|
||||
|
||||
/**
|
||||
* Error codes
|
||||
*/
|
||||
static s_CudaErrorStr sCudaDrvErrorString[] =
|
||||
{
|
||||
/**
|
||||
* The API call returned with no errors. In the case of query calls, this
|
||||
* can also mean that the operation being queried is complete (see
|
||||
* ::cuEventQuery() and ::cuStreamQuery()).
|
||||
*/
|
||||
{ "CUDA_SUCCESS", 0 },
|
||||
|
||||
/**
|
||||
* This indicates that one or more of the parameters passed to the API call
|
||||
* is not within an acceptable range of values.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_VALUE", 1 },
|
||||
|
||||
/**
|
||||
* The API call failed because it was unable to allocate enough memory to
|
||||
* perform the requested operation.
|
||||
*/
|
||||
{ "CUDA_ERROR_OUT_OF_MEMORY", 2 },
|
||||
|
||||
/**
|
||||
* This indicates that the CUDA driver has not been initialized with
|
||||
* ::cuInit() or that initialization has failed.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_INITIALIZED", 3 },
|
||||
|
||||
/**
|
||||
* This indicates that the CUDA driver is in the process of shutting down.
|
||||
*/
|
||||
{ "CUDA_ERROR_DEINITIALIZED", 4 },
|
||||
|
||||
/**
|
||||
* This indicates profiling APIs are called while application is running
|
||||
* in visual profiler mode.
|
||||
*/
|
||||
{ "CUDA_ERROR_PROFILER_DISABLED", 5 },
|
||||
/**
|
||||
* This indicates profiling has not been initialized for this context.
|
||||
* Call cuProfilerInitialize() to resolve this.
|
||||
*/
|
||||
{ "CUDA_ERROR_PROFILER_NOT_INITIALIZED", 6 },
|
||||
/**
|
||||
* This indicates profiler has already been started and probably
|
||||
* cuProfilerStart() is incorrectly called.
|
||||
*/
|
||||
{ "CUDA_ERROR_PROFILER_ALREADY_STARTED", 7 },
|
||||
/**
|
||||
* This indicates profiler has already been stopped and probably
|
||||
* cuProfilerStop() is incorrectly called.
|
||||
*/
|
||||
{ "CUDA_ERROR_PROFILER_ALREADY_STOPPED", 8 },
|
||||
/**
|
||||
* This indicates that no CUDA-capable devices were detected by the installed
|
||||
* CUDA driver.
|
||||
*/
|
||||
{ "CUDA_ERROR_NO_DEVICE (no CUDA-capable devices were detected)", 100 },
|
||||
|
||||
/**
|
||||
* This indicates that the device ordinal supplied by the user does not
|
||||
* correspond to a valid CUDA device.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_DEVICE (device specified is not a valid CUDA device)", 101 },
|
||||
|
||||
|
||||
/**
|
||||
* This indicates that the device kernel image is invalid. This can also
|
||||
* indicate an invalid CUDA module.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_IMAGE", 200 },
|
||||
|
||||
/**
|
||||
* This most frequently indicates that there is no context bound to the
|
||||
* current thread. This can also be returned if the context passed to an
|
||||
* API call is not a valid handle (such as a context that has had
|
||||
* ::cuCtxDestroy() invoked on it). This can also be returned if a user
|
||||
* mixes different API versions (i.e. 3010 context with 3020 API calls).
|
||||
* See ::cuCtxGetApiVersion() for more details.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_CONTEXT", 201 },
|
||||
|
||||
/**
|
||||
* This indicated that the context being supplied as a parameter to the
|
||||
* API call was already the active context.
|
||||
* \deprecated
|
||||
* This error return is deprecated as of CUDA 3.2. It is no longer an
|
||||
* error to attempt to push the active context via ::cuCtxPushCurrent().
|
||||
*/
|
||||
{ "CUDA_ERROR_CONTEXT_ALREADY_CURRENT", 202 },
|
||||
|
||||
/**
|
||||
* This indicates that a map or register operation has failed.
|
||||
*/
|
||||
{ "CUDA_ERROR_MAP_FAILED", 205 },
|
||||
|
||||
/**
|
||||
* This indicates that an unmap or unregister operation has failed.
|
||||
*/
|
||||
{ "CUDA_ERROR_UNMAP_FAILED", 206 },
|
||||
|
||||
/**
|
||||
* This indicates that the specified array is currently mapped and thus
|
||||
* cannot be destroyed.
|
||||
*/
|
||||
{ "CUDA_ERROR_ARRAY_IS_MAPPED", 207 },
|
||||
|
||||
/**
|
||||
* This indicates that the resource is already mapped.
|
||||
*/
|
||||
{ "CUDA_ERROR_ALREADY_MAPPED", 208 },
|
||||
|
||||
/**
|
||||
* This indicates that there is no kernel image available that is suitable
|
||||
* for the device. This can occur when a user specifies code generation
|
||||
* options for a particular CUDA source file that do not include the
|
||||
* corresponding device configuration.
|
||||
*/
|
||||
{ "CUDA_ERROR_NO_BINARY_FOR_GPU", 209 },
|
||||
|
||||
/**
|
||||
* This indicates that a resource has already been acquired.
|
||||
*/
|
||||
{ "CUDA_ERROR_ALREADY_ACQUIRED", 210 },
|
||||
|
||||
/**
|
||||
* This indicates that a resource is not mapped.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_MAPPED", 211 },
|
||||
|
||||
/**
|
||||
* This indicates that a mapped resource is not available for access as an
|
||||
* array.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_MAPPED_AS_ARRAY", 212 },
|
||||
|
||||
/**
|
||||
* This indicates that a mapped resource is not available for access as a
|
||||
* pointer.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_MAPPED_AS_POINTER", 213 },
|
||||
|
||||
/**
|
||||
* This indicates that an uncorrectable ECC error was detected during
|
||||
* execution.
|
||||
*/
|
||||
{ "CUDA_ERROR_ECC_UNCORRECTABLE", 214 },
|
||||
|
||||
/**
|
||||
* This indicates that the ::CUlimit passed to the API call is not
|
||||
* supported by the active device.
|
||||
*/
|
||||
{ "CUDA_ERROR_UNSUPPORTED_LIMIT", 215 },
|
||||
|
||||
/**
|
||||
* This indicates that the ::CUcontext passed to the API call can
|
||||
* only be bound to a single CPU thread at a time but is already
|
||||
* bound to a CPU thread.
|
||||
*/
|
||||
{ "CUDA_ERROR_CONTEXT_ALREADY_IN_USE", 216 },
|
||||
|
||||
/**
|
||||
* This indicates that peer access is not supported across the given
|
||||
* devices.
|
||||
*/
|
||||
{ "CUDA_ERROR_PEER_ACCESS_UNSUPPORTED", 217},
|
||||
|
||||
/**
|
||||
* This indicates that the device kernel source is invalid.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_SOURCE", 300 },
|
||||
|
||||
/**
|
||||
* This indicates that the file specified was not found.
|
||||
*/
|
||||
{ "CUDA_ERROR_FILE_NOT_FOUND", 301 },
|
||||
|
||||
/**
|
||||
* This indicates that a link to a shared object failed to resolve.
|
||||
*/
|
||||
{ "CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND", 302 },
|
||||
|
||||
/**
|
||||
* This indicates that initialization of a shared object failed.
|
||||
*/
|
||||
{ "CUDA_ERROR_SHARED_OBJECT_INIT_FAILED", 303 },
|
||||
|
||||
/**
|
||||
* This indicates that an OS call failed.
|
||||
*/
|
||||
{ "CUDA_ERROR_OPERATING_SYSTEM", 304 },
|
||||
|
||||
|
||||
/**
|
||||
* This indicates that a resource handle passed to the API call was not
|
||||
* valid. Resource handles are opaque types like ::CUstream and ::CUevent.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_HANDLE", 400 },
|
||||
|
||||
|
||||
/**
|
||||
* This indicates that a named symbol was not found. Examples of symbols
|
||||
* are global/constant variable names, texture names }, and surface names.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_FOUND", 500 },
|
||||
|
||||
|
||||
/**
|
||||
* This indicates that asynchronous operations issued previously have not
|
||||
* completed yet. This result is not actually an error, but must be indicated
|
||||
* differently than ::CUDA_SUCCESS (which indicates completion). Calls that
|
||||
* may return this value include ::cuEventQuery() and ::cuStreamQuery().
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_READY", 600 },
|
||||
|
||||
|
||||
/**
|
||||
* An exception occurred on the device while executing a kernel. Common
|
||||
* causes include dereferencing an invalid device pointer and accessing
|
||||
* out of bounds shared memory. The context cannot be used }, so it must
|
||||
* be destroyed (and a new one should be created). All existing device
|
||||
* memory allocations from this context are invalid and must be
|
||||
* reconstructed if the program is to continue using CUDA.
|
||||
*/
|
||||
{ "CUDA_ERROR_LAUNCH_FAILED", 700 },
|
||||
|
||||
/**
|
||||
* This indicates that a launch did not occur because it did not have
|
||||
* appropriate resources. This error usually indicates that the user has
|
||||
* attempted to pass too many arguments to the device kernel, or the
|
||||
* kernel launch specifies too many threads for the kernel's register
|
||||
* count. Passing arguments of the wrong size (i.e. a 64-bit pointer
|
||||
* when a 32-bit int is expected) is equivalent to passing too many
|
||||
* arguments and can also result in this error.
|
||||
*/
|
||||
{ "CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES", 701 },
|
||||
|
||||
/**
|
||||
* This indicates that the device kernel took too long to execute. This can
|
||||
* only occur if timeouts are enabled - see the device attribute
|
||||
* ::CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT for more information. The
|
||||
* context cannot be used (and must be destroyed similar to
|
||||
* ::CUDA_ERROR_LAUNCH_FAILED). All existing device memory allocations from
|
||||
* this context are invalid and must be reconstructed if the program is to
|
||||
* continue using CUDA.
|
||||
*/
|
||||
{ "CUDA_ERROR_LAUNCH_TIMEOUT", 702 },
|
||||
|
||||
/**
|
||||
* This error indicates a kernel launch that uses an incompatible texturing
|
||||
* mode.
|
||||
*/
|
||||
{ "CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING", 703 },
|
||||
|
||||
/**
|
||||
* This error indicates that a call to ::cuCtxEnablePeerAccess() is
|
||||
* trying to re-enable peer access to a context which has already
|
||||
* had peer access to it enabled.
|
||||
*/
|
||||
{ "CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED", 704 },
|
||||
|
||||
/**
|
||||
* This error indicates that ::cuCtxDisablePeerAccess() is
|
||||
* trying to disable peer access which has not been enabled yet
|
||||
* via ::cuCtxEnablePeerAccess().
|
||||
*/
|
||||
{ "CUDA_ERROR_PEER_ACCESS_NOT_ENABLED", 705 },
|
||||
|
||||
/**
|
||||
* This error indicates that the primary context for the specified device
|
||||
* has already been initialized.
|
||||
*/
|
||||
{ "CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE", 708 },
|
||||
|
||||
/**
|
||||
* This error indicates that the context current to the calling thread
|
||||
* has been destroyed using ::cuCtxDestroy }, or is a primary context which
|
||||
* has not yet been initialized.
|
||||
*/
|
||||
{ "CUDA_ERROR_CONTEXT_IS_DESTROYED", 709 },
|
||||
|
||||
/**
|
||||
* A device-side assert triggered during kernel execution. The context
|
||||
* cannot be used anymore, and must be destroyed. All existing device
|
||||
* memory allocations from this context are invalid and must be
|
||||
* reconstructed if the program is to continue using CUDA.
|
||||
*/
|
||||
{ "CUDA_ERROR_ASSERT", 710 },
|
||||
|
||||
/**
|
||||
* This error indicates that the hardware resources required to enable
|
||||
* peer access have been exhausted for one or more of the devices
|
||||
* passed to ::cuCtxEnablePeerAccess().
|
||||
*/
|
||||
{ "CUDA_ERROR_TOO_MANY_PEERS", 711 },
|
||||
|
||||
/**
|
||||
* This error indicates that the memory range passed to ::cuMemHostRegister()
|
||||
* has already been registered.
|
||||
*/
|
||||
{ "CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED", 712 },
|
||||
|
||||
/**
|
||||
* This error indicates that the pointer passed to ::cuMemHostUnregister()
|
||||
* does not correspond to any currently registered memory region.
|
||||
*/
|
||||
{ "CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED", 713 },
|
||||
|
||||
/**
|
||||
* This error indicates that the attempted operation is not permitted.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_PERMITTED", 800 },
|
||||
|
||||
/**
|
||||
* This error indicates that the attempted operation is not supported
|
||||
* on the current system or device.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_SUPPORTED", 801 },
|
||||
|
||||
/**
|
||||
* This indicates that an unknown internal error has occurred.
|
||||
*/
|
||||
{ "CUDA_ERROR_UNKNOWN", 999 },
|
||||
{ NULL, -1 }
|
||||
};
|
||||
|
||||
// This is just a linear search through the array, since the error_id's are not
|
||||
// always ocurring consecutively
|
||||
const char * getCudaDrvErrorString(CUresult error_id)
|
||||
{
|
||||
int index = 0;
|
||||
while (sCudaDrvErrorString[index].error_id != error_id &&
|
||||
sCudaDrvErrorString[index].error_id != -1)
|
||||
{
|
||||
index++;
|
||||
}
|
||||
if (sCudaDrvErrorString[index].error_id == error_id)
|
||||
return (const char *)sCudaDrvErrorString[index].error_string;
|
||||
else
|
||||
return (const char *)"CUDA_ERROR not found!";
|
||||
}
|
||||
|
||||
#endif
|
||||
564
examples_cuda/rt/rt_cu.cpp
Normal file
564
examples_cuda/rt/rt_cu.cpp
Normal file
@@ -0,0 +1,564 @@
|
||||
/*
|
||||
Copyright (c) 2010-2011, Intel Corporation
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
* Neither the name of Intel Corporation nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define _CRT_SECURE_NO_WARNINGS
|
||||
#define NOMINMAX
|
||||
#pragma warning (disable: 4244)
|
||||
#pragma warning (disable: 4305)
|
||||
#endif
|
||||
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <algorithm>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
#include <sys/types.h>
|
||||
#include "../timing.h"
|
||||
#include "rt_ispc.h"
|
||||
|
||||
#include <sys/time.h>
|
||||
|
||||
|
||||
/******************************/
|
||||
double rtc(void)
|
||||
{
|
||||
struct timeval Tvalue;
|
||||
double etime;
|
||||
struct timezone dummy;
|
||||
|
||||
gettimeofday(&Tvalue,&dummy);
|
||||
etime = (double) Tvalue.tv_sec +
|
||||
1.e-6*((double) Tvalue.tv_usec);
|
||||
return etime;
|
||||
}
|
||||
/******************************/
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <cuda.h>
|
||||
#include "drvapi_error_string.h"
|
||||
|
||||
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
|
||||
// These are the inline versions for all of the SDK helper functions
|
||||
void __checkCudaErrors(CUresult err, const char *file, const int line) {
|
||||
if(CUDA_SUCCESS != err) {
|
||||
std::cerr << "checkCudeErrors() Driver API error = " << err << "\""
|
||||
<< getCudaDrvErrorString(err) << "\" from file <" << file
|
||||
<< ", line " << line << "\n";
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
|
||||
/**********************/
|
||||
/* Basic CUDriver API */
|
||||
CUcontext context;
|
||||
|
||||
void createContext(const int deviceId = 0)
|
||||
{
|
||||
CUdevice device;
|
||||
int devCount;
|
||||
checkCudaErrors(cuInit(0));
|
||||
checkCudaErrors(cuDeviceGetCount(&devCount));
|
||||
assert(devCount > 0);
|
||||
checkCudaErrors(cuDeviceGet(&device, deviceId < devCount ? deviceId : 0));
|
||||
|
||||
char name[128];
|
||||
checkCudaErrors(cuDeviceGetName(name, 128, device));
|
||||
std::cout << "Using CUDA Device [0]: " << name << "\n";
|
||||
|
||||
int devMajor, devMinor;
|
||||
checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
|
||||
std::cout << "Device Compute Capability: "
|
||||
<< devMajor << "." << devMinor << "\n";
|
||||
if (devMajor < 2) {
|
||||
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// Create driver context
|
||||
checkCudaErrors(cuCtxCreate(&context, 0, device));
|
||||
}
|
||||
void destroyContext()
|
||||
{
|
||||
checkCudaErrors(cuCtxDestroy(context));
|
||||
}
|
||||
|
||||
CUmodule loadModule(const char * module)
|
||||
{
|
||||
const double t0 = rtc();
|
||||
CUmodule cudaModule;
|
||||
// in this branch we use compilation with parameters
|
||||
|
||||
CUlinkState CUState;
|
||||
CUlinkState *lState = &CUState;
|
||||
const int nOptions = 7;
|
||||
CUjit_option options[nOptions];
|
||||
void* optionVals[nOptions];
|
||||
float walltime;
|
||||
const unsigned int logSize = 32768;
|
||||
char error_log[logSize],
|
||||
info_log[logSize];
|
||||
void *cuOut;
|
||||
size_t outSize;
|
||||
int myErr = 0;
|
||||
|
||||
// Setup linker options
|
||||
// Return walltime from JIT compilation
|
||||
options[0] = CU_JIT_WALL_TIME;
|
||||
optionVals[0] = (void*) &walltime;
|
||||
// Pass a buffer for info messages
|
||||
options[1] = CU_JIT_INFO_LOG_BUFFER;
|
||||
optionVals[1] = (void*) info_log;
|
||||
// Pass the size of the info buffer
|
||||
options[2] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
|
||||
optionVals[2] = (void*) logSize;
|
||||
// Pass a buffer for error message
|
||||
options[3] = CU_JIT_ERROR_LOG_BUFFER;
|
||||
optionVals[3] = (void*) error_log;
|
||||
// Pass the size of the error buffer
|
||||
options[4] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES;
|
||||
optionVals[4] = (void*) logSize;
|
||||
// Make the linker verbose
|
||||
options[5] = CU_JIT_LOG_VERBOSE;
|
||||
optionVals[5] = (void*) 1;
|
||||
// Max # of registers/pthread
|
||||
options[6] = CU_JIT_MAX_REGISTERS;
|
||||
int jitRegCount = 48;
|
||||
optionVals[6] = (void *)(size_t)jitRegCount;
|
||||
|
||||
// Create a pending linker invocation
|
||||
checkCudaErrors(cuLinkCreate(nOptions,options, optionVals, lState));
|
||||
|
||||
#if 0
|
||||
if (sizeof(void *)==4)
|
||||
{
|
||||
// Load the PTX from the string myPtx32
|
||||
printf("Loading myPtx32[] program\n");
|
||||
// PTX May also be loaded from file, as per below.
|
||||
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)myPtx32, strlen(myPtx32)+1, 0, 0, 0, 0);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
// Load the PTX from the string myPtx (64-bit)
|
||||
fprintf(stderr, "Loading ptx..\n");
|
||||
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)module, strlen(module)+1, 0, 0, 0, 0);
|
||||
myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_LIBRARY, "libcudadevrt.a", 0,0,0);
|
||||
// PTX May also be loaded from file, as per below.
|
||||
// myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_PTX, "myPtx64.ptx",0,0,0);
|
||||
}
|
||||
|
||||
// Complete the linker step
|
||||
myErr = cuLinkComplete(*lState, &cuOut, &outSize);
|
||||
|
||||
if ( myErr != CUDA_SUCCESS )
|
||||
{
|
||||
// Errors will be put in error_log, per CU_JIT_ERROR_LOG_BUFFER option above.
|
||||
fprintf(stderr,"PTX Linker Error:\n%s\n",error_log);
|
||||
assert(0);
|
||||
}
|
||||
|
||||
// Linker walltime and info_log were requested in options above.
|
||||
fprintf(stderr, "CUDA Link Completed in %fms [ %g ms]. Linker Output:\n%s\n",walltime,info_log,1e3*(rtc() - t0));
|
||||
|
||||
// Load resulting cuBin into module
|
||||
checkCudaErrors(cuModuleLoadData(&cudaModule, cuOut));
|
||||
|
||||
// Destroy the linker invocation
|
||||
checkCudaErrors(cuLinkDestroy(*lState));
|
||||
fprintf(stderr, " loadModule took %g ms \n", 1e3*(rtc() - t0));
|
||||
return cudaModule;
|
||||
}
|
||||
void unloadModule(CUmodule &cudaModule)
|
||||
{
|
||||
checkCudaErrors(cuModuleUnload(cudaModule));
|
||||
}
|
||||
|
||||
CUfunction getFunction(CUmodule &cudaModule, const char * function)
|
||||
{
|
||||
CUfunction cudaFunction;
|
||||
checkCudaErrors(cuModuleGetFunction(&cudaFunction, cudaModule, function));
|
||||
return cudaFunction;
|
||||
}
|
||||
|
||||
CUdeviceptr deviceMalloc(const size_t size)
|
||||
{
|
||||
CUdeviceptr d_buf;
|
||||
checkCudaErrors(cuMemAlloc(&d_buf, size));
|
||||
return d_buf;
|
||||
}
|
||||
void deviceFree(CUdeviceptr d_buf)
|
||||
{
|
||||
checkCudaErrors(cuMemFree(d_buf));
|
||||
}
|
||||
void memcpyD2H(void * h_buf, CUdeviceptr d_buf, const size_t size)
|
||||
{
|
||||
checkCudaErrors(cuMemcpyDtoH(h_buf, d_buf, size));
|
||||
}
|
||||
void memcpyH2D(CUdeviceptr d_buf, void * h_buf, const size_t size)
|
||||
{
|
||||
checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size));
|
||||
}
|
||||
#define deviceLaunch(func,params) \
|
||||
checkCudaErrors(cuFuncSetCacheConfig((func), CU_FUNC_CACHE_PREFER_L1)); \
|
||||
checkCudaErrors( \
|
||||
cuLaunchKernel( \
|
||||
(func), \
|
||||
1,1,1, \
|
||||
32, 1, 1, \
|
||||
0, NULL, (params), NULL \
|
||||
));
|
||||
|
||||
typedef CUdeviceptr devicePtr;
|
||||
|
||||
|
||||
/**************/
|
||||
#include <vector>
|
||||
std::vector<char> readBinary(const char * filename)
|
||||
{
|
||||
std::vector<char> buffer;
|
||||
FILE *fp = fopen(filename, "rb");
|
||||
if (!fp )
|
||||
{
|
||||
fprintf(stderr, "file %s not found\n", filename);
|
||||
assert(0);
|
||||
}
|
||||
#if 0
|
||||
char c;
|
||||
while ((c = fgetc(fp)) != EOF)
|
||||
buffer.push_back(c);
|
||||
#else
|
||||
fseek(fp, 0, SEEK_END);
|
||||
const unsigned long long size = ftell(fp); /*calc the size needed*/
|
||||
fseek(fp, 0, SEEK_SET);
|
||||
buffer.resize(size);
|
||||
|
||||
if (fp == NULL){ /*ERROR detection if file == empty*/
|
||||
fprintf(stderr, "Error: There was an Error reading the file %s \n",filename);
|
||||
exit(1);
|
||||
}
|
||||
else if (fread(&buffer[0], sizeof(char), size, fp) != size){ /* if count of read bytes != calculated size of .bin file -> ERROR*/
|
||||
fprintf(stderr, "Error: There was an Error reading the file %s \n", filename);
|
||||
exit(1);
|
||||
}
|
||||
#endif
|
||||
fprintf(stderr, " read buffer of size= %d bytes \n", (int)buffer.size());
|
||||
return buffer;
|
||||
}
|
||||
|
||||
extern "C"
|
||||
{
|
||||
double CUDALaunch(
|
||||
void **handlePtr,
|
||||
const char * func_name,
|
||||
void **func_args)
|
||||
{
|
||||
const std::vector<char> module_str = readBinary("__kernels.ptx");
|
||||
const char * module = &module_str[0];
|
||||
CUmodule cudaModule = loadModule(module);
|
||||
CUfunction cudaFunction = getFunction(cudaModule, func_name);
|
||||
const double t0 = rtc();
|
||||
deviceLaunch(cudaFunction, func_args);
|
||||
checkCudaErrors(cuStreamSynchronize(0));
|
||||
const double dt = rtc() - t0;
|
||||
unloadModule(cudaModule);
|
||||
return dt;
|
||||
}
|
||||
}
|
||||
/******************************/
|
||||
|
||||
|
||||
using namespace ispc;
|
||||
|
||||
typedef unsigned int uint;
|
||||
|
||||
|
||||
static void writeImage(int *idImage, float *depthImage, int width, int height,
|
||||
const char *filename) {
|
||||
FILE *f = fopen(filename, "wb");
|
||||
if (!f) {
|
||||
perror(filename);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
fprintf(f, "P6\n%d %d\n255\n", width, height);
|
||||
for (int y = 0; y < height; ++y) {
|
||||
for (int x = 0; x < width; ++x) {
|
||||
// use the bits from the object id of the hit object to make a
|
||||
// random color
|
||||
int id = idImage[y * width + x];
|
||||
unsigned char r = 0, g = 0, b = 0;
|
||||
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
// extract bit 3*i for red, 3*i+1 for green, 3*i+2 for blue
|
||||
int rbit = (id & (1 << (3*i))) >> (3*i);
|
||||
int gbit = (id & (1 << (3*i+1))) >> (3*i+1);
|
||||
int bbit = (id & (1 << (3*i+2))) >> (3*i+2);
|
||||
// and then set the bits of the colors starting from the
|
||||
// high bits...
|
||||
r |= rbit << (7-i);
|
||||
g |= gbit << (7-i);
|
||||
b |= bbit << (7-i);
|
||||
}
|
||||
fputc(r, f);
|
||||
fputc(g, f);
|
||||
fputc(b, f);
|
||||
}
|
||||
}
|
||||
fclose(f);
|
||||
printf("Wrote image file %s\n", filename);
|
||||
}
|
||||
|
||||
|
||||
static void usage() {
|
||||
fprintf(stderr, "rt [--scale=<factor>] <scene name base>\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
float scale = 1.f;
|
||||
const char *filename = NULL;
|
||||
for (int i = 1; i < argc; ++i) {
|
||||
if (strncmp(argv[i], "--scale=", 8) == 0) {
|
||||
scale = atof(argv[i] + 8);
|
||||
if (scale == 0.f)
|
||||
usage();
|
||||
}
|
||||
else if (filename != NULL)
|
||||
usage();
|
||||
else
|
||||
filename = argv[i];
|
||||
}
|
||||
if (filename == NULL)
|
||||
usage();
|
||||
|
||||
#define READ(var, n) \
|
||||
if (fread(&(var), sizeof(var), n, f) != (unsigned int)n) { \
|
||||
fprintf(stderr, "Unexpected EOF reading scene file\n"); \
|
||||
return 1; \
|
||||
} else /* eat ; */
|
||||
|
||||
//
|
||||
// Read the camera specification information from the camera file
|
||||
//
|
||||
char fnbuf[1024];
|
||||
sprintf(fnbuf, "%s.camera", filename);
|
||||
FILE *f = fopen(fnbuf, "rb");
|
||||
if (!f) {
|
||||
perror(fnbuf);
|
||||
return 1;
|
||||
}
|
||||
|
||||
//
|
||||
// Nothing fancy, and trouble if we run on a big-endian system, just
|
||||
// fread in the bits
|
||||
//
|
||||
int baseWidth, baseHeight;
|
||||
float camera2world[4][4], raster2camera[4][4];
|
||||
READ(baseWidth, 1);
|
||||
READ(baseHeight, 1);
|
||||
READ(camera2world[0][0], 16);
|
||||
READ(raster2camera[0][0], 16);
|
||||
|
||||
//
|
||||
// Read in the serialized BVH
|
||||
//
|
||||
sprintf(fnbuf, "%s.bvh", filename);
|
||||
f = fopen(fnbuf, "rb");
|
||||
if (!f) {
|
||||
perror(fnbuf);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// The BVH file starts with an int that gives the total number of BVH
|
||||
// nodes
|
||||
uint nNodes;
|
||||
READ(nNodes, 1);
|
||||
|
||||
LinearBVHNode *nodes = new LinearBVHNode[nNodes];
|
||||
for (unsigned int i = 0; i < nNodes; ++i) {
|
||||
// Each node is 6x floats for a boox, then an integer for an offset
|
||||
// to the second child node, then an integer that encodes the type
|
||||
// of node, the total number of int it if a leaf node, etc.
|
||||
float b[6];
|
||||
READ(b[0], 6);
|
||||
nodes[i].bounds[0][0] = b[0];
|
||||
nodes[i].bounds[0][1] = b[1];
|
||||
nodes[i].bounds[0][2] = b[2];
|
||||
nodes[i].bounds[1][0] = b[3];
|
||||
nodes[i].bounds[1][1] = b[4];
|
||||
nodes[i].bounds[1][2] = b[5];
|
||||
READ(nodes[i].offset, 1);
|
||||
READ(nodes[i].nPrimitives, 1);
|
||||
READ(nodes[i].splitAxis, 1);
|
||||
READ(nodes[i].pad, 1);
|
||||
}
|
||||
|
||||
// And then read the triangles
|
||||
uint nTris;
|
||||
READ(nTris, 1);
|
||||
Triangle *triangles = new Triangle[nTris];
|
||||
for (uint i = 0; i < nTris; ++i) {
|
||||
// 9x floats for the 3 vertices
|
||||
float v[9];
|
||||
READ(v[0], 9);
|
||||
float *vp = v;
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
triangles[i].p[j][0] = *vp++;
|
||||
triangles[i].p[j][1] = *vp++;
|
||||
triangles[i].p[j][2] = *vp++;
|
||||
}
|
||||
// And create an object id
|
||||
triangles[i].id = i+1;
|
||||
}
|
||||
fclose(f);
|
||||
|
||||
int height = int(baseHeight * scale);
|
||||
int width = int(baseWidth * scale);
|
||||
|
||||
// allocate images; one to hold hit object ids, one to hold depth to
|
||||
// the first interseciton
|
||||
int *id = new int[width*height];
|
||||
float *image = new float[width*height];
|
||||
|
||||
//
|
||||
// Run 3 iterations with ispc + 1 core, record the minimum time
|
||||
//
|
||||
double minTimeISPC = 1e30;
|
||||
#if 0
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
reset_and_start_timer();
|
||||
raytrace_ispc(width, height, baseWidth, baseHeight, raster2camera,
|
||||
camera2world, image, id, nodes, triangles);
|
||||
double dt = get_elapsed_mcycles();
|
||||
minTimeISPC = std::min(dt, minTimeISPC);
|
||||
}
|
||||
printf("[rt ispc, 1 core]:\t\t[%.3f] million cycles for %d x %d image\n",
|
||||
minTimeISPC, width, height);
|
||||
|
||||
writeImage(id, image, width, height, "rt-ispc-1core.ppm");
|
||||
#endif
|
||||
|
||||
memset(id, 0, width*height*sizeof(int));
|
||||
memset(image, 0, width*height*sizeof(float));
|
||||
|
||||
/*******************/
|
||||
createContext();
|
||||
/*******************/
|
||||
|
||||
devicePtr d_raster2camera = deviceMalloc(4*4*sizeof(float));
|
||||
devicePtr d_camera2world = deviceMalloc(4*4*sizeof(float));
|
||||
devicePtr d_nodes = deviceMalloc(nNodes*sizeof(LinearBVHNode));
|
||||
devicePtr d_triangles = deviceMalloc(nTris *sizeof(Triangle));
|
||||
devicePtr d_image = deviceMalloc(width*height*sizeof(float));
|
||||
devicePtr d_id = deviceMalloc(width*height*sizeof(int));
|
||||
|
||||
memcpyH2D(d_raster2camera, raster2camera, 4*4*sizeof(float));
|
||||
memcpyH2D(d_camera2world, camera2world, 4*4*sizeof(float));
|
||||
memcpyH2D(d_nodes, nodes, nNodes*sizeof(LinearBVHNode));
|
||||
memcpyH2D(d_triangles, triangles, nTris*sizeof(Triangle));
|
||||
memcpyH2D(d_image, image, width*height*sizeof(float));
|
||||
memcpyH2D(d_id, id, width*height*sizeof(int));
|
||||
|
||||
|
||||
//
|
||||
// Run 3 iterations with ispc + 1 core, record the minimum time
|
||||
//
|
||||
double minTimeISPCtasks = 1e30;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
#if 0
|
||||
reset_and_start_timer();
|
||||
const double t0 = rtc();
|
||||
raytrace_ispc_tasks(
|
||||
width,
|
||||
height,
|
||||
baseWidth,
|
||||
baseHeight,
|
||||
(float(*)[4])d_raster2camera,
|
||||
(float(*)[4])d_camera2world,
|
||||
(float*)d_image,
|
||||
(int*)d_id,
|
||||
(LinearBVHNode*)d_nodes,
|
||||
(Triangle*)d_triangles);
|
||||
double dt = rtc() - t0; //get_elapsed_mcycles();
|
||||
#else
|
||||
const char * func_name = "raytrace_ispc_tasks";
|
||||
void *func_args[] = {&width, &height, &baseWidth, &baseHeight,
|
||||
&d_raster2camera, &d_camera2world,
|
||||
&d_image, &d_id,
|
||||
&d_nodes, &d_triangles};
|
||||
const double dt = CUDALaunch(NULL, func_name, func_args);
|
||||
#endif
|
||||
minTimeISPCtasks = std::min(dt, minTimeISPCtasks);
|
||||
}
|
||||
printf("[rt ispc + tasks]:\t\t[%.3f] million cycles for %d x %d image\n",
|
||||
minTimeISPCtasks, width, height);
|
||||
|
||||
memcpyD2H(image, d_image, width*height*sizeof(float));
|
||||
memcpyD2H(id, d_id, width*height*sizeof(int));
|
||||
|
||||
writeImage(id, image, width, height, "rt-cuda.ppm");
|
||||
|
||||
/*******************/
|
||||
destroyContext();
|
||||
/*******************/
|
||||
|
||||
|
||||
memset(id, 0, width*height*sizeof(int));
|
||||
memset(image, 0, width*height*sizeof(float));
|
||||
|
||||
//
|
||||
// And 3 iterations with the serial implementation, reporting the
|
||||
// minimum time.
|
||||
//
|
||||
double minTimeSerial = 1e30;
|
||||
#if 0
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
reset_and_start_timer();
|
||||
const double t0 = rtc();
|
||||
raytrace_serial(width, height, baseWidth, baseHeight, raster2camera,
|
||||
camera2world, image, id, nodes, triangles);
|
||||
double dt = rtc() - t0; //get_elapsed_mcycles();
|
||||
minTimeSerial = std::min(dt, minTimeSerial);
|
||||
}
|
||||
printf("[rt serial]:\t\t\t[%.3f] million cycles for %d x %d image\n",
|
||||
minTimeSerial, width, height);
|
||||
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n",
|
||||
minTimeSerial / minTimeISPC, minTimeSerial / minTimeISPCtasks);
|
||||
|
||||
writeImage(id, image, width, height, "rt-serial.ppm");
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user