added tuned code
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
|
||||
EXAMPLE=ao
|
||||
CPP_SRC=ao.cpp ao_serial.cpp
|
||||
ISPC_SRC=ao.ispc
|
||||
ISPC_SRC=ao1.ispc
|
||||
ISPC_IA_TARGETS=avx
|
||||
ISPC_ARM_TARGETS=neon
|
||||
|
||||
|
||||
@@ -36,19 +36,70 @@
|
||||
*/
|
||||
|
||||
#define NAO_SAMPLES 8
|
||||
#define M_PI 3.1415926535f
|
||||
//#define M_PI 3.1415926535f
|
||||
|
||||
typedef float<3> vec;
|
||||
#define vec Float3
|
||||
struct Float3
|
||||
{
|
||||
float x,y,z;
|
||||
|
||||
#ifdef __NVPTX__
|
||||
#warning "emitting DEVICE code"
|
||||
#define programCount warpSize()
|
||||
#define programIndex laneIndex()
|
||||
#define taskIndex blockIndex0()
|
||||
#define taskCount blockCount0()
|
||||
#else
|
||||
#warning "emitting HOST code"
|
||||
#endif
|
||||
__device__ friend Float3 operator+(const Float3 a, const Float3 b)
|
||||
{
|
||||
Float3 c;
|
||||
c.x = a.x+b.x;
|
||||
c.y = a.y+b.y;
|
||||
c.z = a.z+b.z;
|
||||
return c;
|
||||
}
|
||||
__device__ friend Float3 operator-(const Float3 a, const Float3 b)
|
||||
{
|
||||
Float3 c;
|
||||
c.x = a.x-b.x;
|
||||
c.y = a.y-b.y;
|
||||
c.z = a.z-b.z;
|
||||
return c;
|
||||
}
|
||||
__device__ friend Float3 operator/(const Float3 a, const Float3 b)
|
||||
{
|
||||
Float3 c;
|
||||
c.x = a.x/b.x;
|
||||
c.y = a.y/b.y;
|
||||
c.z = a.z/b.z;
|
||||
return c;
|
||||
}
|
||||
__device__ friend Float3 operator/(const float a, const Float3 b)
|
||||
{
|
||||
Float3 c;
|
||||
c.x = a/b.x;
|
||||
c.y = a/b.y;
|
||||
c.z = a/b.z;
|
||||
return c;
|
||||
}
|
||||
__device__ friend Float3 operator*(const Float3 a, const Float3 b)
|
||||
{
|
||||
Float3 c;
|
||||
c.x = a.x*b.x;
|
||||
c.y = a.y*b.y;
|
||||
c.z = a.z*b.z;
|
||||
return c;
|
||||
}
|
||||
__device__ friend Float3 operator*(const Float3 a, const float b)
|
||||
{
|
||||
Float3 c;
|
||||
c.x = a.x*b;
|
||||
c.y = a.y*b;
|
||||
c.z = a.z*b;
|
||||
return c;
|
||||
}
|
||||
};
|
||||
|
||||
#define programCount 32
|
||||
#define programIndex (threadIdx.x & 31)
|
||||
#define taskIndex0 (blockIdx.x*4 + (threadIdx.x >> 5))
|
||||
#define taskCount0 (gridDim.x*4)
|
||||
#define taskIndex1 (blockIdx.y)
|
||||
#define taskCount1 (gridDim.y)
|
||||
#define warpIdx (threadIdx.x >> 5)
|
||||
|
||||
struct Isect {
|
||||
float t;
|
||||
@@ -72,10 +123,12 @@ struct Ray {
|
||||
vec dir;
|
||||
};
|
||||
|
||||
__device__
|
||||
static inline float dot(vec a, vec b) {
|
||||
return a.x * b.x + a.y * b.y + a.z * b.z;
|
||||
}
|
||||
|
||||
__device__
|
||||
static inline vec vcross(vec v0, vec v1) {
|
||||
vec ret;
|
||||
ret.x = v0.y * v1.z - v0.z * v1.y;
|
||||
@@ -84,15 +137,17 @@ static inline vec vcross(vec v0, vec v1) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
__device__
|
||||
static inline void vnormalize(vec &v) {
|
||||
float len2 = dot(v, v);
|
||||
float invlen = rsqrt(len2);
|
||||
v *= invlen;
|
||||
v = v*invlen;
|
||||
}
|
||||
|
||||
|
||||
__device__
|
||||
static inline void
|
||||
ray_plane_intersect(Isect &isect, Ray &ray, uniform Plane &plane) {
|
||||
ray_plane_intersect(Isect &isect,const Ray &ray, const Plane &plane) {
|
||||
float d = -dot(plane.p, plane.n);
|
||||
float v = dot(ray.dir, plane.n);
|
||||
|
||||
@@ -111,8 +166,9 @@ ray_plane_intersect(Isect &isect, Ray &ray, uniform Plane &plane) {
|
||||
}
|
||||
|
||||
|
||||
__device__
|
||||
static inline void
|
||||
ray_sphere_intersect(Isect &isect, Ray &ray, uniform Sphere &sphere) {
|
||||
ray_sphere_intersect(Isect &isect,const Ray &ray, const Sphere &sphere) {
|
||||
vec rs = ray.org - sphere.center;
|
||||
|
||||
float B = dot(rs, ray.dir);
|
||||
@@ -125,7 +181,7 @@ ray_sphere_intersect(Isect &isect, Ray &ray, uniform Sphere &sphere) {
|
||||
if ((t > 0.0) && (t < isect.t)) {
|
||||
isect.t = t;
|
||||
isect.hit = 1;
|
||||
isect.p = ray.org + t * ray.dir;
|
||||
isect.p = ray.org + ray.dir * t;
|
||||
isect.n = isect.p - sphere.center;
|
||||
vnormalize(isect.n);
|
||||
}
|
||||
@@ -133,6 +189,7 @@ ray_sphere_intersect(Isect &isect, Ray &ray, uniform Sphere &sphere) {
|
||||
}
|
||||
|
||||
|
||||
__device__
|
||||
static inline void
|
||||
orthoBasis(vec basis[3], vec n) {
|
||||
basis[2] = n;
|
||||
@@ -156,22 +213,23 @@ orthoBasis(vec basis[3], vec n) {
|
||||
}
|
||||
|
||||
|
||||
__device__
|
||||
static inline float
|
||||
ambient_occlusion(Isect &isect, uniform Plane &plane, uniform Sphere spheres[3],
|
||||
ambient_occlusion(Isect &isect, const Plane &plane, const Sphere spheres[3],
|
||||
RNGState &rngstate) {
|
||||
float eps = 0.0001f;
|
||||
vec p, n;
|
||||
vec p; //, n;
|
||||
vec basis[3];
|
||||
float occlusion = 0.0;
|
||||
|
||||
p = isect.p + eps * isect.n;
|
||||
p = isect.p + isect.n * eps;
|
||||
|
||||
orthoBasis(basis, isect.n);
|
||||
|
||||
static const uniform int ntheta = NAO_SAMPLES;
|
||||
static const uniform int nphi = NAO_SAMPLES;
|
||||
for (uniform int j = 0; j < ntheta; j++) {
|
||||
for (uniform int i = 0; i < nphi; i++) {
|
||||
const int ntheta = NAO_SAMPLES;
|
||||
const int nphi = NAO_SAMPLES;
|
||||
for ( int j = 0; j < ntheta; j++) {
|
||||
for ( int i = 0; i < nphi; i++) {
|
||||
Ray ray;
|
||||
Isect occIsect;
|
||||
|
||||
@@ -194,7 +252,7 @@ ambient_occlusion(Isect &isect, uniform Plane &plane, uniform Sphere spheres[3],
|
||||
occIsect.t = 1.0e+17;
|
||||
occIsect.hit = 0;
|
||||
|
||||
for (uniform int snum = 0; snum < 3; ++snum)
|
||||
for ( int snum = 0; snum < 3; ++snum)
|
||||
ray_sphere_intersect(occIsect, ray, spheres[snum]);
|
||||
ray_plane_intersect (occIsect, ray, plane);
|
||||
|
||||
@@ -210,21 +268,32 @@ ambient_occlusion(Isect &isect, uniform Plane &plane, uniform Sphere spheres[3],
|
||||
/* Compute the image for the scanlines from [y0,y1), for an overall image
|
||||
of width w and height h.
|
||||
*/
|
||||
static inline void ao_scanlines(uniform int y0, uniform int y1, uniform int w,
|
||||
uniform int h, uniform int nsubsamples,
|
||||
uniform float image[]) {
|
||||
static uniform Plane plane = { { 0.0f, -0.5f, 0.0f }, { 0.f, 1.f, 0.f } };
|
||||
static uniform Sphere spheres[3] = {
|
||||
__device__
|
||||
static inline void ao_tile(
|
||||
int x0, int x1,
|
||||
int y0, int y1,
|
||||
int w, int h,
|
||||
int nsubsamples,
|
||||
float image[])
|
||||
{
|
||||
const Plane plane = { { 0.0f, -0.5f, 0.0f }, { 0.f, 1.f, 0.f } };
|
||||
const Sphere spheres[3] = {
|
||||
{ { -2.0f, 0.0f, -3.5f }, 0.5f },
|
||||
{ { -0.5f, 0.0f, -3.0f }, 0.5f },
|
||||
{ { 1.0f, 0.0f, -2.2f }, 0.5f } };
|
||||
RNGState rngstate;
|
||||
|
||||
seed_rng(&rngstate, programIndex + (y0 << (programIndex & 15)));
|
||||
seed_rng(&rngstate, programIndex + (y0 << (programIndex & 31)));
|
||||
float invSamples = 1.f / nsubsamples;
|
||||
for ( int y = y0; y < y1; y++)
|
||||
for ( int xb = x0; xb < x1; xb += programCount)
|
||||
{
|
||||
const int x = xb + programIndex;
|
||||
const int offset = 3 * (y * w + x);
|
||||
float res = 0.0f;
|
||||
|
||||
foreach_tiled(y = y0 ... y1, x = 0 ... w,
|
||||
u = 0 ... nsubsamples, v = 0 ... nsubsamples)
|
||||
for ( int u = 0; u < nsubsamples; u++)
|
||||
for ( int v = 0; v < nsubsamples; v++)
|
||||
{
|
||||
float du = (float)u * invSamples, dv = (float)v * invSamples;
|
||||
|
||||
@@ -235,7 +304,9 @@ static inline void ao_scanlines(uniform int y0, uniform int y1, uniform int w,
|
||||
Ray ray;
|
||||
Isect isect;
|
||||
|
||||
ray.org = 0.f;
|
||||
ray.org.x = 0.0f;
|
||||
ray.org.y = 0.0f;
|
||||
ray.org.z = 0.0f;
|
||||
|
||||
// Poor man's perspective projection
|
||||
ray.dir.x = px;
|
||||
@@ -246,7 +317,7 @@ static inline void ao_scanlines(uniform int y0, uniform int y1, uniform int w,
|
||||
isect.t = 1.0e+17;
|
||||
isect.hit = 0;
|
||||
|
||||
for (uniform int snum = 0; snum < 3; ++snum)
|
||||
for ( int snum = 0; snum < 3; ++snum)
|
||||
ray_sphere_intersect(isect, ray, spheres[snum]);
|
||||
ray_plane_intersect(isect, ray, plane);
|
||||
|
||||
@@ -255,29 +326,37 @@ static inline void ao_scanlines(uniform int y0, uniform int y1, uniform int w,
|
||||
if (isect.hit) {
|
||||
ret = ambient_occlusion(isect, plane, spheres, rngstate);
|
||||
ret *= invSamples * invSamples;
|
||||
|
||||
int offset = 3 * (y * w + x);
|
||||
atomic_add_local(&image[offset], ret);
|
||||
atomic_add_local(&image[offset+1], ret);
|
||||
atomic_add_local(&image[offset+2], ret);
|
||||
res += ret;
|
||||
}
|
||||
}
|
||||
|
||||
if (xb < x1)
|
||||
{
|
||||
image[offset ] = res;
|
||||
image[offset+1] = res;
|
||||
image[offset+2] = res;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
export void ao_ispc(uniform int w, uniform int h, uniform int nsubsamples,
|
||||
uniform float image[]) {
|
||||
ao_scanlines(0, h, w, h, nsubsamples, image);
|
||||
}
|
||||
|
||||
|
||||
static void task ao_task(uniform int width, uniform int height,
|
||||
uniform int nsubsamples, uniform float image[]) {
|
||||
ao_scanlines(taskIndex, taskIndex+1, width, height, nsubsamples, image);
|
||||
}
|
||||
|
||||
|
||||
export void ao_ispc_tasks(uniform int w, uniform int h, uniform int nsubsamples,
|
||||
uniform float image[]) {
|
||||
launch[h] ao_task(w, h, nsubsamples, image);
|
||||
|
||||
#define TILEX 64
|
||||
#define TILEY 4
|
||||
|
||||
extern "C"
|
||||
__global__
|
||||
void ao_task( int width, int height,
|
||||
int nsubsamples, float image[])
|
||||
{
|
||||
if (taskIndex0 >= taskCount0) return;
|
||||
if (taskIndex1 >= taskCount1) return;
|
||||
|
||||
const int x0 = taskIndex0 * TILEX;
|
||||
const int x1 = min(x0 + TILEX, width);
|
||||
|
||||
const int y0 = taskIndex1 * TILEY;
|
||||
const int y1 = min(y0 + TILEY, height);
|
||||
ao_tile(x0,x1,y0,y1, width, height, nsubsamples, image);
|
||||
}
|
||||
|
||||
@@ -44,8 +44,10 @@ typedef float<3> vec;
|
||||
#warning "emitting DEVICE code"
|
||||
#define programCount warpSize()
|
||||
#define programIndex laneIndex()
|
||||
#define taskIndex blockIndex0()
|
||||
#define taskCount blockCount0()
|
||||
#define taskIndex0 blockIndex0()
|
||||
#define taskCount0 blockCount0()
|
||||
#define taskIndex1 blockIndex1()
|
||||
#define taskCount1 blockCount1()
|
||||
#else
|
||||
#warning "emitting HOST code"
|
||||
#endif
|
||||
@@ -168,8 +170,8 @@ ambient_occlusion(Isect &isect, uniform Plane &plane, uniform Sphere spheres[3],
|
||||
|
||||
orthoBasis(basis, isect.n);
|
||||
|
||||
static const uniform int ntheta = NAO_SAMPLES;
|
||||
static const uniform int nphi = NAO_SAMPLES;
|
||||
const uniform int ntheta = NAO_SAMPLES;
|
||||
const uniform int nphi = NAO_SAMPLES;
|
||||
for (uniform int j = 0; j < ntheta; j++) {
|
||||
for (uniform int i = 0; i < nphi; i++) {
|
||||
Ray ray;
|
||||
@@ -210,21 +212,31 @@ ambient_occlusion(Isect &isect, uniform Plane &plane, uniform Sphere spheres[3],
|
||||
/* Compute the image for the scanlines from [y0,y1), for an overall image
|
||||
of width w and height h.
|
||||
*/
|
||||
static inline void ao_scanlines(uniform int y0, uniform int y1, uniform int w,
|
||||
uniform int h, uniform int nsubsamples,
|
||||
uniform float image[]) {
|
||||
static uniform Plane plane = { { 0.0f, -0.5f, 0.0f }, { 0.f, 1.f, 0.f } };
|
||||
static uniform Sphere spheres[3] = {
|
||||
static inline void ao_tile(
|
||||
uniform int x0, uniform int x1,
|
||||
uniform int y0, uniform int y1,
|
||||
uniform int w, uniform int h,
|
||||
uniform int nsubsamples,
|
||||
uniform float image[])
|
||||
{
|
||||
uniform Plane plane = { { 0.0f, -0.5f, 0.0f }, { 0.f, 1.f, 0.f } };
|
||||
uniform Sphere spheres[3] = {
|
||||
{ { -2.0f, 0.0f, -3.5f }, 0.5f },
|
||||
{ { -0.5f, 0.0f, -3.0f }, 0.5f },
|
||||
{ { 1.0f, 0.0f, -2.2f }, 0.5f } };
|
||||
RNGState rngstate;
|
||||
|
||||
seed_rng(&rngstate, programIndex + (y0 << (programIndex & 15)));
|
||||
seed_rng(&rngstate, programIndex + (y0 << (programIndex & 31)));
|
||||
float invSamples = 1.f / nsubsamples;
|
||||
for (uniform int y = y0; y < y1; y++)
|
||||
for (uniform int xb = x0; xb < x1; xb += programCount)
|
||||
{
|
||||
const int x = xb + programIndex;
|
||||
const int offset = 3 * (y * w + x);
|
||||
float res = 0.0f;
|
||||
|
||||
foreach_tiled(y = y0 ... y1, x = 0 ... w,
|
||||
u = 0 ... nsubsamples, v = 0 ... nsubsamples)
|
||||
for (uniform int u = 0; u < nsubsamples; u++)
|
||||
for (uniform int v = 0; v < nsubsamples; v++)
|
||||
{
|
||||
float du = (float)u * invSamples, dv = (float)v * invSamples;
|
||||
|
||||
@@ -255,29 +267,44 @@ static inline void ao_scanlines(uniform int y0, uniform int y1, uniform int w,
|
||||
if (isect.hit) {
|
||||
ret = ambient_occlusion(isect, plane, spheres, rngstate);
|
||||
ret *= invSamples * invSamples;
|
||||
|
||||
int offset = 3 * (y * w + x);
|
||||
atomic_add_local(&image[offset], ret);
|
||||
atomic_add_local(&image[offset+1], ret);
|
||||
atomic_add_local(&image[offset+2], ret);
|
||||
res += ret;
|
||||
}
|
||||
}
|
||||
|
||||
if (xb < x1)
|
||||
{
|
||||
image[offset ] = res;
|
||||
image[offset+1] = res;
|
||||
image[offset+2] = res;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
export void ao_ispc(uniform int w, uniform int h, uniform int nsubsamples,
|
||||
uniform float image[]) {
|
||||
ao_scanlines(0, h, w, h, nsubsamples, image);
|
||||
}
|
||||
|
||||
#define TILEX 64
|
||||
#define TILEY 4
|
||||
|
||||
static void task ao_task(uniform int width, uniform int height,
|
||||
uniform int nsubsamples, uniform float image[]) {
|
||||
ao_scanlines(taskIndex, taskIndex+1, width, height, nsubsamples, image);
|
||||
void task ao_task(uniform int width, uniform int height,
|
||||
uniform int nsubsamples, uniform float image[])
|
||||
{
|
||||
if (taskIndex0 >= taskCount0) return;
|
||||
if (taskIndex1 >= taskCount1) return;
|
||||
|
||||
const uniform int x0 = taskIndex0 * TILEX;
|
||||
const uniform int x1 = min(x0 + TILEX, width);
|
||||
|
||||
const uniform int y0 = taskIndex1 * TILEY;
|
||||
const uniform int y1 = min(y0 + TILEY, height);
|
||||
ao_tile(x0,x1,y0,y1, width, height, nsubsamples, image);
|
||||
}
|
||||
|
||||
|
||||
export void ao_ispc_tasks(uniform int w, uniform int h, uniform int nsubsamples,
|
||||
uniform float image[]) {
|
||||
launch[h] ao_task(w, h, nsubsamples, image);
|
||||
uniform float image[])
|
||||
{
|
||||
const uniform int ntilex = (w+TILEX-1)/TILEX;
|
||||
const uniform int ntiley = (h+TILEY-1)/TILEY;
|
||||
launch[ntilex,ntiley] ao_task(w, h, nsubsamples, image);
|
||||
}
|
||||
|
||||
224
examples_cuda/aobench/ao_cu.cpp
Normal file → Executable file
224
examples_cuda/aobench/ao_cu.cpp
Normal file → Executable file
@@ -69,6 +69,211 @@ static inline double rtc(void)
|
||||
return etime;
|
||||
}
|
||||
|
||||
/******************************/
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <cuda.h>
|
||||
#include "drvapi_error_string.h"
|
||||
|
||||
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
|
||||
// These are the inline versions for all of the SDK helper functions
|
||||
void __checkCudaErrors(CUresult err, const char *file, const int line) {
|
||||
if(CUDA_SUCCESS != err) {
|
||||
std::cerr << "checkCudeErrors() Driver API error = " << err << "\""
|
||||
<< getCudaDrvErrorString(err) << "\" from file <" << file
|
||||
<< ", line " << line << "\n";
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
|
||||
/**********************/
|
||||
/* Basic CUDriver API */
|
||||
CUcontext context;
|
||||
|
||||
void createContext(const int deviceId = 0)
|
||||
{
|
||||
CUdevice device;
|
||||
int devCount;
|
||||
checkCudaErrors(cuInit(0));
|
||||
checkCudaErrors(cuDeviceGetCount(&devCount));
|
||||
assert(devCount > 0);
|
||||
checkCudaErrors(cuDeviceGet(&device, deviceId < devCount ? deviceId : 0));
|
||||
|
||||
char name[128];
|
||||
checkCudaErrors(cuDeviceGetName(name, 128, device));
|
||||
std::cout << "Using CUDA Device [0]: " << name << "\n";
|
||||
|
||||
int devMajor, devMinor;
|
||||
checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
|
||||
std::cout << "Device Compute Capability: "
|
||||
<< devMajor << "." << devMinor << "\n";
|
||||
if (devMajor < 2) {
|
||||
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// Create driver context
|
||||
checkCudaErrors(cuCtxCreate(&context, 0, device));
|
||||
}
|
||||
void destroyContext()
|
||||
{
|
||||
checkCudaErrors(cuCtxDestroy(context));
|
||||
}
|
||||
|
||||
CUmodule loadModule(const char * module)
|
||||
{
|
||||
CUmodule cudaModule;
|
||||
// in this branch we use compilation with parameters
|
||||
|
||||
const unsigned int jitNumOptions = 1;
|
||||
CUjit_option *jitOptions = new CUjit_option[jitNumOptions];
|
||||
void **jitOptVals = new void*[jitNumOptions];
|
||||
// set up pointer to set the Maximum # of registers for a particular kernel
|
||||
jitOptions[0] = CU_JIT_MAX_REGISTERS;
|
||||
int jitRegCount = 64;
|
||||
jitOptVals[0] = (void *)(size_t)jitRegCount;
|
||||
#if 0
|
||||
|
||||
// set up size of compilation log buffer
|
||||
jitOptions[0] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
|
||||
int jitLogBufferSize = 1024;
|
||||
jitOptVals[0] = (void *)(size_t)jitLogBufferSize;
|
||||
|
||||
// set up pointer to the compilation log buffer
|
||||
jitOptions[1] = CU_JIT_INFO_LOG_BUFFER;
|
||||
char *jitLogBuffer = new char[jitLogBufferSize];
|
||||
jitOptVals[1] = jitLogBuffer;
|
||||
|
||||
// set up pointer to set the Maximum # of registers for a particular kernel
|
||||
jitOptions[2] = CU_JIT_MAX_REGISTERS;
|
||||
int jitRegCount = 32;
|
||||
jitOptVals[2] = (void *)(size_t)jitRegCount;
|
||||
#endif
|
||||
|
||||
checkCudaErrors(cuModuleLoadDataEx(&cudaModule, module,jitNumOptions, jitOptions, (void **)jitOptVals));
|
||||
return cudaModule;
|
||||
}
|
||||
void unloadModule(CUmodule &cudaModule)
|
||||
{
|
||||
checkCudaErrors(cuModuleUnload(cudaModule));
|
||||
}
|
||||
|
||||
CUfunction getFunction(CUmodule &cudaModule, const char * function)
|
||||
{
|
||||
CUfunction cudaFunction;
|
||||
checkCudaErrors(cuModuleGetFunction(&cudaFunction, cudaModule, function));
|
||||
return cudaFunction;
|
||||
}
|
||||
|
||||
CUdeviceptr deviceMalloc(const size_t size)
|
||||
{
|
||||
CUdeviceptr d_buf;
|
||||
checkCudaErrors(cuMemAlloc(&d_buf, size));
|
||||
return d_buf;
|
||||
}
|
||||
void deviceFree(CUdeviceptr d_buf)
|
||||
{
|
||||
checkCudaErrors(cuMemFree(d_buf));
|
||||
}
|
||||
void memcpyD2H(void * h_buf, CUdeviceptr d_buf, const size_t size)
|
||||
{
|
||||
checkCudaErrors(cuMemcpyDtoH(h_buf, d_buf, size));
|
||||
}
|
||||
void memcpyH2D(CUdeviceptr d_buf, void * h_buf, const size_t size)
|
||||
{
|
||||
checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size));
|
||||
}
|
||||
#define deviceLaunch(func,nbx,nby,nbz,params) \
|
||||
checkCudaErrors(cuFuncSetCacheConfig((func), CU_FUNC_CACHE_PREFER_EQUAL)); \
|
||||
checkCudaErrors( \
|
||||
cuLaunchKernel( \
|
||||
(func), \
|
||||
((nbx-1)/(128/32)+1), (nby), (nbz), \
|
||||
128, 1, 1, \
|
||||
0, NULL, (params), NULL \
|
||||
));
|
||||
|
||||
typedef CUdeviceptr devicePtr;
|
||||
|
||||
|
||||
/**************/
|
||||
#include <vector>
|
||||
std::vector<char> readBinary(const char * filename)
|
||||
{
|
||||
std::vector<char> buffer;
|
||||
FILE *fp = fopen(filename, "rb");
|
||||
if (!fp )
|
||||
{
|
||||
fprintf(stderr, "file %s not found\n", filename);
|
||||
assert(0);
|
||||
}
|
||||
#if 0
|
||||
char c;
|
||||
while ((c = fgetc(fp)) != EOF)
|
||||
buffer.push_back(c);
|
||||
#else
|
||||
fseek(fp, 0, SEEK_END);
|
||||
const unsigned long long size = ftell(fp); /*calc the size needed*/
|
||||
fseek(fp, 0, SEEK_SET);
|
||||
buffer.resize(size);
|
||||
|
||||
if (fp == NULL){ /*ERROR detection if file == empty*/
|
||||
fprintf(stderr, "Error: There was an Error reading the file %s \n",filename);
|
||||
exit(1);
|
||||
}
|
||||
else if (fread(&buffer[0], sizeof(char), size, fp) != size){ /* if count of read bytes != calculated size of .bin file -> ERROR*/
|
||||
fprintf(stderr, "Error: There was an Error reading the file %s \n", filename);
|
||||
exit(1);
|
||||
}
|
||||
#endif
|
||||
fprintf(stderr, " read buffer of size= %d bytes \n", (int)buffer.size());
|
||||
return buffer;
|
||||
}
|
||||
|
||||
extern "C"
|
||||
{
|
||||
|
||||
void *CUDAAlloc(void **handlePtr, int64_t size, int32_t alignment)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
void CUDALaunch(
|
||||
void **handlePtr,
|
||||
const char * module_name,
|
||||
const char * module_1,
|
||||
const char * func_name,
|
||||
void **func_args,
|
||||
int countx, int county, int countz)
|
||||
{
|
||||
assert(module_name != NULL);
|
||||
assert(module_1 != NULL);
|
||||
assert(func_name != NULL);
|
||||
assert(func_args != NULL);
|
||||
#if 0
|
||||
const char * module = module_1;
|
||||
#else
|
||||
const std::vector<char> module_str = readBinary("kernel.cubin");
|
||||
const char * module = &module_str[0];
|
||||
#endif
|
||||
CUmodule cudaModule = loadModule(module);
|
||||
CUfunction cudaFunction = getFunction(cudaModule, func_name);
|
||||
deviceLaunch(cudaFunction, countx, county, countz, func_args);
|
||||
unloadModule(cudaModule);
|
||||
}
|
||||
void CUDASync(void *handle)
|
||||
{
|
||||
checkCudaErrors(cuStreamSynchronize(0));
|
||||
}
|
||||
void ISPCSync(void *handle)
|
||||
{
|
||||
checkCudaErrors(cuStreamSynchronize(0));
|
||||
}
|
||||
void CUDAFree(void *handle)
|
||||
{
|
||||
}
|
||||
}
|
||||
/******************************/
|
||||
|
||||
|
||||
#define NSUBSAMPLES 2
|
||||
|
||||
@@ -158,6 +363,11 @@ int main(int argc, char **argv)
|
||||
savePPM("ao-ispc.ppm", width, height);
|
||||
#endif
|
||||
|
||||
/*******************/
|
||||
createContext();
|
||||
/*******************/
|
||||
devicePtr d_fimg = deviceMalloc(width*height*3*sizeof(float));
|
||||
|
||||
//
|
||||
// Run the ispc + tasks path, test_iterations times, and report the
|
||||
// minimum time for any of them.
|
||||
@@ -166,18 +376,28 @@ int main(int argc, char **argv)
|
||||
for (unsigned int i = 0; i < test_iterations; i++) {
|
||||
memset((void *)fimg, 0, sizeof(float) * width * height * 3);
|
||||
assert(NSUBSAMPLES == 2);
|
||||
memcpyH2D(d_fimg, fimg, width*height*3*sizeof(float));
|
||||
|
||||
reset_and_start_timer();
|
||||
const double t0 = rtc();
|
||||
ao_ispc_tasks(width, height, NSUBSAMPLES, fimg);
|
||||
ao_ispc_tasks(
|
||||
width,
|
||||
height,
|
||||
NSUBSAMPLES,
|
||||
(float*)d_fimg);
|
||||
double t = (rtc() - t0); //get_elapsed_mcycles();
|
||||
minTimeISPCTasks = std::min(minTimeISPCTasks, t);
|
||||
}
|
||||
|
||||
memcpyD2H(fimg, d_fimg, width*height*3*sizeof(float));
|
||||
|
||||
// Report results and save image
|
||||
printf("[aobench ispc + tasks]:\t\t[%.3f] million cycles (%d x %d image)\n",
|
||||
minTimeISPCTasks, width, height);
|
||||
savePPM("ao-ispc-tasks.ppm", width, height);
|
||||
savePPM("ao-cuda.ppm", width, height);
|
||||
/*******************/
|
||||
destroyContext();
|
||||
/*******************/
|
||||
return 0;
|
||||
|
||||
//
|
||||
|
||||
370
examples_cuda/aobench/drvapi_error_string.h
Normal file
370
examples_cuda/aobench/drvapi_error_string.h
Normal file
@@ -0,0 +1,370 @@
|
||||
/*
|
||||
* Copyright 1993-2012 NVIDIA Corporation. All rights reserved.
|
||||
*
|
||||
* Please refer to the NVIDIA end user license agreement (EULA) associated
|
||||
* with this source code for terms and conditions that govern your use of
|
||||
* this software. Any use, reproduction, disclosure, or distribution of
|
||||
* this software and related documentation outside the terms of the EULA
|
||||
* is strictly prohibited.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef _DRVAPI_ERROR_STRING_H_
|
||||
#define _DRVAPI_ERROR_STRING_H_
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
// Error Code string definitions here
|
||||
typedef struct
|
||||
{
|
||||
char const *error_string;
|
||||
int error_id;
|
||||
} s_CudaErrorStr;
|
||||
|
||||
/**
|
||||
* Error codes
|
||||
*/
|
||||
static s_CudaErrorStr sCudaDrvErrorString[] =
|
||||
{
|
||||
/**
|
||||
* The API call returned with no errors. In the case of query calls, this
|
||||
* can also mean that the operation being queried is complete (see
|
||||
* ::cuEventQuery() and ::cuStreamQuery()).
|
||||
*/
|
||||
{ "CUDA_SUCCESS", 0 },
|
||||
|
||||
/**
|
||||
* This indicates that one or more of the parameters passed to the API call
|
||||
* is not within an acceptable range of values.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_VALUE", 1 },
|
||||
|
||||
/**
|
||||
* The API call failed because it was unable to allocate enough memory to
|
||||
* perform the requested operation.
|
||||
*/
|
||||
{ "CUDA_ERROR_OUT_OF_MEMORY", 2 },
|
||||
|
||||
/**
|
||||
* This indicates that the CUDA driver has not been initialized with
|
||||
* ::cuInit() or that initialization has failed.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_INITIALIZED", 3 },
|
||||
|
||||
/**
|
||||
* This indicates that the CUDA driver is in the process of shutting down.
|
||||
*/
|
||||
{ "CUDA_ERROR_DEINITIALIZED", 4 },
|
||||
|
||||
/**
|
||||
* This indicates profiling APIs are called while application is running
|
||||
* in visual profiler mode.
|
||||
*/
|
||||
{ "CUDA_ERROR_PROFILER_DISABLED", 5 },
|
||||
/**
|
||||
* This indicates profiling has not been initialized for this context.
|
||||
* Call cuProfilerInitialize() to resolve this.
|
||||
*/
|
||||
{ "CUDA_ERROR_PROFILER_NOT_INITIALIZED", 6 },
|
||||
/**
|
||||
* This indicates profiler has already been started and probably
|
||||
* cuProfilerStart() is incorrectly called.
|
||||
*/
|
||||
{ "CUDA_ERROR_PROFILER_ALREADY_STARTED", 7 },
|
||||
/**
|
||||
* This indicates profiler has already been stopped and probably
|
||||
* cuProfilerStop() is incorrectly called.
|
||||
*/
|
||||
{ "CUDA_ERROR_PROFILER_ALREADY_STOPPED", 8 },
|
||||
/**
|
||||
* This indicates that no CUDA-capable devices were detected by the installed
|
||||
* CUDA driver.
|
||||
*/
|
||||
{ "CUDA_ERROR_NO_DEVICE (no CUDA-capable devices were detected)", 100 },
|
||||
|
||||
/**
|
||||
* This indicates that the device ordinal supplied by the user does not
|
||||
* correspond to a valid CUDA device.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_DEVICE (device specified is not a valid CUDA device)", 101 },
|
||||
|
||||
|
||||
/**
|
||||
* This indicates that the device kernel image is invalid. This can also
|
||||
* indicate an invalid CUDA module.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_IMAGE", 200 },
|
||||
|
||||
/**
|
||||
* This most frequently indicates that there is no context bound to the
|
||||
* current thread. This can also be returned if the context passed to an
|
||||
* API call is not a valid handle (such as a context that has had
|
||||
* ::cuCtxDestroy() invoked on it). This can also be returned if a user
|
||||
* mixes different API versions (i.e. 3010 context with 3020 API calls).
|
||||
* See ::cuCtxGetApiVersion() for more details.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_CONTEXT", 201 },
|
||||
|
||||
/**
|
||||
* This indicated that the context being supplied as a parameter to the
|
||||
* API call was already the active context.
|
||||
* \deprecated
|
||||
* This error return is deprecated as of CUDA 3.2. It is no longer an
|
||||
* error to attempt to push the active context via ::cuCtxPushCurrent().
|
||||
*/
|
||||
{ "CUDA_ERROR_CONTEXT_ALREADY_CURRENT", 202 },
|
||||
|
||||
/**
|
||||
* This indicates that a map or register operation has failed.
|
||||
*/
|
||||
{ "CUDA_ERROR_MAP_FAILED", 205 },
|
||||
|
||||
/**
|
||||
* This indicates that an unmap or unregister operation has failed.
|
||||
*/
|
||||
{ "CUDA_ERROR_UNMAP_FAILED", 206 },
|
||||
|
||||
/**
|
||||
* This indicates that the specified array is currently mapped and thus
|
||||
* cannot be destroyed.
|
||||
*/
|
||||
{ "CUDA_ERROR_ARRAY_IS_MAPPED", 207 },
|
||||
|
||||
/**
|
||||
* This indicates that the resource is already mapped.
|
||||
*/
|
||||
{ "CUDA_ERROR_ALREADY_MAPPED", 208 },
|
||||
|
||||
/**
|
||||
* This indicates that there is no kernel image available that is suitable
|
||||
* for the device. This can occur when a user specifies code generation
|
||||
* options for a particular CUDA source file that do not include the
|
||||
* corresponding device configuration.
|
||||
*/
|
||||
{ "CUDA_ERROR_NO_BINARY_FOR_GPU", 209 },
|
||||
|
||||
/**
|
||||
* This indicates that a resource has already been acquired.
|
||||
*/
|
||||
{ "CUDA_ERROR_ALREADY_ACQUIRED", 210 },
|
||||
|
||||
/**
|
||||
* This indicates that a resource is not mapped.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_MAPPED", 211 },
|
||||
|
||||
/**
|
||||
* This indicates that a mapped resource is not available for access as an
|
||||
* array.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_MAPPED_AS_ARRAY", 212 },
|
||||
|
||||
/**
|
||||
* This indicates that a mapped resource is not available for access as a
|
||||
* pointer.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_MAPPED_AS_POINTER", 213 },
|
||||
|
||||
/**
|
||||
* This indicates that an uncorrectable ECC error was detected during
|
||||
* execution.
|
||||
*/
|
||||
{ "CUDA_ERROR_ECC_UNCORRECTABLE", 214 },
|
||||
|
||||
/**
|
||||
* This indicates that the ::CUlimit passed to the API call is not
|
||||
* supported by the active device.
|
||||
*/
|
||||
{ "CUDA_ERROR_UNSUPPORTED_LIMIT", 215 },
|
||||
|
||||
/**
|
||||
* This indicates that the ::CUcontext passed to the API call can
|
||||
* only be bound to a single CPU thread at a time but is already
|
||||
* bound to a CPU thread.
|
||||
*/
|
||||
{ "CUDA_ERROR_CONTEXT_ALREADY_IN_USE", 216 },
|
||||
|
||||
/**
|
||||
* This indicates that peer access is not supported across the given
|
||||
* devices.
|
||||
*/
|
||||
{ "CUDA_ERROR_PEER_ACCESS_UNSUPPORTED", 217},
|
||||
|
||||
/**
|
||||
* This indicates that the device kernel source is invalid.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_SOURCE", 300 },
|
||||
|
||||
/**
|
||||
* This indicates that the file specified was not found.
|
||||
*/
|
||||
{ "CUDA_ERROR_FILE_NOT_FOUND", 301 },
|
||||
|
||||
/**
|
||||
* This indicates that a link to a shared object failed to resolve.
|
||||
*/
|
||||
{ "CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND", 302 },
|
||||
|
||||
/**
|
||||
* This indicates that initialization of a shared object failed.
|
||||
*/
|
||||
{ "CUDA_ERROR_SHARED_OBJECT_INIT_FAILED", 303 },
|
||||
|
||||
/**
|
||||
* This indicates that an OS call failed.
|
||||
*/
|
||||
{ "CUDA_ERROR_OPERATING_SYSTEM", 304 },
|
||||
|
||||
|
||||
/**
|
||||
* This indicates that a resource handle passed to the API call was not
|
||||
* valid. Resource handles are opaque types like ::CUstream and ::CUevent.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_HANDLE", 400 },
|
||||
|
||||
|
||||
/**
|
||||
* This indicates that a named symbol was not found. Examples of symbols
|
||||
* are global/constant variable names, texture names }, and surface names.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_FOUND", 500 },
|
||||
|
||||
|
||||
/**
|
||||
* This indicates that asynchronous operations issued previously have not
|
||||
* completed yet. This result is not actually an error, but must be indicated
|
||||
* differently than ::CUDA_SUCCESS (which indicates completion). Calls that
|
||||
* may return this value include ::cuEventQuery() and ::cuStreamQuery().
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_READY", 600 },
|
||||
|
||||
|
||||
/**
|
||||
* An exception occurred on the device while executing a kernel. Common
|
||||
* causes include dereferencing an invalid device pointer and accessing
|
||||
* out of bounds shared memory. The context cannot be used }, so it must
|
||||
* be destroyed (and a new one should be created). All existing device
|
||||
* memory allocations from this context are invalid and must be
|
||||
* reconstructed if the program is to continue using CUDA.
|
||||
*/
|
||||
{ "CUDA_ERROR_LAUNCH_FAILED", 700 },
|
||||
|
||||
/**
|
||||
* This indicates that a launch did not occur because it did not have
|
||||
* appropriate resources. This error usually indicates that the user has
|
||||
* attempted to pass too many arguments to the device kernel, or the
|
||||
* kernel launch specifies too many threads for the kernel's register
|
||||
* count. Passing arguments of the wrong size (i.e. a 64-bit pointer
|
||||
* when a 32-bit int is expected) is equivalent to passing too many
|
||||
* arguments and can also result in this error.
|
||||
*/
|
||||
{ "CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES", 701 },
|
||||
|
||||
/**
|
||||
* This indicates that the device kernel took too long to execute. This can
|
||||
* only occur if timeouts are enabled - see the device attribute
|
||||
* ::CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT for more information. The
|
||||
* context cannot be used (and must be destroyed similar to
|
||||
* ::CUDA_ERROR_LAUNCH_FAILED). All existing device memory allocations from
|
||||
* this context are invalid and must be reconstructed if the program is to
|
||||
* continue using CUDA.
|
||||
*/
|
||||
{ "CUDA_ERROR_LAUNCH_TIMEOUT", 702 },
|
||||
|
||||
/**
|
||||
* This error indicates a kernel launch that uses an incompatible texturing
|
||||
* mode.
|
||||
*/
|
||||
{ "CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING", 703 },
|
||||
|
||||
/**
|
||||
* This error indicates that a call to ::cuCtxEnablePeerAccess() is
|
||||
* trying to re-enable peer access to a context which has already
|
||||
* had peer access to it enabled.
|
||||
*/
|
||||
{ "CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED", 704 },
|
||||
|
||||
/**
|
||||
* This error indicates that ::cuCtxDisablePeerAccess() is
|
||||
* trying to disable peer access which has not been enabled yet
|
||||
* via ::cuCtxEnablePeerAccess().
|
||||
*/
|
||||
{ "CUDA_ERROR_PEER_ACCESS_NOT_ENABLED", 705 },
|
||||
|
||||
/**
|
||||
* This error indicates that the primary context for the specified device
|
||||
* has already been initialized.
|
||||
*/
|
||||
{ "CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE", 708 },
|
||||
|
||||
/**
|
||||
* This error indicates that the context current to the calling thread
|
||||
* has been destroyed using ::cuCtxDestroy }, or is a primary context which
|
||||
* has not yet been initialized.
|
||||
*/
|
||||
{ "CUDA_ERROR_CONTEXT_IS_DESTROYED", 709 },
|
||||
|
||||
/**
|
||||
* A device-side assert triggered during kernel execution. The context
|
||||
* cannot be used anymore, and must be destroyed. All existing device
|
||||
* memory allocations from this context are invalid and must be
|
||||
* reconstructed if the program is to continue using CUDA.
|
||||
*/
|
||||
{ "CUDA_ERROR_ASSERT", 710 },
|
||||
|
||||
/**
|
||||
* This error indicates that the hardware resources required to enable
|
||||
* peer access have been exhausted for one or more of the devices
|
||||
* passed to ::cuCtxEnablePeerAccess().
|
||||
*/
|
||||
{ "CUDA_ERROR_TOO_MANY_PEERS", 711 },
|
||||
|
||||
/**
|
||||
* This error indicates that the memory range passed to ::cuMemHostRegister()
|
||||
* has already been registered.
|
||||
*/
|
||||
{ "CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED", 712 },
|
||||
|
||||
/**
|
||||
* This error indicates that the pointer passed to ::cuMemHostUnregister()
|
||||
* does not correspond to any currently registered memory region.
|
||||
*/
|
||||
{ "CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED", 713 },
|
||||
|
||||
/**
|
||||
* This error indicates that the attempted operation is not permitted.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_PERMITTED", 800 },
|
||||
|
||||
/**
|
||||
* This error indicates that the attempted operation is not supported
|
||||
* on the current system or device.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_SUPPORTED", 801 },
|
||||
|
||||
/**
|
||||
* This indicates that an unknown internal error has occurred.
|
||||
*/
|
||||
{ "CUDA_ERROR_UNKNOWN", 999 },
|
||||
{ NULL, -1 }
|
||||
};
|
||||
|
||||
// This is just a linear search through the array, since the error_id's are not
|
||||
// always ocurring consecutively
|
||||
const char * getCudaDrvErrorString(CUresult error_id)
|
||||
{
|
||||
int index = 0;
|
||||
while (sCudaDrvErrorString[index].error_id != error_id &&
|
||||
sCudaDrvErrorString[index].error_id != -1)
|
||||
{
|
||||
index++;
|
||||
}
|
||||
if (sCudaDrvErrorString[index].error_id == error_id)
|
||||
return (const char *)sCudaDrvErrorString[index].error_string;
|
||||
else
|
||||
return (const char *)"CUDA_ERROR not found!";
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -71,7 +71,8 @@ static inline double rtc(void)
|
||||
1.e-6*((double) Tvalue.tv_usec);
|
||||
return etime;
|
||||
}
|
||||
/******************************/ #include <cassert>
|
||||
/******************************/
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <cuda.h>
|
||||
#include "drvapi_error_string.h"
|
||||
|
||||
Reference in New Issue
Block a user