Files
ispc/examples_cuda/aobench/ao.cu
2013-11-10 16:02:10 +01:00

363 lines
8.7 KiB
Plaintext

// -*- mode: c++ -*-
/*
Copyright (c) 2010-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
Based on Syoyo Fujita's aobench: http://code.google.com/p/aobench
*/
#define NAO_SAMPLES 8
//#define M_PI 3.1415926535f
#define vec Float3
struct Float3
{
float x,y,z;
__device__ friend Float3 operator+(const Float3 a, const Float3 b)
{
Float3 c;
c.x = a.x+b.x;
c.y = a.y+b.y;
c.z = a.z+b.z;
return c;
}
__device__ friend Float3 operator-(const Float3 a, const Float3 b)
{
Float3 c;
c.x = a.x-b.x;
c.y = a.y-b.y;
c.z = a.z-b.z;
return c;
}
__device__ friend Float3 operator/(const Float3 a, const Float3 b)
{
Float3 c;
c.x = a.x/b.x;
c.y = a.y/b.y;
c.z = a.z/b.z;
return c;
}
__device__ friend Float3 operator/(const float a, const Float3 b)
{
Float3 c;
c.x = a/b.x;
c.y = a/b.y;
c.z = a/b.z;
return c;
}
__device__ friend Float3 operator*(const Float3 a, const Float3 b)
{
Float3 c;
c.x = a.x*b.x;
c.y = a.y*b.y;
c.z = a.z*b.z;
return c;
}
__device__ friend Float3 operator*(const Float3 a, const float b)
{
Float3 c;
c.x = a.x*b;
c.y = a.y*b;
c.z = a.z*b;
return c;
}
};
#define programCount 32
#define programIndex (threadIdx.x & 31)
#define taskIndex0 (blockIdx.x*4 + (threadIdx.x >> 5))
#define taskCount0 (gridDim.x*4)
#define taskIndex1 (blockIdx.y)
#define taskCount1 (gridDim.y)
#define warpIdx (threadIdx.x >> 5)
struct Isect {
float t;
vec p;
vec n;
int hit;
};
struct Sphere {
vec center;
float radius;
};
struct Plane {
vec p;
vec n;
};
struct Ray {
vec org;
vec dir;
};
__device__
static inline float dot(vec a, vec b) {
return a.x * b.x + a.y * b.y + a.z * b.z;
}
__device__
static inline vec vcross(vec v0, vec v1) {
vec ret;
ret.x = v0.y * v1.z - v0.z * v1.y;
ret.y = v0.z * v1.x - v0.x * v1.z;
ret.z = v0.x * v1.y - v0.y * v1.x;
return ret;
}
__device__
static inline void vnormalize(vec &v) {
float len2 = dot(v, v);
float invlen = rsqrt(len2);
v = v*invlen;
}
__device__
static inline void
ray_plane_intersect(Isect &isect,const Ray &ray, const Plane &plane) {
float d = -dot(plane.p, plane.n);
float v = dot(ray.dir, plane.n);
if (abs(v) < 1.0e-17)
return;
else {
float t = -(dot(ray.org, plane.n) + d) / v;
if ((t > 0.0) && (t < isect.t)) {
isect.t = t;
isect.hit = 1;
isect.p = ray.org + ray.dir * t;
isect.n = plane.n;
}
}
}
__device__
static inline void
ray_sphere_intersect(Isect &isect,const Ray &ray, const Sphere &sphere) {
vec rs = ray.org - sphere.center;
float B = dot(rs, ray.dir);
float C = dot(rs, rs) - sphere.radius * sphere.radius;
float D = B * B - C;
if (D > 0.) {
float t = -B - sqrt(D);
if ((t > 0.0) && (t < isect.t)) {
isect.t = t;
isect.hit = 1;
isect.p = ray.org + ray.dir * t;
isect.n = isect.p - sphere.center;
vnormalize(isect.n);
}
}
}
__device__
static inline void
orthoBasis(vec basis[3], vec n) {
basis[2] = n;
basis[1].x = 0.0; basis[1].y = 0.0; basis[1].z = 0.0;
if ((n.x < 0.6) && (n.x > -0.6)) {
basis[1].x = 1.0;
} else if ((n.y < 0.6) && (n.y > -0.6)) {
basis[1].y = 1.0;
} else if ((n.z < 0.6) && (n.z > -0.6)) {
basis[1].z = 1.0;
} else {
basis[1].x = 1.0;
}
basis[0] = vcross(basis[1], basis[2]);
vnormalize(basis[0]);
basis[1] = vcross(basis[2], basis[0]);
vnormalize(basis[1]);
}
__device__
static inline float
ambient_occlusion(Isect &isect, const Plane &plane, const Sphere spheres[3],
RNGState &rngstate) {
float eps = 0.0001f;
vec p; //, n;
vec basis[3];
float occlusion = 0.0;
p = isect.p + isect.n * eps;
orthoBasis(basis, isect.n);
const int ntheta = NAO_SAMPLES;
const int nphi = NAO_SAMPLES;
for ( int j = 0; j < ntheta; j++) {
for ( int i = 0; i < nphi; i++) {
Ray ray;
Isect occIsect;
float theta = sqrt(frandom(&rngstate));
float phi = 2.0f * M_PI * frandom(&rngstate);
float x = cos(phi) * theta;
float y = sin(phi) * theta;
float z = sqrt(1.0 - theta * theta);
// local . global
float rx = x * basis[0].x + y * basis[1].x + z * basis[2].x;
float ry = x * basis[0].y + y * basis[1].y + z * basis[2].y;
float rz = x * basis[0].z + y * basis[1].z + z * basis[2].z;
ray.org = p;
ray.dir.x = rx;
ray.dir.y = ry;
ray.dir.z = rz;
occIsect.t = 1.0e+17;
occIsect.hit = 0;
for ( int snum = 0; snum < 3; ++snum)
ray_sphere_intersect(occIsect, ray, spheres[snum]);
ray_plane_intersect (occIsect, ray, plane);
if (occIsect.hit) occlusion += 1.0;
}
}
occlusion = (ntheta * nphi - occlusion) / (float)(ntheta * nphi);
return occlusion;
}
/* Compute the image for the scanlines from [y0,y1), for an overall image
of width w and height h.
*/
__device__
static inline void ao_tile(
int x0, int x1,
int y0, int y1,
int w, int h,
int nsubsamples,
float image[])
{
const Plane plane = { { 0.0f, -0.5f, 0.0f }, { 0.f, 1.f, 0.f } };
const Sphere spheres[3] = {
{ { -2.0f, 0.0f, -3.5f }, 0.5f },
{ { -0.5f, 0.0f, -3.0f }, 0.5f },
{ { 1.0f, 0.0f, -2.2f }, 0.5f } };
RNGState rngstate;
seed_rng(&rngstate, programIndex + (y0 << (programIndex & 31)));
float invSamples = 1.f / nsubsamples;
for ( int y = y0; y < y1; y++)
for ( int xb = x0; xb < x1; xb += programCount)
{
const int x = xb + programIndex;
const int offset = 3 * (y * w + x);
float res = 0.0f;
for ( int u = 0; u < nsubsamples; u++)
for ( int v = 0; v < nsubsamples; v++)
{
float du = (float)u * invSamples, dv = (float)v * invSamples;
// Figure out x,y pixel in NDC
float px = (x + du - (w / 2.0f)) / (w / 2.0f);
float py = -(y + dv - (h / 2.0f)) / (h / 2.0f);
float ret = 0.f;
Ray ray;
Isect isect;
ray.org.x = 0.0f;
ray.org.y = 0.0f;
ray.org.z = 0.0f;
// Poor man's perspective projection
ray.dir.x = px;
ray.dir.y = py;
ray.dir.z = -1.0;
vnormalize(ray.dir);
isect.t = 1.0e+17;
isect.hit = 0;
for ( int snum = 0; snum < 3; ++snum)
ray_sphere_intersect(isect, ray, spheres[snum]);
ray_plane_intersect(isect, ray, plane);
// Note use of 'coherent' if statement; the set of rays we
// trace will often all hit or all miss the scene
if (isect.hit) {
ret = ambient_occlusion(isect, plane, spheres, rngstate);
ret *= invSamples * invSamples;
res += ret;
}
}
if (xb < x1)
{
image[offset ] = res;
image[offset+1] = res;
image[offset+2] = res;
}
}
}
#define TILEX 64
#define TILEY 4
extern "C"
__global__
void ao_task( int width, int height,
int nsubsamples, float image[])
{
if (taskIndex0 >= taskCount0) return;
if (taskIndex1 >= taskCount1) return;
const int x0 = taskIndex0 * TILEX;
const int x1 = min(x0 + TILEX, width);
const int y0 = taskIndex1 * TILEY;
const int y1 = min(y0 + TILEY, height);
ao_tile(x0,x1,y0,y1, width, height, nsubsamples, image);
}