Merge pull request #467 from dbabokin/broadcast

Broadcast implementation as InsertElement+Shuffle and related improvements
This commit is contained in:
jbrodman
2013-04-11 13:42:56 -07:00
8 changed files with 301 additions and 125 deletions

View File

@@ -4395,16 +4395,21 @@ public:
static char ID;
llvm::Module *module;
int vectorWidth;
unsigned int vectorWidth;
private:
unsigned int ChainLength(llvm::InsertElementInst *inst) const;
llvm::Value *getInsertChainSmearValue(llvm::Instruction* inst) const;
llvm::Value *getShuffleSmearValue(llvm::Instruction* inst) const;
};
char SmearCleanupPass::ID = 0;
static int
lChainLength(llvm::InsertElementInst *inst) {
int length = 0;
unsigned int
SmearCleanupPass::ChainLength(llvm::InsertElementInst *inst) const {
unsigned int length = 0;
while (inst != NULL) {
++length;
inst = llvm::dyn_cast<llvm::InsertElementInst>(inst->getOperand(0));
@@ -4413,45 +4418,105 @@ lChainLength(llvm::InsertElementInst *inst) {
}
llvm::Value *
SmearCleanupPass::getInsertChainSmearValue(llvm::Instruction* inst) const {
// TODO: we don't check indexes where we do insertion, so we may trigger
// transformation for a wrong chain.
// This way of doing broadcast is obsolete and should be probably removed
// some day.
llvm::InsertElementInst *insertInst =
llvm::dyn_cast<llvm::InsertElementInst>(inst);
if (!insertInst) {
return NULL;
}
// We consider only chians of vectorWidth length.
if (ChainLength(insertInst) != vectorWidth) {
return NULL;
}
// FIXME: we only want to do this to vectors with width equal to
// the target vector width. But we can't easily get that here, so
// for now we at least avoid one case where we definitely don't
// want to do this.
llvm::VectorType *vt = llvm::dyn_cast<llvm::VectorType>(insertInst->getType());
if (vt->getNumElements() == 1) {
return NULL;
}
llvm::Value *smearValue = NULL;
while (insertInst != NULL) {
// operand 1 is inserted value
llvm::Value *insertValue = insertInst->getOperand(1);
if (smearValue == NULL) {
smearValue = insertValue;
}
else if (smearValue != insertValue) {
return NULL;
}
// operand 0 is a vector to insert into.
insertInst =
llvm::dyn_cast<llvm::InsertElementInst>(insertInst->getOperand(0));
}
assert(smearValue != NULL);
return smearValue;
}
llvm::Value *
SmearCleanupPass::getShuffleSmearValue(llvm::Instruction* inst) const {
llvm::ShuffleVectorInst *shuffleInst =
llvm::dyn_cast<llvm::ShuffleVectorInst>(inst);
if (!shuffleInst) {
return NULL;
}
llvm::Constant* mask =
llvm::dyn_cast<llvm::Constant>(shuffleInst->getOperand(2));
// Check that the shuffle is a broadcast of the first element of the first vector,
// i.e. mask vector is all-zeros vector of expected size.
if (!(mask &&
mask->isNullValue() &&
llvm::dyn_cast<llvm::VectorType>(mask->getType())->getNumElements() == vectorWidth)) {
return NULL;
}
llvm::InsertElementInst *insertInst =
llvm::dyn_cast<llvm::InsertElementInst>(shuffleInst->getOperand(0));
// Check that it's an InsertElementInst that inserts a value to first element.
if (!(insertInst &&
llvm::isa<llvm::Constant>(insertInst->getOperand(2)) &&
llvm::dyn_cast<llvm::Constant>(insertInst->getOperand(2))->isNullValue())) {
return NULL;
}
llvm::Value *result = insertInst->getOperand(1);
return result;
}
bool
SmearCleanupPass::runOnBasicBlock(llvm::BasicBlock &bb) {
bool modifiedAny = false;
restart:
for (llvm::BasicBlock::iterator iter = bb.begin(), e = bb.end(); iter != e; ++iter) {
llvm::InsertElementInst *insertInst =
llvm::dyn_cast<llvm::InsertElementInst>(&*iter);
if (insertInst == NULL)
llvm::Value *smearValue = NULL;
if (!(smearValue = getInsertChainSmearValue(iter)) &&
!(smearValue = getShuffleSmearValue(iter))) {
continue;
// Only do this on the last insert in a chain...
if (lChainLength(insertInst) != vectorWidth)
continue;
// FIXME: we only want to do this to vectors with width equal to
// the target vector width. But we can't easily get that here, so
// for now we at least avoid one case where we definitely don't
// want to do this.
llvm::VectorType *vt = llvm::dyn_cast<llvm::VectorType>(insertInst->getType());
if (vt->getNumElements() == 1)
continue;
llvm::Value *toMatch = NULL;
while (insertInst != NULL) {
llvm::Value *insertValue = insertInst->getOperand(1);
if (toMatch == NULL)
toMatch = insertValue;
else if (toMatch != insertValue)
goto not_equal;
insertInst =
llvm::dyn_cast<llvm::InsertElementInst>(insertInst->getOperand(0));
}
assert(toMatch != NULL);
{
llvm::Type *matchType = toMatch->getType();
const char *smearFuncName = lGetTypedFunc("smear", matchType, vectorWidth);
llvm::Type *smearType = smearValue->getType();
const char *smearFuncName = lGetTypedFunc("smear", smearType, vectorWidth);
if (smearFuncName != NULL) {
llvm::Function *smearFunc = module->getFunction(smearFuncName);
if (smearFunc == NULL) {
@@ -4460,7 +4525,7 @@ SmearCleanupPass::runOnBasicBlock(llvm::BasicBlock &bb) {
// parameter type.
llvm::Constant *sf =
module->getOrInsertFunction(smearFuncName, iter->getType(),
matchType, NULL);
smearType, NULL);
smearFunc = llvm::dyn_cast<llvm::Function>(sf);
assert(smearFunc != NULL);
#if defined(LLVM_3_1)
@@ -4473,10 +4538,10 @@ SmearCleanupPass::runOnBasicBlock(llvm::BasicBlock &bb) {
}
assert(smearFunc != NULL);
llvm::Value *args[1] = { toMatch };
llvm::Value *args[1] = { smearValue };
llvm::ArrayRef<llvm::Value *> argArray(&args[0], &args[1]);
llvm::Instruction *smearCall =
llvm::CallInst::Create(smearFunc, argArray, LLVMGetName(toMatch, "_smear"),
llvm::CallInst::Create(smearFunc, argArray, LLVMGetName(smearValue, "_smear"),
(llvm::Instruction *)NULL);
ReplaceInstWithInst(iter, smearCall);
@@ -4484,9 +4549,6 @@ SmearCleanupPass::runOnBasicBlock(llvm::BasicBlock &bb) {
modifiedAny = true;
goto restart;
}
}
not_equal:
;
}
return modifiedAny;

105
ctx.cpp
View File

@@ -1379,6 +1379,19 @@ FunctionEmitContext::MasksAllEqual(llvm::Value *v1, llvm::Value *v2) {
#endif
}
llvm::Value *
FunctionEmitContext::ProgramIndexVector(bool is32bits) {
llvm::SmallVector<llvm::Constant*, 16> array;
for (int i = 0; i < g->target->getVectorWidth() ; ++i) {
llvm::Constant *C = is32bits ? LLVMInt32(i) : LLVMInt64(i);
array.push_back(C);
}
llvm::Constant* index = llvm::ConstantVector::get(array);
return index;
}
llvm::Value *
FunctionEmitContext::GetStringPtr(const std::string &str) {
@@ -1729,26 +1742,31 @@ FunctionEmitContext::SmearUniform(llvm::Value *value, const char *name) {
llvm::Value *ret = NULL;
llvm::Type *eltType = value->getType();
llvm::Type *vecType = NULL;
llvm::PointerType *pt =
llvm::dyn_cast<llvm::PointerType>(eltType);
if (pt != NULL) {
// Varying pointers are represented as vectors of i32/i64s
ret = llvm::UndefValue::get(LLVMTypes::VoidPointerVectorType);
vecType = LLVMTypes::VoidPointerVectorType;
value = PtrToIntInst(value);
}
else
else {
// All other varying types are represented as vectors of the
// underlying type.
ret = llvm::UndefValue::get(llvm::VectorType::get(eltType,
g->target->getVectorWidth()));
for (int i = 0; i < g->target->getVectorWidth(); ++i) {
llvm::Twine n = llvm::Twine("smear.") + llvm::Twine(name ? name : "") +
llvm::Twine(i);
ret = InsertInst(ret, value, i, n.str().c_str());
vecType = llvm::VectorType::get(eltType, g->target->getVectorWidth());
}
// Check for a constant case.
if (llvm::Constant *const_val = llvm::dyn_cast<llvm::Constant>(value)) {
ret = llvm::ConstantVector::getSplat(
g->target->getVectorWidth(),
const_val);
return ret;
}
ret = BroadcastValue(value, vecType, name);
return ret;
}
@@ -3131,6 +3149,66 @@ FunctionEmitContext::InsertInst(llvm::Value *v, llvm::Value *eltVal, int elt,
}
llvm::Value *
FunctionEmitContext::ShuffleInst(llvm::Value *v1, llvm::Value *v2, llvm::Value *mask,
const char *name) {
if (v1 == NULL || v2 == NULL || mask == NULL) {
AssertPos(currentPos, m->errorCount > 0);
return NULL;
}
if (name == NULL) {
char buf[32];
sprintf(buf, "_shuffle");
name = LLVMGetName(v1, buf);
}
llvm::Instruction *ii = new llvm::ShuffleVectorInst(v1, v2, mask, name, bblock);
AddDebugPos(ii);
return ii;
}
llvm::Value *
FunctionEmitContext::BroadcastValue(llvm::Value *v, llvm::Type* vecType,
const char *name) {
if (v == NULL || vecType == NULL) {
AssertPos(currentPos, m->errorCount > 0);
return NULL;
}
llvm::VectorType *ty = llvm::dyn_cast<llvm::VectorType>(vecType);
Assert(ty && ty->getVectorElementType() == v->getType());
if (name == NULL) {
char buf[32];
sprintf(buf, "_broadcast");
name = LLVMGetName(v, buf);
}
// Generate the follwoing sequence:
// %name_init.i = insertelement <4 x i32> undef, i32 %val, i32 0
// %name.i = shufflevector <4 x i32> %smear.0, <4 x i32> undef,
// <4 x i32> zeroinitializer
llvm::Value *undef1 = llvm::UndefValue::get(vecType);
llvm::Value *undef2 = llvm::UndefValue::get(vecType);
// InsertElement
llvm::Twine tw = llvm::Twine(name) + llvm::Twine("_init");
llvm::Value *insert = InsertInst(undef1, v, 0, tw.str().c_str());
// ShuffleVector
llvm::Constant *zeroVec = llvm::ConstantVector::getSplat(
vecType->getVectorNumElements(),
llvm::Constant::getNullValue(llvm::Type::getInt32Ty(*g->ctx)));
llvm::Value *ret = ShuffleInst(insert, undef2, zeroVec, name);
return ret;
}
llvm::PHINode *
FunctionEmitContext::PhiNode(llvm::Type *type, int count,
const char *name) {
@@ -3509,12 +3587,9 @@ FunctionEmitContext::addVaryingOffsetsIfNeeded(llvm::Value *ptr,
unifSize = SmearUniform(unifSize);
// Compute offset = <0, 1, .. > * unifSize
llvm::Value *varyingOffsets = llvm::UndefValue::get(unifSize->getType());
for (int i = 0; i < g->target->getVectorWidth(); ++i) {
llvm::Value *iValue = (g->target->is32Bit() || g->opt.force32BitAddressing) ?
LLVMInt32(i) : LLVMInt64(i);
varyingOffsets = InsertInst(varyingOffsets, iValue, i, "varying_delta");
}
bool is32bits = g->target->is32Bit() || g->opt.force32BitAddressing;
llvm::Value *varyingOffsets = ProgramIndexVector(is32bits);
llvm::Value *offset = BinaryOperator(llvm::Instruction::Mul, unifSize,
varyingOffsets);

16
ctx.h
View File

@@ -1,5 +1,5 @@
/*
Copyright (c) 2010-2012, Intel Corporation
Copyright (c) 2010-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -295,6 +295,10 @@ public:
that indicates whether the two masks are equal. */
llvm::Value *MasksAllEqual(llvm::Value *mask1, llvm::Value *mask2);
/** Generate ConstantVector, which contains ProgramIndex, i.e.
< i32 0, i32 1, i32 2, i32 3> */
llvm::Value *ProgramIndexVector(bool is32bits = true);
/** Given a string, create an anonymous global variable to hold its
value and return the pointer to the string. */
llvm::Value *GetStringPtr(const std::string &str);
@@ -500,6 +504,16 @@ public:
llvm::Value *InsertInst(llvm::Value *v, llvm::Value *eltVal, int elt,
const char *name = NULL);
/** This convenience method maps to an llvm::ShuffleVectorInst. */
llvm::Value *ShuffleInst(llvm::Value *v1, llvm::Value *v2, llvm::Value *mask,
const char *name = NULL);
/** This convenience method to generate broadcast pattern. It takes a value
and a vector type. Type of the value must match element type of the
vector. */
llvm::Value *BroadcastValue(llvm::Value *v, llvm::Type *vecType,
const char *name = NULL);
llvm::PHINode *PhiNode(llvm::Type *type, int count,
const char *name = NULL);
llvm::Instruction *SelectInst(llvm::Value *test, llvm::Value *val0,

View File

@@ -3905,11 +3905,7 @@ lAddVaryingOffsetsIfNeeded(FunctionEmitContext *ctx, llvm::Value *ptr,
return ptr;
// Onward: compute the per lane offsets.
llvm::Value *varyingOffsets =
llvm::UndefValue::get(LLVMTypes::Int32VectorType);
for (int i = 0; i < g->target->getVectorWidth(); ++i)
varyingOffsets = ctx->InsertInst(varyingOffsets, LLVMInt32(i), i,
"varying_delta");
llvm::Value *varyingOffsets = ctx->ProgramIndexVector();
// And finally add the per-lane offsets. Note that we lie to the GEP
// call and tell it that the pointers are to uniform elements and not
@@ -6768,9 +6764,8 @@ TypeCastExpr::GetValue(FunctionEmitContext *ctx) const {
if (!conv)
return NULL;
llvm::Value *cast = llvm::UndefValue::get(toType->LLVMType(g->ctx));
for (int i = 0; i < toVector->GetElementCount(); ++i)
cast = ctx->InsertInst(cast, conv, i);
llvm::Value *cast = ctx->BroadcastValue(conv, toType->LLVMType(g->ctx));
return cast;
}
else if (toPointerType != NULL) {

View File

@@ -601,44 +601,74 @@ lGetIntValue(llvm::Value *offset) {
void
LLVMFlattenInsertChain(llvm::InsertElementInst *ie, int vectorWidth,
LLVMFlattenInsertChain(llvm::Value *inst, int vectorWidth,
llvm::Value **elements) {
for (int i = 0; i < vectorWidth; ++i)
for (int i = 0; i < vectorWidth; ++i) {
elements[i] = NULL;
}
while (ie != NULL) {
int64_t iOffset = lGetIntValue(ie->getOperand(2));
Assert(iOffset >= 0 && iOffset < vectorWidth);
Assert(elements[iOffset] == NULL);
// Catch a pattern of InsertElement chain.
if (llvm::InsertElementInst *ie =
llvm::dyn_cast<llvm::InsertElementInst>(inst)) {
while (ie != NULL) {
int64_t iOffset = lGetIntValue(ie->getOperand(2));
Assert(iOffset >= 0 && iOffset < vectorWidth);
Assert(elements[iOffset] == NULL);
// Get the scalar value from this insert
elements[iOffset] = ie->getOperand(1);
// Get the scalar value from this insert
elements[iOffset] = ie->getOperand(1);
// Do we have another insert?
llvm::Value *insertBase = ie->getOperand(0);
ie = llvm::dyn_cast<llvm::InsertElementInst>(insertBase);
if (ie == NULL) {
if (llvm::isa<llvm::UndefValue>(insertBase))
return;
// Do we have another insert?
llvm::Value *insertBase = ie->getOperand(0);
ie = llvm::dyn_cast<llvm::InsertElementInst>(insertBase);
if (ie == NULL) {
if (llvm::isa<llvm::UndefValue>(insertBase)) {
return;
}
// Get the value out of a constant vector if that's what we
// have
llvm::ConstantVector *cv =
llvm::dyn_cast<llvm::ConstantVector>(insertBase);
// Get the value out of a constant vector if that's what we
// have
llvm::ConstantVector *cv =
llvm::dyn_cast<llvm::ConstantVector>(insertBase);
// FIXME: this assert is a little questionable; we probably
// shouldn't fail in this case but should just return an
// incomplete result. But there aren't currently any known
// cases where we have anything other than an undef value or a
// constant vector at the base, so if that ever does happen,
// it'd be nice to know what happend so that perhaps we can
// handle it.
// FIXME: Also, should we handle ConstantDataVectors with
// LLVM3.1? What about ConstantAggregateZero values??
Assert(cv != NULL);
// FIXME: this assert is a little questionable; we probably
// shouldn't fail in this case but should just return an
// incomplete result. But there aren't currently any known
// cases where we have anything other than an undef value or a
// constant vector at the base, so if that ever does happen,
// it'd be nice to know what happend so that perhaps we can
// handle it.
// FIXME: Also, should we handle ConstantDataVectors with
// LLVM3.1? What about ConstantAggregateZero values??
Assert(cv != NULL);
Assert(iOffset < (int)cv->getNumOperands());
elements[iOffset] = cv->getOperand((int32_t)iOffset);
Assert(iOffset < (int)cv->getNumOperands());
elements[iOffset] = cv->getOperand((int32_t)iOffset);
}
}
}
// Catch a pattern of broadcast implemented as InsertElement + Shuffle:
// %broadcast_init.0 = insertelement <4 x i32> undef, i32 %val, i32 0
// %broadcast.1 = shufflevector <4 x i32> %smear.0, <4 x i32> undef,
// <4 x i32> zeroinitializer
else if (llvm::ShuffleVectorInst *shuf =
llvm::dyn_cast<llvm::ShuffleVectorInst>(inst)) {
llvm::Value *indices = shuf->getOperand(2);
if (llvm::isa<llvm::ConstantAggregateZero>(indices)) {
llvm::Value *op = shuf->getOperand(0);
llvm::InsertElementInst *ie = llvm::dyn_cast<llvm::InsertElementInst>(op);
if (ie != NULL &&
llvm::isa<llvm::UndefValue>(ie->getOperand(0))) {
llvm::ConstantInt *ci =
llvm::dyn_cast<llvm::ConstantInt>(ie->getOperand(2));
if (ci->isZero()) {
for (int i = 0; i < vectorWidth; ++i) {
elements[i] = ie->getOperand(1);
}
return;
}
}
}
}
}
@@ -694,10 +724,10 @@ lIsExactMultiple(llvm::Value *val, int baseValue, int vectorLength,
else
Assert(LLVMVectorValuesAllEqual(val));
llvm::InsertElementInst *ie = llvm::dyn_cast<llvm::InsertElementInst>(val);
if (ie != NULL) {
if (llvm::isa<llvm::InsertElementInst>(val) ||
llvm::isa<llvm::ShuffleVectorInst>(val)) {
llvm::Value *elts[ISPC_MAX_NVEC];
LLVMFlattenInsertChain(ie, g->target->getVectorWidth(), elts);
LLVMFlattenInsertChain(val, g->target->getVectorWidth(), elts);
// We just need to check the scalar first value, since we know that
// all elements are equal
return lIsExactMultiple(elts[0], baseValue, vectorLength,
@@ -1440,10 +1470,10 @@ lExtractFirstVectorElement(llvm::Value *v,
// If we have a chain of insertelement instructions, then we can just
// flatten them out and grab the value for the first one.
llvm::InsertElementInst *ie = llvm::dyn_cast<llvm::InsertElementInst>(v);
if (ie != NULL) {
if (llvm::isa<llvm::InsertElementInst>(v) ||
llvm::isa<llvm::ShuffleVectorInst>(v)) {
llvm::Value *elements[ISPC_MAX_NVEC];
LLVMFlattenInsertChain(ie, vt->getNumElements(), elements);
LLVMFlattenInsertChain(v, vt->getNumElements(), elements);
return elements[0];
}

View File

@@ -264,8 +264,13 @@ extern bool LLVMExtractVectorInts(llvm::Value *v, int64_t ret[], int *nElts);
constant vector. For anything more complex (e.g. some other arbitrary
value, it doesn't try to extract element values into the returned
array.
This also handles common broadcast pattern:
%broadcast_init.0 = insertelement <4 x i32> undef, i32 %val, i32 0
%broadcast.1 = shufflevector <4 x i32> %smear.0, <4 x i32> undef,
<4 x i32> zeroinitializer
*/
extern void LLVMFlattenInsertChain(llvm::InsertElementInst *ie, int vectorWidth,
extern void LLVMFlattenInsertChain(llvm::Value *inst, int vectorWidth,
llvm::Value **elements);
/** This is a utility routine for debugging that dumps out the given LLVM

13
opt.cpp
View File

@@ -1058,10 +1058,10 @@ lCheckForActualPointer(llvm::Value *v) {
*/
static llvm::Value *
lGetBasePointer(llvm::Value *v) {
llvm::InsertElementInst *ie = llvm::dyn_cast<llvm::InsertElementInst>(v);
if (ie != NULL) {
if (llvm::isa<llvm::InsertElementInst>(v) ||
llvm::isa<llvm::ShuffleVectorInst>(v)) {
llvm::Value *elements[ISPC_MAX_NVEC];
LLVMFlattenInsertChain(ie, g->target->getVectorWidth(), elements);
LLVMFlattenInsertChain(v, g->target->getVectorWidth(), elements);
// Make sure none of the elements is undefined.
// TODO: it's probably ok to allow undefined elements and return
@@ -1080,9 +1080,12 @@ lGetBasePointer(llvm::Value *v) {
}
// This case comes up with global/static arrays
llvm::ConstantVector *cv = llvm::dyn_cast<llvm::ConstantVector>(v);
if (cv != NULL)
if (llvm::ConstantVector *cv = llvm::dyn_cast<llvm::ConstantVector>(v)) {
return lCheckForActualPointer(cv->getSplatValue());
}
else if (llvm::ConstantDataVector *cdv = llvm::dyn_cast<llvm::ConstantDataVector>(v)) {
return lCheckForActualPointer(cdv->getSplatValue());
}
return NULL;
}

View File

@@ -1272,11 +1272,8 @@ lUpdateVaryingCounter(int dim, int nDims, FunctionEmitContext *ctx,
const std::vector<int> &spans) {
// Smear the uniform counter value out to be varying
llvm::Value *counter = ctx->LoadInst(uniformCounterPtr);
llvm::Value *smearCounter =
llvm::UndefValue::get(LLVMTypes::Int32VectorType);
for (int i = 0; i < g->target->getVectorWidth(); ++i)
smearCounter =
ctx->InsertInst(smearCounter, counter, i, "smear_counter");
llvm::Value *smearCounter = ctx->BroadcastValue(
counter, LLVMTypes::Int32VectorType, "smear_counter");
// Figure out the offsets; this is a little bit tricky. As an example,
// consider a 2D tiled foreach loop, where we're running 8-wide and
@@ -1517,9 +1514,9 @@ ForeachStmt::EmitCode(FunctionEmitContext *ctx) const {
lUpdateVaryingCounter(i, nDims, ctx, uniformCounterPtrs[i],
dimVariables[i]->storagePtr, span);
llvm::Value *smearEnd = llvm::UndefValue::get(LLVMTypes::Int32VectorType);
for (int j = 0; j < g->target->getVectorWidth(); ++j)
smearEnd = ctx->InsertInst(smearEnd, endVals[i], j, "smear_end");
llvm::Value *smearEnd = ctx->BroadcastValue(
endVals[i], LLVMTypes::Int32VectorType, "smear_end");
// Do a vector compare of its value to the end value to generate a
// mask for this last bit of work.
llvm::Value *emask =
@@ -1662,9 +1659,9 @@ ForeachStmt::EmitCode(FunctionEmitContext *ctx) const {
ctx->SetCurrentBasicBlock(bbPartial); {
llvm::Value *varyingCounter =
ctx->LoadInst(dimVariables[nDims-1]->storagePtr);
llvm::Value *smearEnd = llvm::UndefValue::get(LLVMTypes::Int32VectorType);
for (int j = 0; j < g->target->getVectorWidth(); ++j)
smearEnd = ctx->InsertInst(smearEnd, endVals[nDims-1], j, "smear_end");
llvm::Value *smearEnd = ctx->BroadcastValue(
endVals[nDims-1], LLVMTypes::Int32VectorType, "smear_end");
llvm::Value *emask =
ctx->CmpInst(llvm::Instruction::ICmp, llvm::CmpInst::ICMP_SLT,
varyingCounter, smearEnd);
@@ -1758,9 +1755,8 @@ ForeachStmt::EmitCode(FunctionEmitContext *ctx) const {
llvm::Value *varyingCounter =
lUpdateVaryingCounter(nDims-1, nDims, ctx, uniformCounterPtrs[nDims-1],
dimVariables[nDims-1]->storagePtr, span);
llvm::Value *smearEnd = llvm::UndefValue::get(LLVMTypes::Int32VectorType);
for (int j = 0; j < g->target->getVectorWidth(); ++j)
smearEnd = ctx->InsertInst(smearEnd, endVals[nDims-1], j, "smear_end");
llvm::Value *smearEnd = ctx->BroadcastValue(
endVals[nDims-1], LLVMTypes::Int32VectorType, "smear_end");
llvm::Value *emask =
ctx->CmpInst(llvm::Instruction::ICmp, llvm::CmpInst::ICMP_SLT,
varyingCounter, smearEnd);
@@ -1993,11 +1989,7 @@ ForeachActiveStmt::EmitCode(FunctionEmitContext *ctx) const {
// math...)
// Get the "program index" vector value
llvm::Value *programIndex =
llvm::UndefValue::get(LLVMTypes::Int32VectorType);
for (int i = 0; i < g->target->getVectorWidth(); ++i)
programIndex = ctx->InsertInst(programIndex, LLVMInt32(i), i,
"prog_index");
llvm::Value *programIndex = ctx->ProgramIndexVector();
// And smear the current lane out to a vector
llvm::Value *firstSet32 =