+CDP works with deferred shading

This commit is contained in:
Evghenii
2013-11-13 11:57:37 +01:00
parent 268be7f0b5
commit 62bc39e600
3 changed files with 159 additions and 52 deletions

View File

@@ -184,7 +184,7 @@ struct Uniform
__device__ inline Uniform()
{
#if 1
#if 0
if (programIndex == 0)
data = new T[N];
ptr[0] = __shfl(ptr[0], 0);
@@ -200,7 +200,7 @@ struct Uniform
}
__device__ inline ~Uniform()
{
#if 1
#if 0
if (programIndex == 0)
delete data;
#else
@@ -730,20 +730,21 @@ ShadeTile(
///////////////////////////////////////////////////////////////////////////
// Static decomposition
extern "C" __global__ void
__global__ void
RenderTile( int num_groups_x, int num_groups_y,
const InputHeader *inputHeaderPtr,
const InputDataArrays *inputDataPtr,
const InputHeader inputHeaderPtr[],
const InputDataArrays inputDataPtr[],
int visualizeLightCount,
// Output
unsigned int8 framebuffer_r[],
unsigned int8 framebuffer_g[],
unsigned int8 framebuffer_b[]) {
if (taskIndex >= taskCount) return;
const InputHeader &inputHeader = *inputHeaderPtr;
const InputDataArrays &inputData = *inputDataPtr;
#if 1
const InputHeader inputHeader = *inputHeaderPtr;
const InputDataArrays inputData = *inputDataPtr;
int32 group_y = taskIndex / num_groups_x;
int32 group_x = taskIndex % num_groups_x;
@@ -794,3 +795,28 @@ RenderTile( int num_groups_x, int num_groups_y,
}
extern "C"
__global__ void
RenderStatic(InputHeader inputHeaderPtr[],
InputDataArrays inputDataPtr[],
int visualizeLightCount,
// Output
unsigned int8 framebuffer_r[],
unsigned int8 framebuffer_g[],
unsigned int8 framebuffer_b[]) {
const InputHeader &inputHeader = *inputHeaderPtr;
const InputDataArrays &inputData = *inputDataPtr;
int num_groups_x = (inputHeader.framebufferWidth +
MIN_TILE_WIDTH - 1) / MIN_TILE_WIDTH;
int num_groups_y = (inputHeader.framebufferHeight +
MIN_TILE_HEIGHT - 1) / MIN_TILE_HEIGHT;
int num_groups = num_groups_x * num_groups_y;
// Launch a task to render each tile, each of which is MIN_TILE_WIDTH
// by MIN_TILE_HEIGHT pixels.
RenderTile<<<dim3(num_groups_x,num_groups_y), 128>>>(num_groups_x, num_groups_y,
inputHeaderPtr, inputDataPtr, visualizeLightCount,
framebuffer_r, framebuffer_g, framebuffer_b);
}

View File

@@ -477,19 +477,18 @@ ShadeTile(
///////////////////////////////////////////////////////////////////////////
// Static decomposition
task void
void task
RenderTile(uniform int num_groups_x, uniform int num_groups_y,
const uniform InputHeader inputHeaderPtr[],
const uniform InputDataArrays inputDataPtr[],
const uniform InputHeader inputHeaderPtr[],
const uniform InputDataArrays inputDataPtr[],
uniform int visualizeLightCount,
// Output
uniform unsigned int8 framebuffer_r[],
uniform unsigned int8 framebuffer_g[],
uniform unsigned int8 framebuffer_b[]) {
if (taskIndex >= taskCount) return;
const uniform InputHeader inputHeader = *inputHeaderPtr;
const uniform InputDataArrays inputData = *inputDataPtr;
const uniform InputHeader inputHeader = *inputHeaderPtr;
const uniform InputDataArrays inputData = *inputDataPtr;
uniform int32 group_y = taskIndex / num_groups_x;
uniform int32 group_x = taskIndex % num_groups_x;
@@ -543,13 +542,16 @@ RenderTile(uniform int num_groups_x, uniform int num_groups_y,
export void
RenderStatic(uniform InputHeader inputHeaderPtr[],
uniform InputDataArrays inputDataPtr[],
uniform InputHeader &inputHeader,
uniform int visualizeLightCount,
// Output
uniform unsigned int8 framebuffer_r[],
uniform unsigned int8 framebuffer_g[],
uniform unsigned int8 framebuffer_b[]) {
const uniform InputHeader inputHeader = *inputHeaderPtr;
const uniform InputDataArrays inputData = *inputDataPtr;
uniform int num_groups_x = (inputHeader.framebufferWidth +
MIN_TILE_WIDTH - 1) / MIN_TILE_WIDTH;
uniform int num_groups_y = (inputHeader.framebufferHeight +

View File

@@ -124,10 +124,12 @@ void destroyContext()
CUmodule loadModule(const char * module)
{
const double t0 = rtc();
CUmodule cudaModule;
// in this branch we use compilation with parameters
const unsigned int jitNumOptions = 1;
#if 0
unsigned int jitNumOptions = 1;
CUjit_option *jitOptions = new CUjit_option[jitNumOptions];
void **jitOptVals = new void*[jitNumOptions];
// set up pointer to set the Maximum # of registers for a particular kernel
@@ -136,23 +138,106 @@ CUmodule loadModule(const char * module)
jitOptVals[0] = (void *)(size_t)jitRegCount;
#if 0
// set up size of compilation log buffer
jitOptions[0] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
int jitLogBufferSize = 1024;
jitOptVals[0] = (void *)(size_t)jitLogBufferSize;
{
jitNumOptions = 3;
// set up size of compilation log buffer
jitOptions[0] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
int jitLogBufferSize = 1024;
jitOptVals[0] = (void *)(size_t)jitLogBufferSize;
// set up pointer to the compilation log buffer
jitOptions[1] = CU_JIT_INFO_LOG_BUFFER;
char *jitLogBuffer = new char[jitLogBufferSize];
jitOptVals[1] = jitLogBuffer;
// set up pointer to the compilation log buffer
jitOptions[1] = CU_JIT_INFO_LOG_BUFFER;
char *jitLogBuffer = new char[jitLogBufferSize];
jitOptVals[1] = jitLogBuffer;
// set up pointer to set the Maximum # of registers for a particular kernel
jitOptions[2] = CU_JIT_MAX_REGISTERS;
int jitRegCount = 32;
jitOptVals[2] = (void *)(size_t)jitRegCount;
// set up pointer to set the Maximum # of registers for a particular kernel
jitOptions[2] = CU_JIT_MAX_REGISTERS;
int jitRegCount = 32;
jitOptVals[2] = (void *)(size_t)jitRegCount;
}
#endif
checkCudaErrors(cuModuleLoadDataEx(&cudaModule, module,jitNumOptions, jitOptions, (void **)jitOptVals));
#else
CUlinkState CUState;
CUlinkState *lState = &CUState;
const int nOptions = 7;
CUjit_option options[nOptions];
void* optionVals[nOptions];
float walltime;
const unsigned int logSize = 32768;
char error_log[logSize],
info_log[logSize];
void *cuOut;
size_t outSize;
int myErr = 0;
// Setup linker options
// Return walltime from JIT compilation
options[0] = CU_JIT_WALL_TIME;
optionVals[0] = (void*) &walltime;
// Pass a buffer for info messages
options[1] = CU_JIT_INFO_LOG_BUFFER;
optionVals[1] = (void*) info_log;
// Pass the size of the info buffer
options[2] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
optionVals[2] = (void*) logSize;
// Pass a buffer for error message
options[3] = CU_JIT_ERROR_LOG_BUFFER;
optionVals[3] = (void*) error_log;
// Pass the size of the error buffer
options[4] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES;
optionVals[4] = (void*) logSize;
// Make the linker verbose
options[5] = CU_JIT_LOG_VERBOSE;
optionVals[5] = (void*) 1;
// Max # of registers/pthread
options[6] = CU_JIT_MAX_REGISTERS;
int jitRegCount = 48;
optionVals[6] = (void *)(size_t)jitRegCount;
// Create a pending linker invocation
checkCudaErrors(cuLinkCreate(nOptions,options, optionVals, lState));
#if 0
if (sizeof(void *)==4)
{
// Load the PTX from the string myPtx32
printf("Loading myPtx32[] program\n");
// PTX May also be loaded from file, as per below.
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)myPtx32, strlen(myPtx32)+1, 0, 0, 0, 0);
}
else
#endif
{
// Load the PTX from the string myPtx (64-bit)
fprintf(stderr, "Loading ptx..\n");
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)module, strlen(module)+1, 0, 0, 0, 0);
myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_LIBRARY, "libcudadevrt.a", 0,0,0);
// PTX May also be loaded from file, as per below.
// myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_PTX, "myPtx64.ptx",0,0,0);
}
// Complete the linker step
myErr = cuLinkComplete(*lState, &cuOut, &outSize);
if ( myErr != CUDA_SUCCESS )
{
// Errors will be put in error_log, per CU_JIT_ERROR_LOG_BUFFER option above.
fprintf(stderr,"PTX Linker Error:\n%s\n",error_log);
assert(0);
}
// Linker walltime and info_log were requested in options above.
fprintf(stderr, "CUDA Link Completed in %fms [ %g ms]. Linker Output:\n%s\n",walltime,info_log,1e3*(rtc() - t0));
// Load resulting cuBin into module
checkCudaErrors(cuModuleLoadData(&cudaModule, cuOut));
// Destroy the linker invocation
checkCudaErrors(cuLinkDestroy(*lState));
#endif
fprintf(stderr, " loadModule took %g ms \n", 1e3*(rtc() - t0));
return cudaModule;
}
void unloadModule(CUmodule &cudaModule)
@@ -185,16 +270,17 @@ void memcpyH2D(CUdeviceptr d_buf, void * h_buf, const size_t size)
{
checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size));
}
#define deviceLaunch(func,nbx,nby,nbz,params) \
#define deviceLaunch(func,params) \
checkCudaErrors(cuFuncSetCacheConfig((func), CU_FUNC_CACHE_PREFER_SHARED)); \
checkCudaErrors( \
cuLaunchKernel( \
(func), \
((nbx-1)/(128/32)+1), (nby), (nbz), \
128, 1, 1, \
1,1,1, \
32, 1, 1, \
0, NULL, (params), NULL \
));
typedef CUdeviceptr devicePtr;
@@ -241,25 +327,14 @@ extern "C"
}
void CUDALaunch(
void **handlePtr,
const char * module_name,
const char * module_1,
const char * func_name,
void **func_args,
int countx, int county, int countz)
void **func_args)
{
assert(module_name != NULL);
assert(module_1 != NULL);
assert(func_name != NULL);
assert(func_args != NULL);
#if 0
const char * module = module_1;
#else
const std::vector<char> module_str = readBinary("kernel.cubin");
const std::vector<char> module_str = readBinary("kernel.ptx");
const char * module = &module_str[0];
#endif
CUmodule cudaModule = loadModule(module);
CUfunction cudaFunction = getFunction(cudaModule, func_name);
deviceLaunch(cudaFunction, countx, county, countz, func_args);
deviceLaunch(cudaFunction, func_args);
unloadModule(cudaModule);
}
void CUDASync(void *handle)
@@ -372,14 +447,18 @@ int main(int argc, char** argv) {
framebuffer.clear();
const double t0 = rtc();
for (int j = 0; j < nframes; ++j)
ispc::RenderStatic(
(ispc::InputHeader*)d_header,
(ispc::InputDataArrays*)d_arrays,
input->header,
VISUALIZE_LIGHT_COUNT,
(uint8_t*)d_r,
(uint8_t*)d_g,
(uint8_t*)d_b);
{
const char * func_name = "RenderStatic";
int light_count = VISUALIZE_LIGHT_COUNT;
void *func_args[] = {
&d_header,
&d_arrays,
&light_count,
&d_r,
&d_g,
&d_b};
CUDALaunch(NULL, func_name, func_args);
}
double mcycles = 1000*(rtc() - t0) / nframes;
fprintf(stderr, "dt= %g\n", mcycles);
ispcCycles = std::min(ispcCycles, mcycles);