working on sort

This commit is contained in:
Evghenii
2013-11-13 17:07:55 +01:00
parent 525eacd035
commit 61fab0340c
8 changed files with 1391 additions and 4 deletions

View File

@@ -2,7 +2,7 @@
EXAMPLE=sort
CPP_SRC=sort.cpp sort_serial.cpp
ISPC_SRC=sort.ispc
ISPC_IA_TARGETS=sse2,sse4-x2,avx
ISPC_IA_TARGETS=avx
ISPC_ARM_TARGETS=neon
#ISPC_FLAGS=-DDEBUG

View File

@@ -0,0 +1,52 @@
PROG=sort_cu
ISPC_SRC=sort1.ispc
CXX_SRC=sort_cu.cpp sort_serial.cpp
CXX=g++
CXXFLAGS=-O3 -I$(CUDATK)/include
LD=g++
LDFLAGS=-lcuda
ISPC=ispc
ISPCFLAGS=-O3 --math-lib=default --target=nvptx64,avx
LLVM32 = $(HOME)/usr/local/llvm/bin-3.2
LLVM = $(HOME)/usr/local/llvm/bin-3.3
PTXGEN = $(HOME)/ptxgen
LLVM32DIS=$(LLVM32)/bin/llvm-dis
.SUFFIXES: .bc .o .ptx .cu _ispc_nvptx64.bc
ISPC_OBJ=$(ISPC_SRC:%.ispc=%_ispc.o)
ISPC_BC=$(ISPC_SRC:%.ispc=%_ispc_nvptx64.bc)
PTXSRC=$(ISPC_SRC:%.ispc=%_ispc_nvptx64.ptx)
CXX_OBJ=$(CXX_SRC:%.cpp=%.o)
all: $(PROG)
$(PROG): $(CXX_OBJ) kernel.ptx
/bin/cp kernel.ptx __kernels.ptx
$(LD) -o $@ $(CXX_OBJ) $(LDFLAGS)
%.o: %.cpp
$(CXX) $(CXXFLAGS) -o $@ -c $<
%_ispc_nvptx64.bc: %.ispc
$(ISPC) $(ISPCFLAGS) --emit-llvm -o `basename $< .ispc`_ispc.bc -h `basename $< .ispc`_ispc.h $< --emit-llvm
%.ptx: %.bc
$(LLVM32DIS) $<
$(PTXGEN) `basename $< .bc`.ll > $@
kernel.ptx: $(PTXSRC)
cat $^ > kernel.ptx
clean:
/bin/rm -rf *.ptx *.bc *.ll $(PROG)

View File

@@ -0,0 +1,370 @@
/*
* Copyright 1993-2012 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*
*/
#ifndef _DRVAPI_ERROR_STRING_H_
#define _DRVAPI_ERROR_STRING_H_
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
// Error Code string definitions here
typedef struct
{
char const *error_string;
int error_id;
} s_CudaErrorStr;
/**
* Error codes
*/
static s_CudaErrorStr sCudaDrvErrorString[] =
{
/**
* The API call returned with no errors. In the case of query calls, this
* can also mean that the operation being queried is complete (see
* ::cuEventQuery() and ::cuStreamQuery()).
*/
{ "CUDA_SUCCESS", 0 },
/**
* This indicates that one or more of the parameters passed to the API call
* is not within an acceptable range of values.
*/
{ "CUDA_ERROR_INVALID_VALUE", 1 },
/**
* The API call failed because it was unable to allocate enough memory to
* perform the requested operation.
*/
{ "CUDA_ERROR_OUT_OF_MEMORY", 2 },
/**
* This indicates that the CUDA driver has not been initialized with
* ::cuInit() or that initialization has failed.
*/
{ "CUDA_ERROR_NOT_INITIALIZED", 3 },
/**
* This indicates that the CUDA driver is in the process of shutting down.
*/
{ "CUDA_ERROR_DEINITIALIZED", 4 },
/**
* This indicates profiling APIs are called while application is running
* in visual profiler mode.
*/
{ "CUDA_ERROR_PROFILER_DISABLED", 5 },
/**
* This indicates profiling has not been initialized for this context.
* Call cuProfilerInitialize() to resolve this.
*/
{ "CUDA_ERROR_PROFILER_NOT_INITIALIZED", 6 },
/**
* This indicates profiler has already been started and probably
* cuProfilerStart() is incorrectly called.
*/
{ "CUDA_ERROR_PROFILER_ALREADY_STARTED", 7 },
/**
* This indicates profiler has already been stopped and probably
* cuProfilerStop() is incorrectly called.
*/
{ "CUDA_ERROR_PROFILER_ALREADY_STOPPED", 8 },
/**
* This indicates that no CUDA-capable devices were detected by the installed
* CUDA driver.
*/
{ "CUDA_ERROR_NO_DEVICE (no CUDA-capable devices were detected)", 100 },
/**
* This indicates that the device ordinal supplied by the user does not
* correspond to a valid CUDA device.
*/
{ "CUDA_ERROR_INVALID_DEVICE (device specified is not a valid CUDA device)", 101 },
/**
* This indicates that the device kernel image is invalid. This can also
* indicate an invalid CUDA module.
*/
{ "CUDA_ERROR_INVALID_IMAGE", 200 },
/**
* This most frequently indicates that there is no context bound to the
* current thread. This can also be returned if the context passed to an
* API call is not a valid handle (such as a context that has had
* ::cuCtxDestroy() invoked on it). This can also be returned if a user
* mixes different API versions (i.e. 3010 context with 3020 API calls).
* See ::cuCtxGetApiVersion() for more details.
*/
{ "CUDA_ERROR_INVALID_CONTEXT", 201 },
/**
* This indicated that the context being supplied as a parameter to the
* API call was already the active context.
* \deprecated
* This error return is deprecated as of CUDA 3.2. It is no longer an
* error to attempt to push the active context via ::cuCtxPushCurrent().
*/
{ "CUDA_ERROR_CONTEXT_ALREADY_CURRENT", 202 },
/**
* This indicates that a map or register operation has failed.
*/
{ "CUDA_ERROR_MAP_FAILED", 205 },
/**
* This indicates that an unmap or unregister operation has failed.
*/
{ "CUDA_ERROR_UNMAP_FAILED", 206 },
/**
* This indicates that the specified array is currently mapped and thus
* cannot be destroyed.
*/
{ "CUDA_ERROR_ARRAY_IS_MAPPED", 207 },
/**
* This indicates that the resource is already mapped.
*/
{ "CUDA_ERROR_ALREADY_MAPPED", 208 },
/**
* This indicates that there is no kernel image available that is suitable
* for the device. This can occur when a user specifies code generation
* options for a particular CUDA source file that do not include the
* corresponding device configuration.
*/
{ "CUDA_ERROR_NO_BINARY_FOR_GPU", 209 },
/**
* This indicates that a resource has already been acquired.
*/
{ "CUDA_ERROR_ALREADY_ACQUIRED", 210 },
/**
* This indicates that a resource is not mapped.
*/
{ "CUDA_ERROR_NOT_MAPPED", 211 },
/**
* This indicates that a mapped resource is not available for access as an
* array.
*/
{ "CUDA_ERROR_NOT_MAPPED_AS_ARRAY", 212 },
/**
* This indicates that a mapped resource is not available for access as a
* pointer.
*/
{ "CUDA_ERROR_NOT_MAPPED_AS_POINTER", 213 },
/**
* This indicates that an uncorrectable ECC error was detected during
* execution.
*/
{ "CUDA_ERROR_ECC_UNCORRECTABLE", 214 },
/**
* This indicates that the ::CUlimit passed to the API call is not
* supported by the active device.
*/
{ "CUDA_ERROR_UNSUPPORTED_LIMIT", 215 },
/**
* This indicates that the ::CUcontext passed to the API call can
* only be bound to a single CPU thread at a time but is already
* bound to a CPU thread.
*/
{ "CUDA_ERROR_CONTEXT_ALREADY_IN_USE", 216 },
/**
* This indicates that peer access is not supported across the given
* devices.
*/
{ "CUDA_ERROR_PEER_ACCESS_UNSUPPORTED", 217},
/**
* This indicates that the device kernel source is invalid.
*/
{ "CUDA_ERROR_INVALID_SOURCE", 300 },
/**
* This indicates that the file specified was not found.
*/
{ "CUDA_ERROR_FILE_NOT_FOUND", 301 },
/**
* This indicates that a link to a shared object failed to resolve.
*/
{ "CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND", 302 },
/**
* This indicates that initialization of a shared object failed.
*/
{ "CUDA_ERROR_SHARED_OBJECT_INIT_FAILED", 303 },
/**
* This indicates that an OS call failed.
*/
{ "CUDA_ERROR_OPERATING_SYSTEM", 304 },
/**
* This indicates that a resource handle passed to the API call was not
* valid. Resource handles are opaque types like ::CUstream and ::CUevent.
*/
{ "CUDA_ERROR_INVALID_HANDLE", 400 },
/**
* This indicates that a named symbol was not found. Examples of symbols
* are global/constant variable names, texture names }, and surface names.
*/
{ "CUDA_ERROR_NOT_FOUND", 500 },
/**
* This indicates that asynchronous operations issued previously have not
* completed yet. This result is not actually an error, but must be indicated
* differently than ::CUDA_SUCCESS (which indicates completion). Calls that
* may return this value include ::cuEventQuery() and ::cuStreamQuery().
*/
{ "CUDA_ERROR_NOT_READY", 600 },
/**
* An exception occurred on the device while executing a kernel. Common
* causes include dereferencing an invalid device pointer and accessing
* out of bounds shared memory. The context cannot be used }, so it must
* be destroyed (and a new one should be created). All existing device
* memory allocations from this context are invalid and must be
* reconstructed if the program is to continue using CUDA.
*/
{ "CUDA_ERROR_LAUNCH_FAILED", 700 },
/**
* This indicates that a launch did not occur because it did not have
* appropriate resources. This error usually indicates that the user has
* attempted to pass too many arguments to the device kernel, or the
* kernel launch specifies too many threads for the kernel's register
* count. Passing arguments of the wrong size (i.e. a 64-bit pointer
* when a 32-bit int is expected) is equivalent to passing too many
* arguments and can also result in this error.
*/
{ "CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES", 701 },
/**
* This indicates that the device kernel took too long to execute. This can
* only occur if timeouts are enabled - see the device attribute
* ::CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT for more information. The
* context cannot be used (and must be destroyed similar to
* ::CUDA_ERROR_LAUNCH_FAILED). All existing device memory allocations from
* this context are invalid and must be reconstructed if the program is to
* continue using CUDA.
*/
{ "CUDA_ERROR_LAUNCH_TIMEOUT", 702 },
/**
* This error indicates a kernel launch that uses an incompatible texturing
* mode.
*/
{ "CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING", 703 },
/**
* This error indicates that a call to ::cuCtxEnablePeerAccess() is
* trying to re-enable peer access to a context which has already
* had peer access to it enabled.
*/
{ "CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED", 704 },
/**
* This error indicates that ::cuCtxDisablePeerAccess() is
* trying to disable peer access which has not been enabled yet
* via ::cuCtxEnablePeerAccess().
*/
{ "CUDA_ERROR_PEER_ACCESS_NOT_ENABLED", 705 },
/**
* This error indicates that the primary context for the specified device
* has already been initialized.
*/
{ "CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE", 708 },
/**
* This error indicates that the context current to the calling thread
* has been destroyed using ::cuCtxDestroy }, or is a primary context which
* has not yet been initialized.
*/
{ "CUDA_ERROR_CONTEXT_IS_DESTROYED", 709 },
/**
* A device-side assert triggered during kernel execution. The context
* cannot be used anymore, and must be destroyed. All existing device
* memory allocations from this context are invalid and must be
* reconstructed if the program is to continue using CUDA.
*/
{ "CUDA_ERROR_ASSERT", 710 },
/**
* This error indicates that the hardware resources required to enable
* peer access have been exhausted for one or more of the devices
* passed to ::cuCtxEnablePeerAccess().
*/
{ "CUDA_ERROR_TOO_MANY_PEERS", 711 },
/**
* This error indicates that the memory range passed to ::cuMemHostRegister()
* has already been registered.
*/
{ "CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED", 712 },
/**
* This error indicates that the pointer passed to ::cuMemHostUnregister()
* does not correspond to any currently registered memory region.
*/
{ "CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED", 713 },
/**
* This error indicates that the attempted operation is not permitted.
*/
{ "CUDA_ERROR_NOT_PERMITTED", 800 },
/**
* This error indicates that the attempted operation is not supported
* on the current system or device.
*/
{ "CUDA_ERROR_NOT_SUPPORTED", 801 },
/**
* This indicates that an unknown internal error has occurred.
*/
{ "CUDA_ERROR_UNKNOWN", 999 },
{ NULL, -1 }
};
// This is just a linear search through the array, since the error_id's are not
// always ocurring consecutively
const char * getCudaDrvErrorString(CUresult error_id)
{
int index = 0;
while (sCudaDrvErrorString[index].error_id != error_id &&
sCudaDrvErrorString[index].error_id != -1)
{
index++;
}
if (sCudaDrvErrorString[index].error_id == error_id)
return (const char *)sCudaDrvErrorString[index].error_string;
else
return (const char *)"CUDA_ERROR not found!";
}
#endif

Binary file not shown.

View File

@@ -41,6 +41,20 @@
#include "../timing.h"
#include "sort_ispc.h"
#include <sys/time.h>
static inline double rtc(void)
{
struct timeval Tvalue;
double etime;
struct timezone dummy;
gettimeofday(&Tvalue,&dummy);
etime = (double) Tvalue.tv_sec +
1.e-6*((double) Tvalue.tv_usec);
return etime;
}
using namespace ispc;
extern void sort_serial (int n, unsigned int code[], int order[]);
@@ -71,26 +85,30 @@ int main (int argc, char *argv[])
{
int i, j, n = argc == 1 ? 1000000 : atoi(argv[1]), m = n < 100 ? 1 : 50, l = n < 100 ? n : RAND_MAX;
double tISPC1 = 0.0, tISPC2 = 0.0, tSerial = 0.0;
printf("n= %d \n", n);
unsigned int *code = new unsigned int [n];
int *order = new int [n];
srand (0);
#if 0
for (i = 0; i < m; i ++)
{
for (j = 0; j < n; j ++) code [j] = random() % l;
reset_and_start_timer();
const double t0 = rtc();
sort_ispc (n, code, order, 1);
tISPC1 += get_elapsed_mcycles();
tISPC1 += (rtc() - t0); //get_elapsed_mcycles();
if (argc != 3)
progressbar (i, m);
}
printf("[sort ispc]:\t[%.3f] million cycles\n", tISPC1);
#endif
srand (0);
@@ -100,9 +118,10 @@ int main (int argc, char *argv[])
reset_and_start_timer();
const double t0 = rtc();
sort_ispc (n, code, order, 0);
tISPC2 += get_elapsed_mcycles();
tISPC2 += (rtc() - t0); // get_elapsed_mcycles();
if (argc != 3)
progressbar (i, m);
@@ -118,9 +137,10 @@ int main (int argc, char *argv[])
reset_and_start_timer();
const double t0 = rtc();
sort_serial (n, code, order);
tSerial += get_elapsed_mcycles();
tSerial += (rtc() - t0);//get_elapsed_mcycles();
if (argc != 3)
progressbar (i, m);

265
examples_cuda/sort/sort1.cu Normal file
View File

@@ -0,0 +1,265 @@
/*
Copyright (c) 2013, Durham University
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Durham University nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Author: Tomasz Koziara */
#define programCount 32
#define programIndex (threadIdx.x & 31)
#define taskIndex (blockIdx.x*4 + (threadIdx.x >> 5))
#define taskCount (gridDim.x*4)
#define cfor for
#define cif if
#define int8 char
#define int64 long
#define sync cudaDeviceSynchronize();
__device__ inline int nbx(const int n) { return (n - 1) / 4 + 1; }
__global__ void histogram ( int span, int n, int64 code[], int pass, int hist[])
{
if (taskIndex >= taskCount) return;
int start = taskIndex*span;
int end = taskIndex == taskCount-1 ? n : start+span;
int strip = (end-start)/programCount;
int tail = (end-start)%programCount;
int i = programCount*taskIndex + programIndex;
int g [256];
cfor (int j = 0; j < 256; j ++)
{
g[j] = 0;
}
cfor (int k = start+programIndex*strip; k < start+(programIndex+1)*strip; k ++)
{
unsigned int8 *c = (unsigned int8*) &code[k];
g[c[pass]] ++;
}
if (programIndex == programCount-1) /* remainder is processed by the last lane */
{
for (int k = start+programCount*strip; k < start+programCount*strip+tail; k ++)
{
unsigned int8 *c = (unsigned int8*) &code[k];
g[c[pass]] ++;
}
}
cfor (int j = 0; j < 256; j ++)
{
hist[j*programCount*taskCount+i] = g[j];
}
}
__global__ void permutation ( int span, int n, int64 code[], int pass, int hist[], int64 perm[])
{
if (taskIndex >= taskCount) return;
int start = taskIndex*span;
int end = taskIndex == taskCount-1 ? n : start+span;
int strip = (end-start)/programCount;
int tail = (end-start)%programCount;
int i = programCount*taskIndex + programIndex;
int g [256];
cfor (int j = 0; j < 256; j ++)
{
g[j] = hist[j*programCount*taskCount+i];
}
cfor (int k = start+programIndex*strip; k < start+(programIndex+1)*strip; k ++)
{
unsigned int8 *c = (unsigned int8*) &code[k];
int l = g[c[pass]];
perm[l] = code[k];
g[c[pass]] = l+1;
}
if (programIndex == programCount-1) /* remainder is processed by the last lane */
{
for (int k = start+programCount*strip; k < start+programCount*strip+tail; k ++)
{
unsigned int8 *c = (unsigned int8*) &code[k];
int l = g[c[pass]];
perm[l] = code[k];
g[c[pass]] = l+1;
}
}
}
__global__ void copy ( int span, int n, int64 from[], int64 to[])
{
if (taskIndex >= taskCount) return;
int start = taskIndex*span;
int end = taskIndex == taskCount-1 ? n : start+span;
for (int i = programIndex + start; i < end; i += programCount)
if (i < end)
{
to[i] = from[i];
}
}
__global__ void pack ( int span, int n, unsigned int code[], int64 pair[])
{
if (taskIndex >= taskCount) return;
int start = taskIndex*span;
int end = taskIndex == taskCount-1 ? n : start+span;
for (int i = programIndex + start; i < end; i += programCount)
if (i < end)
{
pair[i] = ((int64)i<<32)+code[i];
}
}
__global__ void unpack ( int span, int n, int64 pair[], int unsigned code[], int order[])
{
if (taskIndex >= taskCount) return;
int start = taskIndex*span;
int end = taskIndex == taskCount-1 ? n : start+span;
for (int i = programIndex + start; i < end; i += programCount)
if (i < end)
{
code[i] = pair[i];
order[i] = pair[i]>>32;
}
}
__global__ void addup ( int h[], int g[])
{
if (taskIndex >= taskCount) return;
int * u = &h[256*programCount*taskIndex];
int i, x, y = 0;
for (i = 0; i < 256*programCount; i ++)
{
x = u[i];
u[i] = y;
y += x;
}
g[taskIndex] = y;
}
__global__ void bumpup ( int h[], int g[])
{
if (taskIndex >= taskCount) return;
int * u = &h[256*programCount*taskIndex];
int z = g[taskIndex];
for (int i = programIndex; i < 256*programCount; i += programCount)
{
u[i] += z;
}
}
__device__
static void prefix_sum ( int num, int h[])
{
int * g = new int [num+1];
int i;
// launch[num] addup (h, g+1);
if(programIndex == 0)
addup<<<nbx(num),128>>>(h,g+1);
sync;
for (g[0] = 0, i = 1; i < num; i ++) g[i] += g[i-1];
// launch[num] bumpup (h, g);
if(programIndex == 0)
bumpup<<<nbx(num),128>>>(h,g);
sync;
delete g;
}
extern "C" __global__
void sort_ispc ( int n, unsigned int code[], int order[], int ntasks)
{
int num = ntasks < 1 ? 13*4*8 : ntasks;
int span = n / num;
int hsize = 256*programCount*num;
int * hist = new int [hsize];
int64 * pair = new int64 [n];
int64 * temp = new int64 [n];
int pass, i;
// launch[num] pack (span, n, code, pair);
if(programIndex == 0)
pack<<<nbx(num),128>>>(span, n, code, pair);
sync;
#if 0
for (pass = 0; pass < 4; pass ++)
{
// launch[num] histogram (span, n, pair, pass, hist);
if(programIndex == 0)
histogram<<<nbx(num),128>>>(span, n, pair, pass, hist);
sync;
prefix_sum (num, hist);
// launch[num] permutation (span, n, pair, pass, hist, temp);
if(programIndex == 0)
permutation<<<nbx(num),128>>> (span, n, pair, pass, hist, temp);
sync;
/// launch[num] copy (span, n, temp, pair);
if(programIndex == 0)
copy<<<nbx(num),128>>> (span, n, temp, pair);
sync;
}
/// launch[num] unpack (span, n, pair, code, order);
if(programIndex == 0)
unpack<<<nbx(num),128>>> (span, n, pair, code, order);
sync;
#endif
delete hist;
delete pair;
delete temp;
}

View File

@@ -0,0 +1,275 @@
/*
Copyright (c) 2013, Durham University
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Durham University nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Author: Tomasz Koziara */
#ifdef __NVPTX__
#warning "emitting DEVICE code"
#define programCount warpSize()
#define programIndex laneIndex()
#define taskIndex blockIndex0()
#define taskCount blockCount0()
#define cfor for
#define cif if
#else
#warning "emitting HOST code"
#endif
task void histogram (uniform int span, uniform int n, uniform int64 code[], uniform int pass, uniform int hist[])
{
if (taskIndex >= taskCount) return;
uniform int start = taskIndex*span;
uniform int end = taskIndex == taskCount-1 ? n : start+span;
uniform int strip = (end-start)/programCount;
uniform int tail = (end-start)%programCount;
int i = programCount*taskIndex + programIndex;
int g [256];
cfor (int j = 0; j < 256; j ++)
{
g[j] = 0;
}
cfor (int k = start+programIndex*strip; k < start+(programIndex+1)*strip; k ++)
{
unsigned int8 *c = (unsigned int8*) &code[k];
g[c[pass]] ++;
}
if (programIndex == programCount-1) /* remainder is processed by the last lane */
{
for (int k = start+programCount*strip; k < start+programCount*strip+tail; k ++)
{
unsigned int8 *c = (unsigned int8*) &code[k];
g[c[pass]] ++;
}
}
cfor (int j = 0; j < 256; j ++)
{
hist[j*programCount*taskCount+i] = g[j];
}
}
task void permutation (uniform int span, uniform int n, uniform int64 code[], uniform int pass, uniform int hist[], uniform int64 perm[])
{
if (taskIndex >= taskCount) return;
uniform int start = taskIndex*span;
uniform int end = taskIndex == taskCount-1 ? n : start+span;
uniform int strip = (end-start)/programCount;
uniform int tail = (end-start)%programCount;
int i = programCount*taskIndex + programIndex;
int g [256];
cfor (int j = 0; j < 256; j ++)
{
g[j] = hist[j*programCount*taskCount+i];
}
cfor (int k = start+programIndex*strip; k < start+(programIndex+1)*strip; k ++)
{
unsigned int8 *c = (unsigned int8*) &code[k];
int l = g[c[pass]];
perm[l] = code[k];
g[c[pass]] = l+1;
}
if (programIndex == programCount-1) /* remainder is processed by the last lane */
{
for (int k = start+programCount*strip; k < start+programCount*strip+tail; k ++)
{
unsigned int8 *c = (unsigned int8*) &code[k];
int l = g[c[pass]];
perm[l] = code[k];
g[c[pass]] = l+1;
}
}
}
task void copy (uniform int span, uniform int n, uniform int64 from[], uniform int64 to[])
{
if (taskIndex >= taskCount) return;
uniform int start = taskIndex*span;
uniform int end = taskIndex == taskCount-1 ? n : start+span;
for (int i = programIndex + start; i < end; i += programCount)
if (i < end)
{
to[i] = from[i];
}
}
task void pack (uniform int span, uniform int n, uniform unsigned int code[], uniform int64 pair[])
{
#if 0
if (taskIndex >= taskCount) return;
uniform int start = taskIndex*span;
uniform int end = taskIndex == taskCount-1 ? n : start+span;
for (int i = programIndex + start; i < end; i += programCount)
if (i < end)
{
pair[i] = ((int64)i<<32)+code[i];
}
#endif
}
task void unpack (uniform int span, uniform int n, uniform int64 pair[], uniform int unsigned code[], uniform int order[])
{
if (taskIndex >= taskCount) return;
uniform int start = taskIndex*span;
uniform int end = taskIndex == taskCount-1 ? n : start+span;
for (int i = programIndex + start; i < end; i += programCount)
if (i < end)
{
code[i] = pair[i];
order[i] = pair[i]>>32;
}
}
task void addup (uniform int h[], uniform int g[])
{
if (taskIndex >= taskCount) return;
uniform int * uniform u = &h[256*programCount*taskIndex];
uniform int i, x, y = 0;
for (i = 0; i < 256*programCount; i ++)
{
x = u[i];
u[i] = y;
y += x;
}
g[taskIndex] = y;
}
task void bumpup (uniform int h[], uniform int g[])
{
if (taskIndex >= taskCount) return;
uniform int * uniform u = &h[256*programCount*taskIndex];
uniform int z = g[taskIndex];
for (int i = programIndex; i < 256*programCount; i += programCount)
{
u[i] += z;
}
}
static void prefix_sum (uniform int num, uniform int h[])
{
uniform int * uniform g = uniform new uniform int [num+1];
uniform int i;
launch[num] addup (h, g+1);
sync;
for (g[0] = 0, i = 1; i < num; i ++) g[i] += g[i-1];
launch[num] bumpup (h, g);
sync;
delete g;
}
export void sort_ispc (uniform int n, uniform unsigned int code[], uniform int order[], uniform int ntasks)
{
uniform int num = ntasks < 1 ? 13*4*8 : ntasks;
uniform int span = n / num;
uniform int hsize = 256*programCount*num;
uniform int * uniform hist = uniform new uniform int [hsize];
uniform int64 * uniform pair = uniform new uniform int64 [n];
uniform int64 * uniform temp = uniform new uniform int64 [n];
uniform int pass, i;
#if DEBUG
if (n < 100)
{
print ("input: ");
for (i = 0; i < n; i ++) print ("%, ", code[i]);
print ("\n");
}
#endif
launch[num] pack (span, n, code, pair);
sync;
#if 0
for (pass = 0; pass < 4; pass ++)
{
launch[num] histogram (span, n, pair, pass, hist);
sync;
prefix_sum (num, hist);
launch[num] permutation (span, n, pair, pass, hist, temp);
sync;
launch[num] copy (span, n, temp, pair);
sync;
}
launch[num] unpack (span, n, pair, code, order);
sync;
#if DEBUG
for (i = 0; i < n; i ++)
{
if (i > 0 && code[i-1] > code[i])
print ("ERR at % => % > %; ", i, code[i-1], code[i]);
}
if (n < 100)
{
print ("output: ");
for (i = 0; i < n; i ++) print ("%, ", code[i]);
print ("\n");
print ("order: ");
for (i = 0; i < n; i ++) print ("%, ", order[i]);
print ("\n");
}
#endif
#endif
delete hist;
delete pair;
delete temp;
}

View File

@@ -0,0 +1,405 @@
/*
Copyright (c) 2013, Durham University
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Durham University nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Author: Tomasz Koziara */
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
#include <iomanip>
#include "../timing.h"
//#include "sort_ispc.h"
//using namespace ispc;
#include <sys/time.h>
static inline double rtc(void)
{
struct timeval Tvalue;
double etime;
struct timezone dummy;
gettimeofday(&Tvalue,&dummy);
etime = (double) Tvalue.tv_sec +
1.e-6*((double) Tvalue.tv_usec);
return etime;
}
/******************************/
#include <cassert>
#include <iostream>
#include <cuda.h>
#include "drvapi_error_string.h"
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
// These are the inline versions for all of the SDK helper functions
void __checkCudaErrors(CUresult err, const char *file, const int line) {
if(CUDA_SUCCESS != err) {
std::cerr << "checkCudeErrors() Driver API error = " << err << "\""
<< getCudaDrvErrorString(err) << "\" from file <" << file
<< ", line " << line << "\n";
exit(-1);
}
}
/**********************/
/* Basic CUDriver API */
CUcontext context;
void createContext(const int deviceId = 0)
{
CUdevice device;
int devCount;
checkCudaErrors(cuInit(0));
checkCudaErrors(cuDeviceGetCount(&devCount));
assert(devCount > 0);
checkCudaErrors(cuDeviceGet(&device, deviceId < devCount ? deviceId : 0));
char name[128];
checkCudaErrors(cuDeviceGetName(name, 128, device));
std::cout << "Using CUDA Device [0]: " << name << "\n";
int devMajor, devMinor;
checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
std::cout << "Device Compute Capability: "
<< devMajor << "." << devMinor << "\n";
if (devMajor < 2) {
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
exit(1);
}
// Create driver context
checkCudaErrors(cuCtxCreate(&context, 0, device));
}
void destroyContext()
{
checkCudaErrors(cuCtxDestroy(context));
}
CUmodule loadModule(const char * module)
{
const double t0 = rtc();
CUmodule cudaModule;
// in this branch we use compilation with parameters
CUlinkState CUState;
CUlinkState *lState = &CUState;
const int nOptions = 7;
CUjit_option options[nOptions];
void* optionVals[nOptions];
float walltime;
const unsigned int logSize = 32768;
char error_log[logSize],
info_log[logSize];
void *cuOut;
size_t outSize;
int myErr = 0;
// Setup linker options
// Return walltime from JIT compilation
options[0] = CU_JIT_WALL_TIME;
optionVals[0] = (void*) &walltime;
// Pass a buffer for info messages
options[1] = CU_JIT_INFO_LOG_BUFFER;
optionVals[1] = (void*) info_log;
// Pass the size of the info buffer
options[2] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
optionVals[2] = (void*) logSize;
// Pass a buffer for error message
options[3] = CU_JIT_ERROR_LOG_BUFFER;
optionVals[3] = (void*) error_log;
// Pass the size of the error buffer
options[4] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES;
optionVals[4] = (void*) logSize;
// Make the linker verbose
options[5] = CU_JIT_LOG_VERBOSE;
optionVals[5] = (void*) 1;
// Max # of registers/pthread
options[6] = CU_JIT_MAX_REGISTERS;
int jitRegCount = 32;
optionVals[6] = (void *)(size_t)jitRegCount;
// Create a pending linker invocation
checkCudaErrors(cuLinkCreate(nOptions,options, optionVals, lState));
#if 0
if (sizeof(void *)==4)
{
// Load the PTX from the string myPtx32
printf("Loading myPtx32[] program\n");
// PTX May also be loaded from file, as per below.
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)myPtx32, strlen(myPtx32)+1, 0, 0, 0, 0);
}
else
#endif
{
// Load the PTX from the string myPtx (64-bit)
fprintf(stderr, "Loading ptx..\n");
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)module, strlen(module)+1, 0, 0, 0, 0);
myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_LIBRARY, "libcudadevrt.a", 0,0,0);
// PTX May also be loaded from file, as per below.
// myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_PTX, "myPtx64.ptx",0,0,0);
}
// Complete the linker step
myErr = cuLinkComplete(*lState, &cuOut, &outSize);
if ( myErr != CUDA_SUCCESS )
{
// Errors will be put in error_log, per CU_JIT_ERROR_LOG_BUFFER option above.
fprintf(stderr,"PTX Linker Error:\n%s\n",error_log);
assert(0);
}
// Linker walltime and info_log were requested in options above.
fprintf(stderr, "CUDA Link Completed in %fms [ %g ms]. Linker Output:\n%s\n",walltime,info_log,1e3*(rtc() - t0));
// Load resulting cuBin into module
checkCudaErrors(cuModuleLoadData(&cudaModule, cuOut));
// Destroy the linker invocation
checkCudaErrors(cuLinkDestroy(*lState));
fprintf(stderr, " loadModule took %g ms \n", 1e3*(rtc() - t0));
return cudaModule;
}
void unloadModule(CUmodule &cudaModule)
{
checkCudaErrors(cuModuleUnload(cudaModule));
}
CUfunction getFunction(CUmodule &cudaModule, const char * function)
{
CUfunction cudaFunction;
checkCudaErrors(cuModuleGetFunction(&cudaFunction, cudaModule, function));
return cudaFunction;
}
CUdeviceptr deviceMalloc(const size_t size)
{
CUdeviceptr d_buf;
checkCudaErrors(cuMemAlloc(&d_buf, size));
return d_buf;
}
void deviceFree(CUdeviceptr d_buf)
{
checkCudaErrors(cuMemFree(d_buf));
}
void memcpyD2H(void * h_buf, CUdeviceptr d_buf, const size_t size)
{
checkCudaErrors(cuMemcpyDtoH(h_buf, d_buf, size));
}
void memcpyH2D(CUdeviceptr d_buf, void * h_buf, const size_t size)
{
checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size));
}
#define deviceLaunch(func,params) \
checkCudaErrors(cuFuncSetCacheConfig((func), CU_FUNC_CACHE_PREFER_L1)); \
checkCudaErrors( \
cuLaunchKernel( \
(func), \
1,1,1, \
32, 1, 1, \
0, NULL, (params), NULL \
));
typedef CUdeviceptr devicePtr;
/**************/
#include <vector>
std::vector<char> readBinary(const char * filename)
{
std::vector<char> buffer;
FILE *fp = fopen(filename, "rb");
if (!fp )
{
fprintf(stderr, "file %s not found\n", filename);
assert(0);
}
#if 0
char c;
while ((c = fgetc(fp)) != EOF)
buffer.push_back(c);
#else
fseek(fp, 0, SEEK_END);
const unsigned long long size = ftell(fp); /*calc the size needed*/
fseek(fp, 0, SEEK_SET);
buffer.resize(size);
if (fp == NULL){ /*ERROR detection if file == empty*/
fprintf(stderr, "Error: There was an Error reading the file %s \n",filename);
exit(1);
}
else if (fread(&buffer[0], sizeof(char), size, fp) != size){ /* if count of read bytes != calculated size of .bin file -> ERROR*/
fprintf(stderr, "Error: There was an Error reading the file %s \n", filename);
exit(1);
}
#endif
fprintf(stderr, " read buffer of size= %d bytes \n", (int)buffer.size());
return buffer;
}
extern "C"
{
double CUDALaunch(
void **handlePtr,
const char * func_name,
void **func_args)
{
const std::vector<char> module_str = readBinary("__kernels.ptx");
const char * module = &module_str[0];
CUmodule cudaModule = loadModule(module);
CUfunction cudaFunction = getFunction(cudaModule, func_name);
const double t0 = rtc();
deviceLaunch(cudaFunction, func_args);
checkCudaErrors(cuStreamSynchronize(0));
const double dt = rtc() - t0;
unloadModule(cudaModule);
return dt;
}
}
/******************************/
extern void sort_serial (int n, unsigned int code[], int order[]);
/* progress bar by Ross Hemsley;
* http://www.rosshemsley.co.uk/2011/02/creating-a-progress-bar-in-c-or-any-other-console-app/ */
static inline void progressbar (unsigned int x, unsigned int n, unsigned int w = 50)
{
if (n < 100)
{
x *= 100/n;
n = 100;
}
if ((x != n) && (x % (n/100) != 0)) return;
using namespace std;
float ratio = x/(float)n;
int c = ratio * w;
cout << setw(3) << (int)(ratio*100) << "% [";
for (int x=0; x<c; x++) cout << "=";
for (int x=c; x<w; x++) cout << " ";
cout << "]\r" << flush;
}
int main (int argc, char *argv[])
{
int i, j, n = argc == 1 ? 1000000 : atoi(argv[1]), m = n < 100 ? 1 : 50, l = n < 100 ? n : RAND_MAX;
double tISPC1 = 0.0, tISPC2 = 0.0, tSerial = 0.0;
printf("n= %d \n", n);
unsigned int *code = new unsigned int [n];
int *order = new int [n];
srand (0);
#if 0
for (i = 0; i < m; i ++)
{
for (j = 0; j < n; j ++) code [j] = random() % l;
reset_and_start_timer();
const double t0 = rtc();
sort_ispc (n, code, order, 1);
tISPC1 += (rtc() - t0); //get_elapsed_mcycles();
if (argc != 3)
progressbar (i, m);
}
printf("[sort ispc]:\t[%.3f] million cycles\n", tISPC1);
#endif
srand (0);
/*******************/
createContext();
/*******************/
devicePtr d_code = deviceMalloc(n*sizeof(int));
devicePtr d_order = deviceMalloc(n*sizeof(int));
for (i = 0; i < m; i ++)
{
for (j = 0; j < n; j ++) code [j] = random() % l;
memcpyH2D(d_code, code, n*sizeof(int));
#if 0
reset_and_start_timer();
const double t0 = rtc();
sort_ispc (n, code, order, 0);
tISPC2 += (rtc() - t0); // get_elapsed_mcycles();
#else
const char * func_name = "sort_ispc";
int ntask = 0;
void *func_args[] = {&n, &d_code, &d_order, &ntask};
const double dt = CUDALaunch(NULL, func_name, func_args);
#endif
if (argc != 3)
progressbar (i, m);
}
printf("[sort ispc + tasks]:\t[%.3f] million cycles\n", tISPC2);
srand (0);
for (i = 0; i < m; i ++)
{
for (j = 0; j < n; j ++) code [j] = random() % l;
reset_and_start_timer();
const double t0 = rtc();
sort_serial (n, code, order);
tSerial += (rtc() - t0);//get_elapsed_mcycles();
if (argc != 3)
progressbar (i, m);
}
printf("[sort serial]:\t\t[%.3f] million cycles\n", tSerial);
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n", tSerial/tISPC1, tSerial/tISPC2);
delete code;
delete order;
return 0;
}