added mergeSort

This commit is contained in:
Evghenii
2014-02-20 13:58:55 +01:00
parent a169ff636b
commit 607e010874
6 changed files with 1445 additions and 0 deletions

View File

@@ -0,0 +1,12 @@
EXAMPLE=mergeSort
CPP_SRC=mergeSort.cpp
ISPC_SRC=mergeSort.ispc
ISPC_IA_TARGETS=avx1-i32x8
ISPC_ARM_TARGETS=neon
#ISPC_FLAGS=-DDEBUG -g
CXXFLAGS=-g
CCFLAGS=-g
#NVCC_FLAGS=-Xptxas=-O0
include ../common_cpu.mk

View File

@@ -0,0 +1,15 @@
PROG=mergeSort
ISPC_SRC=mergeSort.ispc
CU_SRC=mergeSort.cu
CXX_SRC=mergeSort.cpp mergeSort.cpp
PTXCC_REGMAX=64
#PTXCC_FLAGS= -Xptxas=-O3
#NVCC_FLAGS=-Xptxas=-O0
LLVM_GPU=1
NVVM_GPU=1
include ../common_ptx.mk

View File

@@ -0,0 +1,3 @@
#pragma once
typedef float Key_t;
typedef int Val_t;

View File

@@ -0,0 +1,135 @@
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <iostream>
#include <cassert>
#include <iomanip>
#include "timing.h"
#include "ispc_malloc.h"
#include "mergeSort_ispc.h"
/* progress bar by Ross Hemsley;
* http://www.rosshemsley.co.uk/2011/02/creating-a-progress-bar-in-c-or-any-other-console-app/ */
static inline void progressbar (unsigned int x, unsigned int n, unsigned int w = 50)
{
if (n < 100)
{
x *= 100/n;
n = 100;
}
if ((x != n) && (x % (n/100) != 0)) return;
using namespace std;
float ratio = x/(float)n;
int c = ratio * w;
cout << setw(3) << (int)(ratio*100) << "% [";
for (int x=0; x<c; x++) cout << "=";
for (int x=c; x<w; x++) cout << " ";
cout << "]\r" << flush;
}
#include "keyType.h"
struct Key
{
Key_t key;
Val_t val;
};
int main (int argc, char *argv[])
{
int i, j, n = argc == 1 ? 1024*1024: atoi(argv[1]), m = n < 100 ? 1 : 50, l = n < 100 ? n : RAND_MAX;
double tISPC1 = 0.0, tISPC2 = 0.0, tSerial = 0.0;
Key *keys = new Key[n];
srand48(rtc()*65536);
#pragma omp parallel for
for (int i = 0; i < n; i++)
{
keys[i].key = i; //((int)(drand48() * (1<<30)));
keys[i].val = i;
}
std::random_shuffle(keys, keys + n);
Key_t *keysSrc = new Key_t[n];
Val_t *valsSrc = new Val_t[n];
Key_t *keysBuf = new Key_t[n];
Val_t *valsBuf = new Val_t[n];
Key_t *keysDst = new Key_t[n];
Val_t *valsDst = new Val_t[n];
Key_t *keysGld = new Key_t[n];
Val_t *valsGld = new Val_t[n];
#pragma omp parallel for
for (int i = 0; i < n; i++)
{
keysSrc[i] = keys[i].key;
valsSrc[i] = keys[i].val;
keysGld[i] = keysSrc[i];
valsGld[i] = valsSrc[i];
}
delete keys;
ispcSetMallocHeapLimit(1024*1024*1024);
ispc::openMergeSort();
tISPC2 = 1e30;
for (i = 0; i < m; i ++)
{
ispcMemcpy(keysSrc, keysGld, n*sizeof(Key_t));
ispcMemcpy(valsSrc, valsGld, n*sizeof(Val_t));
reset_and_start_timer();
ispc::mergeSort(keysDst, valsDst, keysBuf, valsBuf, keysSrc, valsSrc, n);
tISPC2 = std::min(tISPC2, get_elapsed_msec());
if (argc != 3)
progressbar (i, m);
}
ispc::closeMergeSort();
printf("[sort ispc + tasks]:\t[%.3f] msec [%.3f Mpair/s]\n", tISPC2, 1.0e-3*n/tISPC2);
#if 0
printf("\n---\n");
for (int i = 0; i < 128; i++)
{
if ((i%32) == 0) printf("\n");
printf("%d ", (int)keysSrc[i]);
}
printf("\n---\n");
for (int i = 0; i < 128; i++)
{
if ((i%32) == 0) printf("\n");
printf("%d ", (int)keysBuf[i]);
}
printf("\n---\n");
for (int i = 0; i < 128; i++)
{
if ((i%32) == 0) printf("\n");
printf("%d ", (int)keysDst[i]);
}
printf("\n---\n");
#endif
std::sort(keysGld, keysGld + n);
for (int i = 0; i < n; i++)
assert(keysDst[i] == keysGld[i]);
delete keysSrc;
delete valsSrc;
delete keysDst;
delete valsDst;
delete keysBuf;
delete valsBuf;
delete keysGld;
delete valsGld;
return 0;
}

View File

@@ -0,0 +1,658 @@
#include "keyType.h"
#include "cuda_helpers.cuh"
#include <cassert>
#define uniform
#define SAMPLE_STRIDE programCount
#define iDivUp(a,b) (((a) + (b) - 1)/(b))
#define getSampleCount(dividend) (iDivUp((dividend), (SAMPLE_STRIDE)))
#define W (/*sizeof(int)=*/4 * 8)
__device__ static inline
int nextPowerOfTwo(int x)
{
#if 0
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return ++x;
#else
return 1U << (W - __clz(x - 1));
#endif
}
__device__ static inline
int binarySearchInclusiveRanks(
const int val,
uniform int *data,
const int L,
int stride)
{
if (L == 0)
return 0;
int pos = 0;
for (; stride > 0; stride >>= 1)
{
int newPos = min(pos + stride, L);
if (data[newPos - 1] <= val)
pos = newPos;
}
return pos;
}
__device__ static inline
int binarySearchExclusiveRanks(
const int val,
uniform int *data,
const int L,
int stride)
{
if (L == 0)
return 0;
int pos = 0;
for (; stride > 0; stride >>= 1)
{
int newPos = min(pos + stride, L);
if (data[newPos - 1] < val)
pos = newPos;
}
return pos;
}
__device__ static inline
int binarySearchInclusive(
const Key_t val,
uniform Key_t *data,
const int L,
int stride)
{
if (L == 0)
return 0;
int pos = 0;
for (; stride > 0; stride >>= 1)
{
int newPos = min(pos + stride, L);
if (data[newPos - 1] <= val)
pos = newPos;
}
return pos;
}
__device__ static inline
int binarySearchExclusive(
const Key_t val,
uniform Key_t *data,
const int L,
int stride)
{
if (L == 0)
return 0;
int pos = 0;
for (; stride > 0; stride >>= 1)
{
int newPos = min(pos + stride, L);
if (data[newPos - 1] < val)
pos = newPos;
}
return pos;
}
__device__ static inline
int binarySearchInclusive1(
const Key_t val,
Key_t data,
const uniform int L,
uniform int stride)
{
if (L == 0)
return 0;
int pos = 0;
for (; stride > 0; stride >>= 1)
{
int newPos = min(pos + stride, L);
if (shuffle(data,newPos - 1) <= val)
pos = newPos;
}
return pos;
}
__device__ static inline
int binarySearchExclusive1(
const Key_t val,
Key_t data,
const uniform int L,
uniform int stride)
{
if (L == 0)
return 0;
int pos = 0;
for (; stride > 0; stride >>= 1)
{
int newPos = min(pos + stride, L);
if (shuffle(data,newPos - 1) < val)
pos = newPos;
}
return pos;
}
////////////////////////////////////////////////////////////////////////////////
// Bottom-level merge sort (binary search-based)
////////////////////////////////////////////////////////////////////////////////
__global__
void mergeSortGangKernel(
uniform int batchSize,
uniform Key_t dstKey[],
uniform Val_t dstVal[],
uniform Key_t srcKey[],
uniform Val_t srcVal[])
{
const uniform int blkIdx = taskIndex;
const uniform int blkDim = (batchSize + taskCount - 1)/taskCount;
const uniform int blkBeg = blkIdx * blkDim;
const uniform int blkEnd = min(blkBeg + blkDim, batchSize);
__shared__ Key_t s_key_tmp[2*programCount*4];
__shared__ Val_t s_val_tmp[2*programCount*4];
Key_t *s_key = s_key_tmp + warpIdx*(2*programCount);
Val_t *s_val = s_val_tmp + warpIdx*(2*programCount);
for (uniform int blk = blkBeg; blk < blkEnd; blk++)
{
const uniform int base = blk * (programCount*2);
s_key[programIndex + 0] = srcKey[base + programIndex + 0];
s_val[programIndex + 0] = srcVal[base + programIndex + 0];
s_key[programIndex + programCount] = srcKey[base + programIndex + programCount];
s_val[programIndex + programCount] = srcVal[base + programIndex + programCount];
for (uniform int stride = 1; stride < 2*programCount; stride <<= 1)
{
const int lPos = programIndex & (stride - 1);
uniform Key_t *baseKey = s_key + 2 * (programIndex - lPos);
uniform Val_t *baseVal = s_val + 2 * (programIndex - lPos);
Key_t keyA = baseKey[lPos + 0];
Val_t valA = baseVal[lPos + 0];
Key_t keyB = baseKey[lPos + stride];
Val_t valB = baseVal[lPos + stride];
int posA = binarySearchExclusive(keyA, baseKey + stride, stride, stride) + lPos;
int posB = binarySearchInclusive(keyB, baseKey + 0, stride, stride) + lPos;
baseKey[posA] = keyA;
baseVal[posA] = valA;
baseKey[posB] = keyB;
baseVal[posB] = valB;
}
dstKey[base + programIndex + 0] = s_key[programIndex + 0];
dstVal[base + programIndex + 0] = s_val[programIndex + 0];
dstKey[base + programIndex + programCount] = s_key[programIndex + programCount];
dstVal[base + programIndex + programCount] = s_val[programIndex + programCount];
}
}
__device__ static inline
void mergeSortGang(
uniform Key_t dstKey[],
uniform Val_t dstVal[],
uniform Key_t srcKey[],
uniform Val_t srcVal[],
uniform int batchSize)
{
uniform int nTasks = batchSize;
launch (nTasks,1,1,mergeSortGangKernel)(batchSize, dstKey, dstVal, srcKey, srcVal);
sync;
}
////////////////////////////////////////////////////////////////////////////////
// Merge step 1: generate sample ranks
////////////////////////////////////////////////////////////////////////////////
__global__
void generateSampleRanksKernel(
uniform int nBlocks,
uniform int in_ranksA[],
uniform int in_ranksB[],
uniform Key_t in_srcKey[],
uniform int stride,
uniform int N,
uniform int totalProgramCount)
{
const uniform int blkIdx = taskIndex;
const uniform int blkDim = (nBlocks + taskCount - 1)/taskCount;
const uniform int blkBeg = blkIdx * blkDim;
const uniform int blkEnd = min(blkBeg + blkDim, nBlocks);
for (uniform int blk = blkBeg; blk < blkEnd; blk++)
{
const int pos = blk * programCount + programIndex;
cif (pos >= totalProgramCount)
return;
const int i = pos & ((stride / SAMPLE_STRIDE) - 1);
const int segmentBase = (pos - i) * (2 * SAMPLE_STRIDE);
uniform Key_t * srcKey = in_srcKey + segmentBase;
uniform int * ranksA = in_ranksA + segmentBase / SAMPLE_STRIDE;
uniform int * ranksB = in_ranksB + segmentBase / SAMPLE_STRIDE;
const int segmentElementsA = stride;
const int segmentElementsB = min(stride, N - segmentBase - stride);
const int segmentSamplesA = getSampleCount(segmentElementsA);
const int segmentSamplesB = getSampleCount(segmentElementsB);
if (i < segmentSamplesA)
{
ranksA[i] = i * SAMPLE_STRIDE;
ranksB[i] = binarySearchExclusive(
srcKey[i * SAMPLE_STRIDE], srcKey + stride,
segmentElementsB, nextPowerOfTwo(segmentElementsB));
}
if (i < segmentSamplesB)
{
ranksB[(stride / SAMPLE_STRIDE) + i] = i * SAMPLE_STRIDE;
ranksA[(stride / SAMPLE_STRIDE) + i] = binarySearchInclusive(
srcKey[stride + i * SAMPLE_STRIDE], srcKey + 0,
segmentElementsA, nextPowerOfTwo(segmentElementsA));
}
}
}
__device__ static inline
void generateSampleRanks(
uniform int ranksA[],
uniform int ranksB[],
uniform Key_t srcKey[],
uniform int stride,
uniform int N)
{
uniform int lastSegmentElements = N % (2 * stride);
uniform int threadCount = (lastSegmentElements > stride) ?
(N + 2 * stride - lastSegmentElements) / (2 * SAMPLE_STRIDE) :
(N - lastSegmentElements) / (2 * SAMPLE_STRIDE);
uniform int nBlocks = iDivUp(threadCount, SAMPLE_STRIDE);
uniform int nTasks = nBlocks;
launch (nTasks,1,1, generateSampleRanksKernel)(nBlocks, ranksA, ranksB, srcKey, stride, N, threadCount);
sync;
}
////////////////////////////////////////////////////////////////////////////////
// Merge step 2: generate sample ranks and indices
////////////////////////////////////////////////////////////////////////////////
__global__
void mergeRanksAndIndicesKernel(
uniform int nBlocks,
uniform int in_Limits[],
uniform int in_Ranks[],
uniform int stride,
uniform int N,
uniform int totalProgramCount)
{
const uniform int blkIdx = taskIndex;
const uniform int blkDim = (nBlocks + taskCount - 1)/taskCount;
const uniform int blkBeg = blkIdx * blkDim;
const uniform int blkEnd = min(blkBeg + blkDim, nBlocks);
for (uniform int blk = blkBeg; blk < blkEnd; blk++)
{
int pos = blk * programCount + programIndex;
cif (pos >= totalProgramCount)
return;
const int i = pos & ((stride / SAMPLE_STRIDE) - 1);
const int segmentBase = (pos - i) * (2 * SAMPLE_STRIDE);
uniform int * ranks = in_Ranks + (pos - i) * 2;
uniform int * limits = in_Limits + (pos - i) * 2;
const int segmentElementsA = stride;
const int segmentElementsB = min(stride, N - segmentBase - stride);
const int segmentSamplesA = getSampleCount(segmentElementsA);
const int segmentSamplesB = getSampleCount(segmentElementsB);
if (i < segmentSamplesA)
{
int dstPos = binarySearchExclusiveRanks(ranks[i], ranks + segmentSamplesA, segmentSamplesB, nextPowerOfTwo(segmentSamplesB)) + i;
limits[dstPos] = ranks[i];
}
if (i < segmentSamplesB)
{
int dstPos = binarySearchInclusiveRanks(ranks[segmentSamplesA + i], ranks, segmentSamplesA, nextPowerOfTwo(segmentSamplesA)) + i;
limits[dstPos] = ranks[segmentSamplesA + i];
}
}
}
__device__ static inline
void mergeRanksAndIndices(
uniform int limitsA[],
uniform int limitsB[],
uniform int ranksA[],
uniform int ranksB[],
uniform int stride,
uniform int N)
{
const uniform int lastSegmentElements = N % (2 * stride);
const uniform int threadCount = (lastSegmentElements > stride) ?
(N + 2 * stride - lastSegmentElements) / (2 * SAMPLE_STRIDE) :
(N - lastSegmentElements) / (2 * SAMPLE_STRIDE);
const uniform int nBlocks = iDivUp(threadCount, SAMPLE_STRIDE);
uniform int nTasks = nBlocks;
launch (nTasks,1,1,mergeRanksAndIndicesKernel)(
nBlocks,
limitsA,
ranksA,
stride,
N,
threadCount);
launch (nTasks,1,1, mergeRanksAndIndicesKernel)(
nBlocks,
limitsB,
ranksB,
stride,
N,
threadCount);
sync;
}
__global__
void mergeElementaryIntervalsKernel(
uniform int mergePairs,
uniform Key_t dstKey[],
uniform Val_t dstVal[],
uniform Key_t srcKey[],
uniform Val_t srcVal[],
uniform int limitsA[],
uniform int limitsB[],
uniform int stride,
uniform int N)
{
const uniform int blkIdx = taskIndex;
const uniform int blkDim = (mergePairs + taskCount - 1)/taskCount;
const uniform int blkBeg = blkIdx * blkDim;
const uniform int blkEnd = min(blkBeg + blkDim, mergePairs);
for (uniform int blk = blkBeg; blk < blkEnd; blk++)
{
const int uniform intervalI = blk & ((2 * stride) / SAMPLE_STRIDE - 1);
const int uniform segmentBase = (blk - intervalI) * SAMPLE_STRIDE;
//Set up threadblk-wide parameters
const uniform int segmentElementsA = stride;
const uniform int segmentElementsB = min(stride, N - segmentBase - stride);
const uniform int segmentSamplesA = getSampleCount(segmentElementsA);
const uniform int segmentSamplesB = getSampleCount(segmentElementsB);
const uniform int segmentSamples = segmentSamplesA + segmentSamplesB;
const uniform int startSrcA = limitsA[blk];
const uniform int startSrcB = limitsB[blk];
const uniform int endSrcA = (intervalI + 1 < segmentSamples) ? limitsA[blk + 1] : segmentElementsA;
const uniform int endSrcB = (intervalI + 1 < segmentSamples) ? limitsB[blk + 1] : segmentElementsB;
const uniform int lenSrcA = endSrcA - startSrcA;
const uniform int lenSrcB = endSrcB - startSrcB;
const uniform int startDstA = startSrcA + startSrcB;
const uniform int startDstB = startDstA + lenSrcA;
//Load main input data
Key_t keyA, keyB;
Val_t valA, valB;
if (programIndex < lenSrcA)
{
keyA = srcKey[segmentBase + startSrcA + programIndex];
valA = srcVal[segmentBase + startSrcA + programIndex];
}
if (programIndex < lenSrcB)
{
keyB = srcKey[segmentBase + stride + startSrcB + programIndex];
valB = srcVal[segmentBase + stride + startSrcB + programIndex];
}
// Compute destination addresses for merge data
int dstPosA, dstPosB, dstA = -1, dstB = -1;
if (any(programIndex < lenSrcA))
dstPosA = binarySearchExclusive1(keyA, keyB, lenSrcB, SAMPLE_STRIDE) + programIndex;
if (any(programIndex < lenSrcB))
dstPosB = binarySearchInclusive1(keyB, keyA, lenSrcA, SAMPLE_STRIDE) + programIndex;
if (programIndex < lenSrcA && dstPosA < lenSrcA)
dstA = segmentBase + startDstA + dstPosA;
dstPosA -= lenSrcA;
if (programIndex < lenSrcA && dstPosA < lenSrcB)
dstA = segmentBase + startDstB + dstPosA;
if (programIndex < lenSrcB && dstPosB < lenSrcA)
dstB = segmentBase + startDstA + dstPosB;
dstPosB -= lenSrcA;
if (programIndex < lenSrcB && dstPosB < lenSrcB)
dstB = segmentBase + startDstB + dstPosB;
// store merge data
if (dstA >= 0)
{
// int dstA = segmentBase + startSrcA + programIndex;
dstKey[dstA] = keyA;
dstVal[dstA] = valA;
}
if (dstB >= 0)
{
// int dstB = segmentBase + stride + startSrcB + programIndex;
dstKey[dstB] = keyB;
dstVal[dstB] = valB;
}
}
}
__device__ static inline
void mergeElementaryIntervals(
uniform int nTasks,
uniform Key_t dstKey[],
uniform Val_t dstVal[],
uniform Key_t srcKey[],
uniform Val_t srcVal[],
uniform int limitsA[],
uniform int limitsB[],
uniform int stride,
uniform int N)
{
const uniform int lastSegmentElements = N % (2 * stride);
const uniform int mergePairs = (lastSegmentElements > stride) ? getSampleCount(N) : (N - lastSegmentElements) / SAMPLE_STRIDE;
nTasks = mergePairs/(programCount);
launch (nTasks,1,1, mergeElementaryIntervalsKernel)(
mergePairs,
dstKey,
dstVal,
srcKey,
srcVal,
limitsA,
limitsB,
stride,
N);
sync;
}
__device__ static uniform int * uniform memPool = NULL;
__device__ static uniform int * uniform ranksA;
__device__ static uniform int * uniform ranksB;
__device__ static uniform int * uniform limitsA;
__device__ static uniform int * uniform limitsB;
__device__ static uniform int nTasks;
__device__ static uniform int MAX_SAMPLE_COUNT = 0;
__global__
void openMergeSort___export()
{
nTasks = 13*32*13;
MAX_SAMPLE_COUNT = 8*32 * 131072 / programCount;
assert(memPool == NULL);
const uniform int nalloc = MAX_SAMPLE_COUNT * 4;
memPool = uniform new uniform int[nalloc];
ranksA = memPool;
ranksB = ranksA + MAX_SAMPLE_COUNT;
limitsA = ranksB + MAX_SAMPLE_COUNT;
limitsB = limitsA + MAX_SAMPLE_COUNT;
}
extern "C"
void openMergeSort()
{
openMergeSort___export<<<1,1>>>();
sync;
}
__global__
void closeMergeSort___export()
{
assert(memPool != NULL);
delete memPool;
memPool = NULL;
}
extern "C"
void closeMergeSort()
{
closeMergeSort___export<<<1,1>>>();
sync;
}
__global__
void mergeSort___export(
uniform Key_t dstKey[],
uniform Val_t dstVal[],
uniform Key_t bufKey[],
uniform Val_t bufVal[],
uniform Key_t srcKey[],
uniform Val_t srcVal[],
uniform int N)
{
uniform int stageCount = 0;
for (uniform int stride = 2*programCount; stride < N; stride <<= 1, stageCount++);
uniform Key_t * uniform iKey, * uniform oKey;
uniform Val_t * uniform iVal, * uniform oVal;
if (stageCount & 1)
{
iKey = bufKey;
iVal = bufVal;
oKey = dstKey;
oVal = dstVal;
}
else
{
iKey = dstKey;
iVal = dstVal;
oKey = bufKey;
oVal = bufVal;
}
assert(N <= SAMPLE_STRIDE * MAX_SAMPLE_COUNT);
assert(N % (programCount*2) == 0);
// k20m: 140 M/s
{
// k20m: 2367 M/s
mergeSortGang(iKey, iVal, srcKey, srcVal, N/(2*programCount));
#if 1
for (uniform int stride = 2*programCount; stride < N; stride <<= 1)
{
const uniform int lastSegmentElements = N % (2 * stride);
// k20m: 271 M/s
{
#if 1
// k20m: 944 M/s
{
// k20m: 1396 M/s
//Find sample ranks and prepare for limiters merge
generateSampleRanks(ranksA, ranksB, iKey, stride, N);
// k20m: 2379 M/s
//Merge ranks and indices
mergeRanksAndIndices(limitsA, limitsB, ranksA, ranksB, stride, N);
}
#endif
// k20m: 371 M/s
//Merge elementary intervals
mergeElementaryIntervals(nTasks, oKey, oVal, iKey, iVal, limitsA, limitsB, stride, N);
}
if (lastSegmentElements <= stride)
for (int i = programIndex; i < lastSegmentElements; i += programCount)
if (i < lastSegmentElements)
{
oKey[N-lastSegmentElements+i] = iKey[N-lastSegmentElements+i];
oVal[N-lastSegmentElements+i] = iVal[N-lastSegmentElements+i];
}
{
uniform Key_t * uniform tmpKey = iKey;
iKey = oKey;
oKey = tmpKey;
}
{
uniform Val_t * uniform tmpVal = iVal;
iVal = oVal;
oVal = tmpVal;
}
}
#endif
}
}
extern "C"
void mergeSort(
uniform Key_t dstKey[],
uniform Val_t dstVal[],
uniform Key_t bufKey[],
uniform Val_t bufVal[],
uniform Key_t srcKey[],
uniform Val_t srcVal[],
uniform int N)
{
mergeSort___export<<<1,32>>>(
dstKey,
dstVal,
bufKey,
bufVal,
srcKey,
srcVal,
N);
sync;
}

View File

@@ -0,0 +1,622 @@
#include "keyType.h"
#define SAMPLE_STRIDE programCount
#define iDivUp(a,b) (((a) + (b) - 1)/(b))
#define getSampleCount(dividend) (iDivUp((dividend), (SAMPLE_STRIDE)))
#define W (/*sizeof(int)=*/4 * 8)
static inline
int nextPowerOfTwo(int x)
{
#if 0
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return ++x;
#else
return 1U << (W - count_leading_zeros(x - 1));
#endif
}
static inline
int binarySearchInclusiveRanks(
const int val,
uniform int *data,
const int L,
int stride)
{
cif (L == 0)
return 0;
int pos = 0;
cfor (; stride > 0; stride >>= 1)
{
int newPos = min(pos + stride, L);
cif (data[newPos - 1] <= val)
pos = newPos;
}
return pos;
}
static inline
int binarySearchExclusiveRanks(
const int val,
uniform int *data,
const int L,
int stride)
{
cif (L == 0)
return 0;
int pos = 0;
cfor (; stride > 0; stride >>= 1)
{
int newPos = min(pos + stride, L);
if (data[newPos - 1] < val)
pos = newPos;
}
return pos;
}
static inline
int binarySearchInclusive(
const Key_t val,
uniform Key_t *data,
const int L,
int stride)
{
cif (L == 0)
return 0;
int pos = 0;
cfor (; stride > 0; stride >>= 1)
{
int newPos = min(pos + stride, L);
if (data[newPos - 1] <= val)
pos = newPos;
}
return pos;
}
static inline
int binarySearchExclusive(
const Key_t val,
uniform Key_t *data,
const int L,
int stride)
{
cif (L == 0)
return 0;
int pos = 0;
cfor (; stride > 0; stride >>= 1)
{
int newPos = min(pos + stride, L);
if (data[newPos - 1] < val)
pos = newPos;
}
return pos;
}
static inline
int binarySearchInclusive1(
const Key_t val,
Key_t data,
const uniform int L,
uniform int stride)
{
if (L == 0)
return 0;
int pos = 0;
for (; stride > 0; stride >>= 1)
{
int newPos = min(pos + stride, L);
if (shuffle(data,newPos - 1) <= val)
pos = newPos;
}
return pos;
}
static inline
int binarySearchExclusive1(
const Key_t val,
Key_t data,
const uniform int L,
uniform int stride)
{
if (L == 0)
return 0;
int pos = 0;
for (; stride > 0; stride >>= 1)
{
int newPos = min(pos + stride, L);
if (shuffle(data,newPos - 1) < val)
pos = newPos;
}
return pos;
}
////////////////////////////////////////////////////////////////////////////////
// Bottom-level merge sort (binary search-based)
////////////////////////////////////////////////////////////////////////////////
task
void mergeSortGangKernel(
uniform int batchSize,
uniform Key_t dstKey[],
uniform Val_t dstVal[],
uniform Key_t srcKey[],
uniform Val_t srcVal[],
uniform int arrayLength)
{
const uniform int blockIdx = taskIndex;
const uniform int blockDim = (batchSize + taskCount - 1)/taskCount;
const uniform int blockBeg = blockIdx * blockDim;
const uniform int blockEnd = min(blockBeg + blockDim, batchSize);
uniform Key_t s_key[2*programCount];
uniform Val_t s_val[2*programCount];
for (uniform int block = blockBeg; block < blockEnd; block++)
{
const uniform int base = block * (programCount*2);
s_key[programIndex + 0] = srcKey[base + programIndex + 0];
s_val[programIndex + 0] = srcVal[base + programIndex + 0];
s_key[programIndex + programCount] = srcKey[base + programIndex + programCount];
s_val[programIndex + programCount] = srcVal[base + programIndex + programCount];
for (uniform int stride = 1; stride < arrayLength; stride <<= 1)
{
const int lPos = programIndex & (stride - 1);
const int offset = 2 * (programIndex - lPos);
uniform Key_t *baseKey = s_key + 2 * (programIndex - lPos);
uniform Val_t *baseVal = s_val + 2 * (programIndex - lPos);
Key_t keyA = baseKey[lPos + 0];
Val_t valA = baseVal[lPos + 0];
Key_t keyB = baseKey[lPos + stride];
Val_t valB = baseVal[lPos + stride];
int posA = binarySearchExclusive(keyA, baseKey + stride, stride, stride) + lPos;
int posB = binarySearchInclusive(keyB, baseKey + 0, stride, stride) + lPos;
baseKey[posA] = keyA;
baseVal[posA] = valA;
baseKey[posB] = keyB;
baseVal[posB] = valB;
}
dstKey[base + programIndex + 0] = s_key[programIndex + 0];
dstVal[base + programIndex + 0] = s_val[programIndex + 0];
dstKey[base + programIndex + programCount] = s_key[programIndex + programCount];
dstVal[base + programIndex + programCount] = s_val[programIndex + programCount];
}
}
static inline
void mergeSortGang(
uniform Key_t dstKey[],
uniform Val_t dstVal[],
uniform Key_t srcKey[],
uniform Val_t srcVal[],
uniform int batchSize)
{
uniform int nTasks = num_cores()*4;
#ifdef __NVPTX__
nTasks = iDivUp(batchSize,1);
#endif
launch [nTasks] mergeSortGangKernel(batchSize, dstKey, dstVal, srcKey, srcVal, 2*programCount);
sync;
}
////////////////////////////////////////////////////////////////////////////////
// Merge step 1: generate sample ranks
////////////////////////////////////////////////////////////////////////////////
task
void generateSampleRanksKernel(
uniform int nBlocks,
uniform int in_ranksA[],
uniform int in_ranksB[],
uniform Key_t in_srcKey[],
uniform int stride,
uniform int N,
uniform int totalProgramCount)
{
const uniform int blockIdx = taskIndex;
const uniform int blockDim = (nBlocks + taskCount - 1)/taskCount;
const uniform int blockBeg = blockIdx * blockDim;
const uniform int blockEnd = min(blockBeg + blockDim, nBlocks);
for (uniform int block = blockBeg; block < blockEnd; block++)
{
const int pos = block * programCount + programIndex;
cif (pos >= totalProgramCount)
return;
const int i = pos & ((stride / SAMPLE_STRIDE) - 1);
const int segmentBase = (pos - i) * (2 * SAMPLE_STRIDE);
uniform Key_t * srcKey = in_srcKey + segmentBase;
uniform int * ranksA = in_ranksA + segmentBase / SAMPLE_STRIDE;
uniform int * ranksB = in_ranksB + segmentBase / SAMPLE_STRIDE;
const int segmentElementsA = stride;
const int segmentElementsB = min(stride, N - segmentBase - stride);
const int segmentSamplesA = getSampleCount(segmentElementsA);
const int segmentSamplesB = getSampleCount(segmentElementsB);
if (i < segmentSamplesA)
{
ranksA[i] = i * SAMPLE_STRIDE;
ranksB[i] = binarySearchExclusive(
srcKey[i * SAMPLE_STRIDE], srcKey + stride,
segmentElementsB, nextPowerOfTwo(segmentElementsB));
}
if (i < segmentSamplesB)
{
ranksB[(stride / SAMPLE_STRIDE) + i] = i * SAMPLE_STRIDE;
ranksA[(stride / SAMPLE_STRIDE) + i] = binarySearchInclusive(
srcKey[stride + i * SAMPLE_STRIDE], srcKey + 0,
segmentElementsA, nextPowerOfTwo(segmentElementsA));
}
}
}
static inline
void generateSampleRanks(
uniform int ranksA[],
uniform int ranksB[],
uniform Key_t srcKey[],
uniform int stride,
uniform int N)
{
uniform int lastSegmentElements = N % (2 * stride);
uniform int threadCount = (lastSegmentElements > stride) ?
(N + 2 * stride - lastSegmentElements) / (2 * SAMPLE_STRIDE) :
(N - lastSegmentElements) / (2 * SAMPLE_STRIDE);
uniform int nBlocks = iDivUp(threadCount, SAMPLE_STRIDE);
uniform int nTasks = num_cores()*4;
#ifdef __NVPTX__
nTasks = iDivUp(nBlocks,1);
#endif
launch [nTasks] generateSampleRanksKernel(nBlocks, ranksA, ranksB, srcKey, stride, N, threadCount);
sync;
}
////////////////////////////////////////////////////////////////////////////////
// Merge step 2: generate sample ranks and indices
////////////////////////////////////////////////////////////////////////////////
task
void mergeRanksAndIndicesKernel(
uniform int nBlocks,
uniform int in_Limits[],
uniform int in_Ranks[],
uniform int stride,
uniform int N,
uniform int totalProgramCount)
{
const uniform int blockIdx = taskIndex;
const uniform int blockDim = (nBlocks + taskCount - 1)/taskCount;
const uniform int blockBeg = blockIdx * blockDim;
const uniform int blockEnd = min(blockBeg + blockDim, nBlocks);
for (uniform int block = blockBeg; block < blockEnd; block++)
{
int pos = block * programCount + programIndex;
cif (pos >= totalProgramCount)
return;
const int i = pos & ((stride / SAMPLE_STRIDE) - 1);
const int segmentBase = (pos - i) * (2 * SAMPLE_STRIDE);
uniform int * ranks = in_Ranks + (pos - i) * 2;
uniform int * limits = in_Limits + (pos - i) * 2;
const int segmentElementsA = stride;
const int segmentElementsB = min(stride, N - segmentBase - stride);
const int segmentSamplesA = getSampleCount(segmentElementsA);
const int segmentSamplesB = getSampleCount(segmentElementsB);
if (i < segmentSamplesA)
{
int dstPos = binarySearchExclusiveRanks(ranks[i], ranks + segmentSamplesA, segmentSamplesB, nextPowerOfTwo(segmentSamplesB)) + i;
limits[dstPos] = ranks[i];
}
if (i < segmentSamplesB)
{
int dstPos = binarySearchInclusiveRanks(ranks[segmentSamplesA + i], ranks, segmentSamplesA, nextPowerOfTwo(segmentSamplesA)) + i;
limits[dstPos] = ranks[segmentSamplesA + i];
}
}
}
static inline
void mergeRanksAndIndices(
uniform int limitsA[],
uniform int limitsB[],
uniform int ranksA[],
uniform int ranksB[],
uniform int stride,
uniform int N)
{
const uniform int lastSegmentElements = N % (2 * stride);
const uniform int threadCount = (lastSegmentElements > stride) ?
(N + 2 * stride - lastSegmentElements) / (2 * SAMPLE_STRIDE) :
(N - lastSegmentElements) / (2 * SAMPLE_STRIDE);
const uniform int nBlocks = iDivUp(threadCount, SAMPLE_STRIDE);
uniform int nTasks = num_cores()*4;
#ifdef __NVPTX__
nTasks = iDivUp(nBlocks,1);
#endif
launch [nTasks] mergeRanksAndIndicesKernel(
nBlocks,
limitsA,
ranksA,
stride,
N,
threadCount);
launch [nTasks] mergeRanksAndIndicesKernel(
nBlocks,
limitsB,
ranksB,
stride,
N,
threadCount);
sync;
}
task
void mergeElementaryIntervalsKernel(
uniform int mergePairs,
uniform Key_t dstKey[],
uniform Val_t dstVal[],
uniform Key_t srcKey[],
uniform Val_t srcVal[],
uniform int limitsA[],
uniform int limitsB[],
uniform int stride,
uniform int N)
{
const uniform int blockIdx = taskIndex;
const uniform int blockDim = (mergePairs + taskCount - 1)/taskCount;
const uniform int blockBeg = blockIdx * blockDim;
const uniform int blockEnd = min(blockBeg + blockDim, mergePairs);
for (uniform int block = blockBeg; block < blockEnd; block++)
{
const int uniform intervalI = block & ((2 * stride) / SAMPLE_STRIDE - 1);
const int uniform segmentBase = (block - intervalI) * SAMPLE_STRIDE;
//Set up threadblock-wide parameters
const uniform int segmentElementsA = stride;
const uniform int segmentElementsB = min(stride, N - segmentBase - stride);
const uniform int segmentSamplesA = getSampleCount(segmentElementsA);
const uniform int segmentSamplesB = getSampleCount(segmentElementsB);
const uniform int segmentSamples = segmentSamplesA + segmentSamplesB;
const uniform int startSrcA = limitsA[block];
const uniform int startSrcB = limitsB[block];
const uniform int endSrcA = (intervalI + 1 < segmentSamples) ? limitsA[block + 1] : segmentElementsA;
const uniform int endSrcB = (intervalI + 1 < segmentSamples) ? limitsB[block + 1] : segmentElementsB;
const uniform int lenSrcA = endSrcA - startSrcA;
const uniform int lenSrcB = endSrcB - startSrcB;
const uniform int startDstA = startSrcA + startSrcB;
const uniform int startDstB = startDstA + lenSrcA;
//Load main input data
Key_t keyA, keyB;
Val_t valA, valB;
if (programIndex < lenSrcA)
{
keyA = srcKey[segmentBase + startSrcA + programIndex];
valA = srcVal[segmentBase + startSrcA + programIndex];
}
if (programIndex < lenSrcB)
{
keyB = srcKey[segmentBase + stride + startSrcB + programIndex];
valB = srcVal[segmentBase + stride + startSrcB + programIndex];
}
// Compute destination addresses for merge data
int dstPosA, dstPosB, dstA = -1, dstB = -1;
if (programIndex < lenSrcA)
dstPosA = binarySearchExclusive1(keyA, keyB, lenSrcB, SAMPLE_STRIDE) + programIndex;
if (programIndex < lenSrcB)
dstPosB = binarySearchInclusive1(keyB, keyA, lenSrcA, SAMPLE_STRIDE) + programIndex;
if (programIndex < lenSrcA && dstPosA < lenSrcA)
dstA = segmentBase + startDstA + dstPosA;
dstPosA -= lenSrcA;
if (programIndex < lenSrcA && dstPosA < lenSrcB)
dstA = segmentBase + startDstB + dstPosA;
if (programIndex < lenSrcB && dstPosB < lenSrcA)
dstB = segmentBase + startDstA + dstPosB;
dstPosB -= lenSrcA;
if (programIndex < lenSrcB && dstPosB < lenSrcB)
dstB = segmentBase + startDstB + dstPosB;
if (dstA >= 0)
{
dstKey[dstA] = keyA;
dstVal[dstA] = valA;
}
if (dstB >= 0)
{
dstKey[dstB] = keyB;
dstVal[dstB] = valB;
}
}
}
static inline
void mergeElementaryIntervals(
uniform Key_t dstKey[],
uniform Val_t dstVal[],
uniform Key_t srcKey[],
uniform Val_t srcVal[],
uniform int limitsA[],
uniform int limitsB[],
uniform int stride,
uniform int N)
{
const uniform int lastSegmentElements = N % (2 * stride);
const uniform int mergePairs = (lastSegmentElements > stride) ? getSampleCount(N) : (N - lastSegmentElements) / SAMPLE_STRIDE;
uniform int nTasks = num_cores()*4;
#ifdef __NVPTX__
nTasks = iDivUp(mergePairs,1*programCount);
#endif
launch [nTasks] mergeElementaryIntervalsKernel(
mergePairs,
dstKey,
dstVal,
srcKey,
srcVal,
limitsA,
limitsB,
stride,
N);
if (lastSegmentElements <= stride)
foreach (i = 0 ... lastSegmentElements)
{
dstKey[N-lastSegmentElements+i] = srcKey[N-lastSegmentElements+i];
dstVal[N-lastSegmentElements+i] = srcVal[N-lastSegmentElements+i];
}
sync;
}
static uniform int * uniform memPool = NULL;
static uniform int * uniform ranksA;
static uniform int * uniform ranksB;
static uniform int * uniform limitsA;
static uniform int * uniform limitsB;
static uniform int MAX_SAMPLE_COUNT = 0;
export
void openMergeSort()
{
MAX_SAMPLE_COUNT = 8*32 * 131072 / programCount;
assert(memPool == NULL);
const uniform int nalloc = MAX_SAMPLE_COUNT * 4;
memPool = uniform new uniform int[nalloc];
ranksA = memPool;
ranksB = ranksA + MAX_SAMPLE_COUNT;
limitsA = ranksB + MAX_SAMPLE_COUNT;
limitsB = limitsA + MAX_SAMPLE_COUNT;
}
export
void closeMergeSort()
{
assert(memPool != NULL);
delete memPool;
memPool = NULL;
}
export
void mergeSort(
uniform Key_t dstKey[],
uniform Val_t dstVal[],
uniform Key_t bufKey[],
uniform Val_t bufVal[],
uniform Key_t srcKey[],
uniform Val_t srcVal[],
uniform int N)
{
uniform int stageCount = 0;
for (uniform int stride = 2*programCount; stride < N; stride <<= 1, stageCount++);
uniform Key_t * uniform iKey, * uniform oKey;
uniform Val_t * uniform iVal, * uniform oVal;
if (stageCount & 1)
{
iKey = bufKey;
iVal = bufVal;
oKey = dstKey;
oVal = dstVal;
}
else
{
iKey = dstKey;
iVal = dstVal;
oKey = bufKey;
oVal = bufVal;
}
assert(N <= SAMPLE_STRIDE * MAX_SAMPLE_COUNT);
assert(N % (programCount*2) == 0);
// cpu: 28 gpu: 74 M/s
{
// cpu: 356 gpu: 534 M/s
mergeSortGang(iKey, iVal, srcKey, srcVal, N/(2*programCount));
#if 1
for (uniform int stride = 2*programCount; stride < N; stride <<= 1)
{
// cpu: 30 gpu: 112 M/s
{
#if 1
// cpu: 121 gpu: 460 M/s
{
// cpu: 190 gpu: 600 M/s
//Find sample ranks and prepare for limiters merge
generateSampleRanks(ranksA, ranksB, iKey, stride, N);
// cpu: 120 gpu: 457 M/s
//Merge ranks and indices
mergeRanksAndIndices(limitsA, limitsB, ranksA, ranksB, stride, N);
}
#endif
// cpu: 287 gpu: 194 M/s
//Merge elementary intervals
mergeElementaryIntervals(oKey, oVal, iKey, iVal, limitsA, limitsB, stride, N);
}
{
uniform Key_t * uniform tmpKey = iKey;
iKey = oKey;
oKey = tmpKey;
}
{
uniform Val_t * uniform tmpVal = iVal;
iVal = oVal;
oVal = tmpVal;
}
}
#endif
}
}