first commit bitonicSort
This commit is contained in:
2
ctx.cpp
2
ctx.cpp
@@ -1967,6 +1967,7 @@ static llvm::Value* lConvertGepToGenericPtr(FunctionEmitContext *ctx, llvm::Valu
|
||||
*/
|
||||
static llvm::Value* lCorrectLocalPtr(FunctionEmitContext *ctx, llvm::Value* value)
|
||||
{
|
||||
// return value;
|
||||
assert(value->getType()->isPointerTy());
|
||||
llvm::PointerType *pt = llvm::dyn_cast<llvm::PointerType>(value->getType());
|
||||
if (g->target->getISA() != Target::NVPTX || pt->getAddressSpace() != 3) return value;
|
||||
@@ -1981,6 +1982,7 @@ static llvm::Value* lCorrectLocalPtr(FunctionEmitContext *ctx, llvm::Value* valu
|
||||
*/
|
||||
static llvm::Value* lConvertToGenericPtr(FunctionEmitContext *ctx, llvm::Value *value, const SourcePos ¤tPos)
|
||||
{
|
||||
// return value;
|
||||
if (!value->getType()->isPointerTy() || g->target->getISA() != Target::NVPTX) return value;
|
||||
llvm::PointerType *pt = llvm::dyn_cast<llvm::PointerType>(value->getType());
|
||||
|
||||
|
||||
9
examples_ptx/bitonicSort/Makefile_cpu
Normal file
9
examples_ptx/bitonicSort/Makefile_cpu
Normal file
@@ -0,0 +1,9 @@
|
||||
|
||||
EXAMPLE=sort
|
||||
CPP_SRC=sort.cpp sort_serial.cpp
|
||||
ISPC_SRC=sort.ispc
|
||||
ISPC_IA_TARGETS=avx1-i32x8
|
||||
ISPC_ARM_TARGETS=neon
|
||||
#ISPC_FLAGS=-DDEBUG
|
||||
|
||||
include ../common.mk
|
||||
13
examples_ptx/bitonicSort/Makefile_gpu
Normal file
13
examples_ptx/bitonicSort/Makefile_gpu
Normal file
@@ -0,0 +1,13 @@
|
||||
PROG=sort
|
||||
ISPC_SRC=sort.ispc
|
||||
CU_SRC=sort.cu
|
||||
CXX_SRC=sort.cpp sort_serial.cpp
|
||||
PTXCC_REGMAX=32
|
||||
|
||||
LLVM_GPU=1
|
||||
NVVM_GPU=1
|
||||
|
||||
include ../common_gpu.mk
|
||||
|
||||
|
||||
|
||||
157
examples_ptx/bitonicSort/bitonicSort.cpp
Normal file
157
examples_ptx/bitonicSort/bitonicSort.cpp
Normal file
@@ -0,0 +1,157 @@
|
||||
/*
|
||||
Copyright (c) 2013, Durham University
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
* Neither the name of Durham University nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/* Author: Tomasz Koziara */
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <cassert>
|
||||
#include <iomanip>
|
||||
#include "../timing.h"
|
||||
#include "../ispc_malloc.h"
|
||||
#include "sort_ispc.h"
|
||||
|
||||
using namespace ispc;
|
||||
|
||||
extern void sort_serial (int n, unsigned int code[], int order[]);
|
||||
|
||||
/* progress bar by Ross Hemsley;
|
||||
* http://www.rosshemsley.co.uk/2011/02/creating-a-progress-bar-in-c-or-any-other-console-app/ */
|
||||
static inline void progressbar (unsigned int x, unsigned int n, unsigned int w = 50)
|
||||
{
|
||||
if (n < 100)
|
||||
{
|
||||
x *= 100/n;
|
||||
n = 100;
|
||||
}
|
||||
|
||||
if ((x != n) && (x % (n/100) != 0)) return;
|
||||
|
||||
using namespace std;
|
||||
float ratio = x/(float)n;
|
||||
int c = ratio * w;
|
||||
|
||||
cout << setw(3) << (int)(ratio*100) << "% [";
|
||||
for (int x=0; x<c; x++) cout << "=";
|
||||
for (int x=c; x<w; x++) cout << " ";
|
||||
cout << "]\r" << flush;
|
||||
}
|
||||
|
||||
int main (int argc, char *argv[])
|
||||
{
|
||||
int i, j, n = argc == 1 ? 1000000 : atoi(argv[1]), m = n < 100 ? 1 : 50, l = n < 100 ? n : RAND_MAX;
|
||||
double tISPC1 = 0.0, tISPC2 = 0.0, tSerial = 0.0;
|
||||
unsigned int *code = new unsigned int [n];
|
||||
unsigned int *code_orig = new unsigned int [n];
|
||||
int *order = new int [n];
|
||||
|
||||
for (j = 0; j < n; j ++) code_orig[j] = rand() % l;
|
||||
|
||||
ispcSetMallocHeapLimit(1024*1024*1024);
|
||||
|
||||
srand (0);
|
||||
|
||||
#ifndef _CUDA_
|
||||
for (i = 0; i < m; i ++)
|
||||
{
|
||||
ispcMemcpy(code, code_orig, n*sizeof(unsigned int));
|
||||
|
||||
reset_and_start_timer();
|
||||
|
||||
sort_ispc (n, code, order, 1);
|
||||
|
||||
tISPC1 += get_elapsed_msec();
|
||||
|
||||
if (argc != 3)
|
||||
progressbar (i, m);
|
||||
}
|
||||
|
||||
printf("[sort ispc]:\t[%.3f] msec [%.3f Mpair/s]\n", tISPC1, 1.0e-3*n*m/tISPC1);
|
||||
#endif
|
||||
|
||||
srand (0);
|
||||
|
||||
const int ntask = 13*8;
|
||||
for (i = 0; i < m; i ++)
|
||||
{
|
||||
ispcMemcpy(code, code_orig, n*sizeof(unsigned int));
|
||||
|
||||
reset_and_start_timer();
|
||||
|
||||
sort_ispc (n, code, order, ntask);
|
||||
|
||||
tISPC2 += get_elapsed_msec();
|
||||
|
||||
if (argc != 3)
|
||||
progressbar (i, m);
|
||||
}
|
||||
|
||||
printf("[sort ispc + tasks]:\t[%.3f] msec [%.3f Mpair/s]\n", tISPC2, 1.0e-3*n*m/tISPC2);
|
||||
unsigned int *code1 = new unsigned int [n];
|
||||
for (int i = 0; i < n; i++)
|
||||
code1[i] = code[i];
|
||||
std::sort(code1, code1+n);
|
||||
for (int i = 0; i < n; i++)
|
||||
assert(code1[i] == code[i]);
|
||||
|
||||
srand (0);
|
||||
|
||||
for (i = 0; i < m; i ++)
|
||||
{
|
||||
ispcMemcpy(code, code_orig, n*sizeof(unsigned int));
|
||||
|
||||
reset_and_start_timer();
|
||||
|
||||
sort_serial (n, code, order);
|
||||
|
||||
tSerial += get_elapsed_msec();
|
||||
|
||||
if (argc != 3)
|
||||
progressbar (i, m);
|
||||
}
|
||||
|
||||
printf("[sort serial]:\t\t[%.3f] msec [%.3f Mpair/s]\n", tSerial, 1.0e-3*n*m/tSerial);
|
||||
|
||||
#ifndef _CUDA_
|
||||
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n", tSerial/tISPC1, tSerial/tISPC2);
|
||||
#else
|
||||
printf("\t\t\t\t(%.2fx speedup from ISPC + tasks)\n", tSerial/tISPC2);
|
||||
#endif
|
||||
|
||||
delete code;
|
||||
delete code_orig;
|
||||
delete order;
|
||||
return 0;
|
||||
}
|
||||
294
examples_ptx/bitonicSort/bitonicSort.cu
Normal file
294
examples_ptx/bitonicSort/bitonicSort.cu
Normal file
@@ -0,0 +1,294 @@
|
||||
/*
|
||||
* Copyright 1993-2010 NVIDIA Corporation. All rights reserved.
|
||||
*
|
||||
* Please refer to the NVIDIA end user license agreement (EULA) associated
|
||||
* with this source code for terms and conditions that govern your use of
|
||||
* this software. Any use, reproduction, disclosure, or distribution of
|
||||
* this software and related documentation outside the terms of the EULA
|
||||
* is strictly prohibited.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
|
||||
//Based on http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm
|
||||
|
||||
|
||||
|
||||
#include <assert.h>
|
||||
#include <cutil_inline.h>
|
||||
#include "sortingNetworks_common.h"
|
||||
#include "sortingNetworks_common.cuh"
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Monolithic bitonic sort kernel for short arrays fitting into shared memory
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
__global__ void bitonicSortShared(
|
||||
uint *d_DstKey,
|
||||
uint *d_DstVal,
|
||||
uint *d_SrcKey,
|
||||
uint *d_SrcVal,
|
||||
uint arrayLength,
|
||||
uint dir
|
||||
){
|
||||
//Shared memory storage for one or more short vectors
|
||||
__shared__ uint s_key[SHARED_SIZE_LIMIT];
|
||||
__shared__ uint s_val[SHARED_SIZE_LIMIT];
|
||||
|
||||
//Offset to the beginning of subbatch and load data
|
||||
d_SrcKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
|
||||
d_SrcVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
|
||||
d_DstKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
|
||||
d_DstVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
|
||||
s_key[threadIdx.x + 0] = d_SrcKey[ 0];
|
||||
s_val[threadIdx.x + 0] = d_SrcVal[ 0];
|
||||
s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] = d_SrcKey[(SHARED_SIZE_LIMIT / 2)];
|
||||
s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] = d_SrcVal[(SHARED_SIZE_LIMIT / 2)];
|
||||
|
||||
for(uint size = 2; size < arrayLength; size <<= 1){
|
||||
//Bitonic merge
|
||||
uint ddd = dir ^ ( (threadIdx.x & (size / 2)) != 0 );
|
||||
for(uint stride = size / 2; stride > 0; stride >>= 1){
|
||||
__syncthreads();
|
||||
uint pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1));
|
||||
Comparator(
|
||||
s_key[pos + 0], s_val[pos + 0],
|
||||
s_key[pos + stride], s_val[pos + stride],
|
||||
ddd
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
//ddd == dir for the last bitonic merge step
|
||||
{
|
||||
for(uint stride = arrayLength / 2; stride > 0; stride >>= 1){
|
||||
__syncthreads();
|
||||
uint pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1));
|
||||
Comparator(
|
||||
s_key[pos + 0], s_val[pos + 0],
|
||||
s_key[pos + stride], s_val[pos + stride],
|
||||
dir
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
d_DstKey[ 0] = s_key[threadIdx.x + 0];
|
||||
d_DstVal[ 0] = s_val[threadIdx.x + 0];
|
||||
d_DstKey[(SHARED_SIZE_LIMIT / 2)] = s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)];
|
||||
d_DstVal[(SHARED_SIZE_LIMIT / 2)] = s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)];
|
||||
}
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Bitonic sort kernel for large arrays (not fitting into shared memory)
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//Bottom-level bitonic sort
|
||||
//Almost the same as bitonicSortShared with the exception of
|
||||
//even / odd subarrays being sorted in opposite directions
|
||||
//Bitonic merge accepts both
|
||||
//Ascending | descending or descending | ascending sorted pairs
|
||||
__global__ void bitonicSortShared1(
|
||||
uint *d_DstKey,
|
||||
uint *d_DstVal,
|
||||
uint *d_SrcKey,
|
||||
uint *d_SrcVal
|
||||
){
|
||||
//Shared memory storage for current subarray
|
||||
__shared__ uint s_key[SHARED_SIZE_LIMIT];
|
||||
__shared__ uint s_val[SHARED_SIZE_LIMIT];
|
||||
|
||||
//Offset to the beginning of subarray and load data
|
||||
d_SrcKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
|
||||
d_SrcVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
|
||||
d_DstKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
|
||||
d_DstVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
|
||||
s_key[threadIdx.x + 0] = d_SrcKey[ 0];
|
||||
s_val[threadIdx.x + 0] = d_SrcVal[ 0];
|
||||
s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] = d_SrcKey[(SHARED_SIZE_LIMIT / 2)];
|
||||
s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] = d_SrcVal[(SHARED_SIZE_LIMIT / 2)];
|
||||
|
||||
for(uint size = 2; size < SHARED_SIZE_LIMIT; size <<= 1){
|
||||
//Bitonic merge
|
||||
uint ddd = (threadIdx.x & (size / 2)) != 0;
|
||||
for(uint stride = size / 2; stride > 0; stride >>= 1){
|
||||
__syncthreads();
|
||||
uint pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1));
|
||||
Comparator(
|
||||
s_key[pos + 0], s_val[pos + 0],
|
||||
s_key[pos + stride], s_val[pos + stride],
|
||||
ddd
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
//Odd / even arrays of SHARED_SIZE_LIMIT elements
|
||||
//sorted in opposite directions
|
||||
uint ddd = blockIdx.x & 1;
|
||||
{
|
||||
for(uint stride = SHARED_SIZE_LIMIT / 2; stride > 0; stride >>= 1){
|
||||
__syncthreads();
|
||||
uint pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1));
|
||||
Comparator(
|
||||
s_key[pos + 0], s_val[pos + 0],
|
||||
s_key[pos + stride], s_val[pos + stride],
|
||||
ddd
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__syncthreads();
|
||||
d_DstKey[ 0] = s_key[threadIdx.x + 0];
|
||||
d_DstVal[ 0] = s_val[threadIdx.x + 0];
|
||||
d_DstKey[(SHARED_SIZE_LIMIT / 2)] = s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)];
|
||||
d_DstVal[(SHARED_SIZE_LIMIT / 2)] = s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)];
|
||||
}
|
||||
|
||||
//Bitonic merge iteration for stride >= SHARED_SIZE_LIMIT
|
||||
__global__ void bitonicMergeGlobal(
|
||||
uint *d_DstKey,
|
||||
uint *d_DstVal,
|
||||
uint *d_SrcKey,
|
||||
uint *d_SrcVal,
|
||||
uint arrayLength,
|
||||
uint size,
|
||||
uint stride,
|
||||
uint dir
|
||||
){
|
||||
uint global_comparatorI = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
uint comparatorI = global_comparatorI & (arrayLength / 2 - 1);
|
||||
|
||||
//Bitonic merge
|
||||
uint ddd = dir ^ ( (comparatorI & (size / 2)) != 0 );
|
||||
uint pos = 2 * global_comparatorI - (global_comparatorI & (stride - 1));
|
||||
|
||||
uint keyA = d_SrcKey[pos + 0];
|
||||
uint valA = d_SrcVal[pos + 0];
|
||||
uint keyB = d_SrcKey[pos + stride];
|
||||
uint valB = d_SrcVal[pos + stride];
|
||||
|
||||
Comparator(
|
||||
keyA, valA,
|
||||
keyB, valB,
|
||||
ddd
|
||||
);
|
||||
|
||||
d_DstKey[pos + 0] = keyA;
|
||||
d_DstVal[pos + 0] = valA;
|
||||
d_DstKey[pos + stride] = keyB;
|
||||
d_DstVal[pos + stride] = valB;
|
||||
}
|
||||
|
||||
//Combined bitonic merge steps for
|
||||
//size > SHARED_SIZE_LIMIT and stride = [1 .. SHARED_SIZE_LIMIT / 2]
|
||||
__global__ void bitonicMergeShared(
|
||||
uint *d_DstKey,
|
||||
uint *d_DstVal,
|
||||
uint *d_SrcKey,
|
||||
uint *d_SrcVal,
|
||||
uint arrayLength,
|
||||
uint size,
|
||||
uint dir
|
||||
){
|
||||
//Shared memory storage for current subarray
|
||||
__shared__ uint s_key[SHARED_SIZE_LIMIT];
|
||||
__shared__ uint s_val[SHARED_SIZE_LIMIT];
|
||||
|
||||
d_SrcKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
|
||||
d_SrcVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
|
||||
d_DstKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
|
||||
d_DstVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
|
||||
s_key[threadIdx.x + 0] = d_SrcKey[ 0];
|
||||
s_val[threadIdx.x + 0] = d_SrcVal[ 0];
|
||||
s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] = d_SrcKey[(SHARED_SIZE_LIMIT / 2)];
|
||||
s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] = d_SrcVal[(SHARED_SIZE_LIMIT / 2)];
|
||||
|
||||
//Bitonic merge
|
||||
uint comparatorI = UMAD(blockIdx.x, blockDim.x, threadIdx.x) & ((arrayLength / 2) - 1);
|
||||
uint ddd = dir ^ ( (comparatorI & (size / 2)) != 0 );
|
||||
for(uint stride = SHARED_SIZE_LIMIT / 2; stride > 0; stride >>= 1){
|
||||
__syncthreads();
|
||||
uint pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1));
|
||||
Comparator(
|
||||
s_key[pos + 0], s_val[pos + 0],
|
||||
s_key[pos + stride], s_val[pos + stride],
|
||||
ddd
|
||||
);
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
d_DstKey[ 0] = s_key[threadIdx.x + 0];
|
||||
d_DstVal[ 0] = s_val[threadIdx.x + 0];
|
||||
d_DstKey[(SHARED_SIZE_LIMIT / 2)] = s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)];
|
||||
d_DstVal[(SHARED_SIZE_LIMIT / 2)] = s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)];
|
||||
}
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Interface function
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//Helper function (also used by odd-even merge sort)
|
||||
extern "C" uint factorRadix2(uint *log2L, uint L){
|
||||
if(!L){
|
||||
*log2L = 0;
|
||||
return 0;
|
||||
}else{
|
||||
for(*log2L = 0; (L & 1) == 0; L >>= 1, *log2L++);
|
||||
return L;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" uint bitonicSort(
|
||||
uint *d_DstKey,
|
||||
uint *d_DstVal,
|
||||
uint *d_SrcKey,
|
||||
uint *d_SrcVal,
|
||||
uint batchSize,
|
||||
uint arrayLength,
|
||||
uint dir
|
||||
){
|
||||
//Nothing to sort
|
||||
if(arrayLength < 2)
|
||||
return 0;
|
||||
|
||||
//Only power-of-two array lengths are supported by this implementation
|
||||
uint log2L;
|
||||
uint factorizationRemainder = factorRadix2(&log2L, arrayLength);
|
||||
assert( factorizationRemainder == 1 );
|
||||
|
||||
dir = (dir != 0);
|
||||
|
||||
uint blockCount = batchSize * arrayLength / SHARED_SIZE_LIMIT;
|
||||
uint threadCount = SHARED_SIZE_LIMIT / 2;
|
||||
|
||||
if(arrayLength <= SHARED_SIZE_LIMIT){
|
||||
assert( (batchSize * arrayLength) % SHARED_SIZE_LIMIT == 0 );
|
||||
bitonicSortShared<<<blockCount, threadCount>>>(d_DstKey, d_DstVal, d_SrcKey, d_SrcVal, arrayLength, dir);
|
||||
}else{
|
||||
bitonicSortShared1<<<blockCount, threadCount>>>(d_DstKey, d_DstVal, d_SrcKey, d_SrcVal);
|
||||
|
||||
for(uint size = 2 * SHARED_SIZE_LIMIT; size <= arrayLength; size <<= 1)
|
||||
for(unsigned stride = size / 2; stride > 0; stride >>= 1)
|
||||
if(stride >= SHARED_SIZE_LIMIT){
|
||||
bitonicMergeGlobal<<<(batchSize * arrayLength) / 512, 256>>>(d_DstKey, d_DstVal, d_DstKey, d_DstVal, arrayLength, size, stride, dir);
|
||||
}else{
|
||||
bitonicMergeShared<<<blockCount, threadCount>>>(d_DstKey, d_DstVal, d_DstKey, d_DstVal, arrayLength, size, dir);
|
||||
break;
|
||||
}
|
||||
}
|
||||
return threadCount;
|
||||
}
|
||||
|
||||
|
||||
extern "C" int isDeviceEmulation(void){
|
||||
#ifdef __DEVICE_EMULATION__
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
289
examples_ptx/bitonicSort/bitonicSort.ispc
Normal file
289
examples_ptx/bitonicSort/bitonicSort.ispc
Normal file
@@ -0,0 +1,289 @@
|
||||
#define SIZE_LIMIT (2*programCount)
|
||||
|
||||
static inline void Comparator(
|
||||
int &keyA,
|
||||
int &valA,
|
||||
int &keyB,
|
||||
int &valB,
|
||||
const int dir)
|
||||
{
|
||||
if ((keyA > keyB) == dir)
|
||||
{
|
||||
int t;
|
||||
t = keyA; keyA = keyB; keyB = t;
|
||||
t = valA; valA = valB; valB = t;
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Monolithic bitonic sort kernel for short arrays fitting into local memory
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
task
|
||||
void bitonicSortLocal(
|
||||
uniform int dstKey[],
|
||||
uniform int dstVal[],
|
||||
uniform int srcKey[],
|
||||
uniform int srcVal[],
|
||||
const uniform int arrayLength,
|
||||
const uniform int dir)
|
||||
{
|
||||
uniform int l_key[SIZE_LIMIT];
|
||||
uniform int l_val[SIZE_LIMIT];
|
||||
|
||||
//Offset to the beginning of subbatch and load data
|
||||
const int offset = taskIndex0 * SIZE_LIMIT + programIndex;
|
||||
l_key[programIndex + 0] = srcKey[offset];
|
||||
l_val[programIndex + 0] = srcVal[offset];
|
||||
l_key[programIndex + (SIZE_LIMIT/2)] = srcKey[offset +(SIZE_LIMIT/2)];
|
||||
l_val[programIndex + (SIZE_LIMIT/2)] = srcVal[offset +(SIZE_LIMIT/2)];
|
||||
|
||||
for (uniform int size = 2; size < arrayLength; size <<= 1)
|
||||
{
|
||||
//Bitonic merge
|
||||
const int ddd = dir ^ ( (programIndex & (size / 2)) != 0 );
|
||||
for (uniform int stride = size / 2; stride > 0; stride >>= 1)
|
||||
{
|
||||
const int pos = 2 * programIndex - (programIndex & (stride - 1));
|
||||
int key_a = l_key[pos];
|
||||
int val_a = l_val[pos];
|
||||
int key_b = l_key[pos + stride];
|
||||
int val_b = l_val[pos + stride];
|
||||
Comparator(key_a, val_a, key_b, val_b, ddd);
|
||||
l_key[pos] = key_a;
|
||||
l_val[pos] = val_a;
|
||||
l_key[pos + stride] = key_b;
|
||||
l_val[pos + stride] = val_b;
|
||||
}
|
||||
}
|
||||
|
||||
//ddd == dir for the last bitonic merge step
|
||||
{
|
||||
for (int stride = arrayLength / 2; stride > 0; stride >>= 1)
|
||||
{
|
||||
const int pos = 2 * programIndex - (programIndex & (stride - 1));
|
||||
int key_a = l_key[pos];
|
||||
int val_a = l_val[pos];
|
||||
int key_b = l_key[pos + stride];
|
||||
int val_b = l_val[pos + stride];
|
||||
Comparator(key_a, val_a, key_b, val_b, dir);
|
||||
l_key[pos] = key_a;
|
||||
l_val[pos] = val_a;
|
||||
l_key[pos + stride] = key_b;
|
||||
l_val[pos + stride] = val_b;
|
||||
}
|
||||
}
|
||||
|
||||
dstKey[offset] = l_key[programIndex + 0];
|
||||
dstVal[offset] = l_val[programIndex + 0];
|
||||
dstKey[offset +(SIZE_LIMIT/2)] = l_key[programIndex + (SIZE_LIMIT/2)];
|
||||
dstVal[offset +(SIZE_LIMIT/2)] = l_val[programIndex + (SIZE_LIMIT/2)];
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Bitonic sort kernel for large arrays (not fitting into local memory)
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//Bottom-level bitonic sort
|
||||
//Almost the same as bitonicSortLocal with the only exception
|
||||
//of even / odd subarrays (of LOCAL_SIZE_LIMIT points) being
|
||||
//sorted in opposite directions
|
||||
task
|
||||
void bitonicSortLocal1(
|
||||
uniform int dstKey[],
|
||||
uniform int dstVal[],
|
||||
uniform int srcKey[],
|
||||
uniform int srcVal[])
|
||||
{
|
||||
uniform int l_key[SIZE_LIMIT];
|
||||
uniform int l_val[SIZE_LIMIT];
|
||||
|
||||
//Offset to the beginning of subarray and load data
|
||||
const int offset = taskIndex0 * SIZE_LIMIT + programIndex;
|
||||
l_key[programIndex + 0] = srcKey[offset];
|
||||
l_val[programIndex + 0] = srcVal[offset];
|
||||
l_key[programIndex + (SIZE_LIMIT/2)] = srcKey[offset + (SIZE_LIMIT/2)];
|
||||
l_val[programIndex + (SIZE_LIMIT/2)] = srcVal[offset + (SIZE_LIMIT/2)];
|
||||
|
||||
for (int size = 2; size < SIZE_LIMIT; size <<= 1)
|
||||
{
|
||||
//Bitonic merge
|
||||
const int ddd = (programIndex & (size / 2)) != 0;
|
||||
for (int stride = size / 2; stride > 0; stride >>= 1)
|
||||
{
|
||||
const int pos = 2 * programIndex - (programIndex & (stride - 1));
|
||||
int key_a = l_key[pos];
|
||||
int val_a = l_val[pos];
|
||||
int key_b = l_key[pos + stride];
|
||||
int val_b = l_val[pos + stride];
|
||||
Comparator(key_a, val_a, key_b, val_b, ddd);
|
||||
l_key[pos] = key_a;
|
||||
l_val[pos] = val_a;
|
||||
l_key[pos + stride] = key_b;
|
||||
l_val[pos + stride] = val_b;
|
||||
}
|
||||
}
|
||||
|
||||
//Odd / even arrays of LOCAL_SIZE_LIMIT elements
|
||||
//sorted in opposite directions
|
||||
{
|
||||
const int ddd = taskIndex0 & 1;
|
||||
for (int stride = SIZE_LIMIT/2; stride > 0; stride >>= 1)
|
||||
{
|
||||
const int pos = 2 * programIndex - (programIndex & (stride - 1));
|
||||
int key_a = l_key[pos];
|
||||
int val_a = l_val[pos];
|
||||
int key_b = l_key[pos + stride];
|
||||
int val_b = l_val[pos + stride];
|
||||
Comparator(key_a, val_a, key_b, val_b, ddd);
|
||||
l_key[pos] = key_a;
|
||||
l_val[pos] = val_a;
|
||||
l_key[pos + stride] = key_b;
|
||||
l_val[pos + stride] = val_b;
|
||||
}
|
||||
}
|
||||
|
||||
dstKey[offset] = l_key[programIndex + 0];
|
||||
dstVal[offset] = l_val[programIndex + 0];
|
||||
dstKey[offset + (SIZE_LIMIT/2)] = l_key[programIndex + (SIZE_LIMIT/2)];
|
||||
dstVal[offset + (SIZE_LIMIT/2)] = l_val[programIndex + (SIZE_LIMIT/2)];
|
||||
}
|
||||
|
||||
//Bitonic merge iteration for 'stride' >= LOCAL_SIZE_LIMIT
|
||||
task
|
||||
void bitonicMergeGlobal(
|
||||
uniform int dstKey[],
|
||||
uniform int dstVal[],
|
||||
uniform int srcKey[],
|
||||
uniform int srcVal[],
|
||||
const uniform int arrayLength,
|
||||
const uniform int size,
|
||||
const uniform int stride,
|
||||
const uniform int dir)
|
||||
{
|
||||
const int global_comparatorI = taskIndex0*programCount + programIndex;
|
||||
const int comparatorI = global_comparatorI & (arrayLength / 2 - 1);
|
||||
|
||||
//Bitonic merge
|
||||
const int ddd = dir ^ ( (comparatorI & (size / 2)) != 0 );
|
||||
const int pos = 2 * global_comparatorI - (global_comparatorI & (stride - 1));
|
||||
|
||||
int keyA = srcKey[pos + 0];
|
||||
int valA = srcVal[pos + 0];
|
||||
int keyB = srcKey[pos + stride];
|
||||
int valB = srcVal[pos + stride];
|
||||
|
||||
Comparator(
|
||||
keyA, valA,
|
||||
keyB, valB,
|
||||
ddd
|
||||
);
|
||||
|
||||
dstKey[pos + 0] = keyA;
|
||||
dstVal[pos + 0] = valA;
|
||||
dstKey[pos + stride] = keyB;
|
||||
dstVal[pos + stride] = valB;
|
||||
}
|
||||
|
||||
//Combined bitonic merge steps for
|
||||
//'size' > LOCAL_SIZE_LIMIT and 'stride' = [1 .. LOCAL_SIZE_LIMIT / 2]
|
||||
task
|
||||
void bitonicMergeLocal(
|
||||
uniform int dstKey[],
|
||||
uniform int dstVal[],
|
||||
uniform int srcKey[],
|
||||
uniform int srcVal[],
|
||||
const uniform int arrayLength,
|
||||
const uniform int size,
|
||||
const uniform int dir)
|
||||
{
|
||||
uniform int l_key[SIZE_LIMIT];
|
||||
uniform int l_val[SIZE_LIMIT];
|
||||
|
||||
const int offset = taskIndex0 * SIZE_LIMIT + programIndex;
|
||||
l_key[programIndex + 0] = srcKey[offset];
|
||||
l_val[programIndex + 0] = srcVal[offset];
|
||||
l_key[programIndex + (SIZE_LIMIT/2)] = srcKey[offset +(SIZE_LIMIT/2)];
|
||||
l_val[programIndex + (SIZE_LIMIT/2)] = srcVal[offset +(SIZE_LIMIT/2)];
|
||||
|
||||
//Bitonic merge
|
||||
const int global_id = taskIndex0*programCount + programIndex;
|
||||
const int comparatorI = global_id & ((arrayLength / 2) - 1);
|
||||
const int ddd = dir ^ ( (comparatorI & (size / 2)) != 0 );
|
||||
for (int stride = SIZE_LIMIT / 2; stride > 0; stride >>= 1)
|
||||
{
|
||||
const int pos = 2 * programIndex - (programIndex & (stride - 1));
|
||||
int key_a = l_key[pos];
|
||||
int val_a = l_val[pos];
|
||||
int key_b = l_key[pos + stride];
|
||||
int val_b = l_val[pos + stride];
|
||||
Comparator(key_a, val_a, key_b, val_b, ddd);
|
||||
l_key[pos] = key_a;
|
||||
l_val[pos] = val_a;
|
||||
l_key[pos + stride] = key_b;
|
||||
l_val[pos + stride] = val_b;
|
||||
}
|
||||
|
||||
dstKey[offset] = l_key[programIndex + 0];
|
||||
dstVal[offset] = l_val[programIndex + 0];
|
||||
dstKey[offset +(SIZE_LIMIT/2)] = l_key[programIndex + (SIZE_LIMIT/2)];
|
||||
dstVal[offset +(SIZE_LIMIT/2)] = l_val[programIndex + (SIZE_LIMIT/2)];
|
||||
}
|
||||
|
||||
static inline int factorRadix2(int &log2L, int L){
|
||||
if(!L){
|
||||
log2L = 0;
|
||||
return 0;
|
||||
}else{
|
||||
int val;
|
||||
for(val = 0; (L & 1) == 0; L >>= 1, val++);
|
||||
log2L = val;
|
||||
return L;
|
||||
}
|
||||
}
|
||||
|
||||
export
|
||||
void bitoniSort(
|
||||
uniform int dstKey[],
|
||||
uniform int dstVal[],
|
||||
uniform int srcKey[],
|
||||
uniform int srcVal[],
|
||||
const uniform int batchSize,
|
||||
const uniform int arrayLength,
|
||||
const uniform int dir)
|
||||
{
|
||||
//Nothing to sort
|
||||
if (arrayLength < 2)
|
||||
return;
|
||||
|
||||
//Only power-of-two array lengths are supported by this implementation
|
||||
int log2L;
|
||||
const int factorizationRemainder = factorRadix2(log2L, arrayLength);
|
||||
assert( factorizationRemainder == 1 );
|
||||
|
||||
const uniform int blockCount = batchSize * arrayLength / SIZE_LIMIT;
|
||||
const uniform int threadCount = SIZE_LIMIT / 2;
|
||||
|
||||
if (arrayLength <= SIZE_LIMIT)
|
||||
{
|
||||
assert( (batchSize * arrayLength) % SIZE_LIMIT == 0 );
|
||||
launch [blockCount] bitonicSortLocal(dstKey, dstVal, srcKey, srcVal, arrayLength, dir);
|
||||
sync;
|
||||
}
|
||||
else
|
||||
{
|
||||
launch [blockCount] bitonicSortLocal1(dstKey, dstVal, srcKey, srcVal);
|
||||
sync;
|
||||
|
||||
for(uniform int size = 2 * SIZE_LIMIT; size <= arrayLength; size <<= 1)
|
||||
for(uniform int stride = size / 2; stride > 0; stride >>= 1)
|
||||
if (stride >= SIZE_LIMIT)
|
||||
{
|
||||
launch [blockCount] bitonicMergeGlobal(dstKey, dstVal, dstKey, dstVal, arrayLength, size, stride, dir);
|
||||
sync;
|
||||
}
|
||||
else
|
||||
{
|
||||
launch [blockCount] bitonicMergeLocal(dstKey, dstVal, dstKey, dstVal, arrayLength, size, dir);
|
||||
sync;
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user