+fixed rt.cpp to compile with nvvm
This commit is contained in:
@@ -47,222 +47,240 @@
|
||||
#include "../timing.h"
|
||||
#include "rt_ispc.h"
|
||||
|
||||
#include <sys/time.h>
|
||||
|
||||
|
||||
double rtc(void)
|
||||
{
|
||||
struct timeval Tvalue;
|
||||
double etime;
|
||||
struct timezone dummy;
|
||||
|
||||
gettimeofday(&Tvalue,&dummy);
|
||||
etime = (double) Tvalue.tv_sec +
|
||||
1.e-6*((double) Tvalue.tv_usec);
|
||||
return etime;
|
||||
}
|
||||
|
||||
using namespace ispc;
|
||||
|
||||
typedef unsigned int uint;
|
||||
|
||||
extern void raytrace_serial(int width, int height, int baseWidth, int baseHeight,
|
||||
const float raster2camera[4][4],
|
||||
const float camera2world[4][4], float image[],
|
||||
int id[], const LinearBVHNode nodes[],
|
||||
const Triangle triangles[]);
|
||||
const float raster2camera[4][4],
|
||||
const float camera2world[4][4], float image[],
|
||||
int id[], const LinearBVHNode nodes[],
|
||||
const Triangle triangles[]);
|
||||
|
||||
|
||||
static void writeImage(int *idImage, float *depthImage, int width, int height,
|
||||
const char *filename) {
|
||||
FILE *f = fopen(filename, "wb");
|
||||
if (!f) {
|
||||
perror(filename);
|
||||
exit(1);
|
||||
const char *filename) {
|
||||
FILE *f = fopen(filename, "wb");
|
||||
if (!f) {
|
||||
perror(filename);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
fprintf(f, "P6\n%d %d\n255\n", width, height);
|
||||
for (int y = 0; y < height; ++y) {
|
||||
for (int x = 0; x < width; ++x) {
|
||||
// use the bits from the object id of the hit object to make a
|
||||
// random color
|
||||
int id = idImage[y * width + x];
|
||||
unsigned char r = 0, g = 0, b = 0;
|
||||
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
// extract bit 3*i for red, 3*i+1 for green, 3*i+2 for blue
|
||||
int rbit = (id & (1 << (3*i))) >> (3*i);
|
||||
int gbit = (id & (1 << (3*i+1))) >> (3*i+1);
|
||||
int bbit = (id & (1 << (3*i+2))) >> (3*i+2);
|
||||
// and then set the bits of the colors starting from the
|
||||
// high bits...
|
||||
r |= rbit << (7-i);
|
||||
g |= gbit << (7-i);
|
||||
b |= bbit << (7-i);
|
||||
}
|
||||
fputc(r, f);
|
||||
fputc(g, f);
|
||||
fputc(b, f);
|
||||
}
|
||||
|
||||
fprintf(f, "P6\n%d %d\n255\n", width, height);
|
||||
for (int y = 0; y < height; ++y) {
|
||||
for (int x = 0; x < width; ++x) {
|
||||
// use the bits from the object id of the hit object to make a
|
||||
// random color
|
||||
int id = idImage[y * width + x];
|
||||
unsigned char r = 0, g = 0, b = 0;
|
||||
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
// extract bit 3*i for red, 3*i+1 for green, 3*i+2 for blue
|
||||
int rbit = (id & (1 << (3*i))) >> (3*i);
|
||||
int gbit = (id & (1 << (3*i+1))) >> (3*i+1);
|
||||
int bbit = (id & (1 << (3*i+2))) >> (3*i+2);
|
||||
// and then set the bits of the colors starting from the
|
||||
// high bits...
|
||||
r |= rbit << (7-i);
|
||||
g |= gbit << (7-i);
|
||||
b |= bbit << (7-i);
|
||||
}
|
||||
fputc(r, f);
|
||||
fputc(g, f);
|
||||
fputc(b, f);
|
||||
}
|
||||
}
|
||||
fclose(f);
|
||||
printf("Wrote image file %s\n", filename);
|
||||
}
|
||||
fclose(f);
|
||||
printf("Wrote image file %s\n", filename);
|
||||
}
|
||||
|
||||
|
||||
static void usage() {
|
||||
fprintf(stderr, "rt [--scale=<factor>] <scene name base>\n");
|
||||
exit(1);
|
||||
fprintf(stderr, "rt [--scale=<factor>] <scene name base>\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
float scale = 1.f;
|
||||
const char *filename = NULL;
|
||||
for (int i = 1; i < argc; ++i) {
|
||||
if (strncmp(argv[i], "--scale=", 8) == 0) {
|
||||
scale = atof(argv[i] + 8);
|
||||
if (scale == 0.f)
|
||||
usage();
|
||||
}
|
||||
else if (filename != NULL)
|
||||
usage();
|
||||
else
|
||||
filename = argv[i];
|
||||
}
|
||||
if (filename == NULL)
|
||||
float scale = 1.f;
|
||||
const char *filename = NULL;
|
||||
for (int i = 1; i < argc; ++i) {
|
||||
if (strncmp(argv[i], "--scale=", 8) == 0) {
|
||||
scale = atof(argv[i] + 8);
|
||||
if (scale == 0.f)
|
||||
usage();
|
||||
}
|
||||
else if (filename != NULL)
|
||||
usage();
|
||||
else
|
||||
filename = argv[i];
|
||||
}
|
||||
if (filename == NULL)
|
||||
usage();
|
||||
|
||||
#define READ(var, n) \
|
||||
if (fread(&(var), sizeof(var), n, f) != (unsigned int)n) { \
|
||||
fprintf(stderr, "Unexpected EOF reading scene file\n"); \
|
||||
return 1; \
|
||||
} else /* eat ; */
|
||||
if (fread(&(var), sizeof(var), n, f) != (unsigned int)n) { \
|
||||
fprintf(stderr, "Unexpected EOF reading scene file\n"); \
|
||||
return 1; \
|
||||
} else /* eat ; */
|
||||
|
||||
//
|
||||
// Read the camera specification information from the camera file
|
||||
//
|
||||
char fnbuf[1024];
|
||||
sprintf(fnbuf, "%s.camera", filename);
|
||||
FILE *f = fopen(fnbuf, "rb");
|
||||
if (!f) {
|
||||
perror(fnbuf);
|
||||
return 1;
|
||||
//
|
||||
// Read the camera specification information from the camera file
|
||||
//
|
||||
char fnbuf[1024];
|
||||
sprintf(fnbuf, "%s.camera", filename);
|
||||
FILE *f = fopen(fnbuf, "rb");
|
||||
if (!f) {
|
||||
perror(fnbuf);
|
||||
return 1;
|
||||
}
|
||||
|
||||
//
|
||||
// Nothing fancy, and trouble if we run on a big-endian system, just
|
||||
// fread in the bits
|
||||
//
|
||||
int baseWidth, baseHeight;
|
||||
float camera2world[4][4], raster2camera[4][4];
|
||||
READ(baseWidth, 1);
|
||||
READ(baseHeight, 1);
|
||||
READ(camera2world[0][0], 16);
|
||||
READ(raster2camera[0][0], 16);
|
||||
|
||||
//
|
||||
// Read in the serialized BVH
|
||||
//
|
||||
sprintf(fnbuf, "%s.bvh", filename);
|
||||
f = fopen(fnbuf, "rb");
|
||||
if (!f) {
|
||||
perror(fnbuf);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// The BVH file starts with an int that gives the total number of BVH
|
||||
// nodes
|
||||
uint nNodes;
|
||||
READ(nNodes, 1);
|
||||
|
||||
LinearBVHNode *nodes = new LinearBVHNode[nNodes];
|
||||
for (unsigned int i = 0; i < nNodes; ++i) {
|
||||
// Each node is 6x floats for a boox, then an integer for an offset
|
||||
// to the second child node, then an integer that encodes the type
|
||||
// of node, the total number of int it if a leaf node, etc.
|
||||
float b[6];
|
||||
READ(b[0], 6);
|
||||
nodes[i].bounds[0][0] = b[0];
|
||||
nodes[i].bounds[0][1] = b[1];
|
||||
nodes[i].bounds[0][2] = b[2];
|
||||
nodes[i].bounds[1][0] = b[3];
|
||||
nodes[i].bounds[1][1] = b[4];
|
||||
nodes[i].bounds[1][2] = b[5];
|
||||
READ(nodes[i].offset, 1);
|
||||
READ(nodes[i].nPrimitives, 1);
|
||||
READ(nodes[i].splitAxis, 1);
|
||||
READ(nodes[i].pad, 1);
|
||||
}
|
||||
|
||||
// And then read the triangles
|
||||
uint nTris;
|
||||
READ(nTris, 1);
|
||||
Triangle *triangles = new Triangle[nTris];
|
||||
for (uint i = 0; i < nTris; ++i) {
|
||||
// 9x floats for the 3 vertices
|
||||
float v[9];
|
||||
READ(v[0], 9);
|
||||
float *vp = v;
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
triangles[i].p[j][0] = *vp++;
|
||||
triangles[i].p[j][1] = *vp++;
|
||||
triangles[i].p[j][2] = *vp++;
|
||||
}
|
||||
// And create an object id
|
||||
triangles[i].id = i+1;
|
||||
}
|
||||
fclose(f);
|
||||
|
||||
//
|
||||
// Nothing fancy, and trouble if we run on a big-endian system, just
|
||||
// fread in the bits
|
||||
//
|
||||
int baseWidth, baseHeight;
|
||||
float camera2world[4][4], raster2camera[4][4];
|
||||
READ(baseWidth, 1);
|
||||
READ(baseHeight, 1);
|
||||
READ(camera2world[0][0], 16);
|
||||
READ(raster2camera[0][0], 16);
|
||||
int height = int(baseHeight * scale);
|
||||
int width = int(baseWidth * scale);
|
||||
|
||||
//
|
||||
// Read in the serialized BVH
|
||||
//
|
||||
sprintf(fnbuf, "%s.bvh", filename);
|
||||
f = fopen(fnbuf, "rb");
|
||||
if (!f) {
|
||||
perror(fnbuf);
|
||||
return 1;
|
||||
}
|
||||
// allocate images; one to hold hit object ids, one to hold depth to
|
||||
// the first interseciton
|
||||
int *id = new int[width*height];
|
||||
float *image = new float[width*height];
|
||||
|
||||
// The BVH file starts with an int that gives the total number of BVH
|
||||
// nodes
|
||||
uint nNodes;
|
||||
READ(nNodes, 1);
|
||||
//
|
||||
// Run 3 iterations with ispc + 1 core, record the minimum time
|
||||
//
|
||||
double minTimeISPC = 1e30;
|
||||
#if 0
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
reset_and_start_timer();
|
||||
raytrace_ispc(width, height, baseWidth, baseHeight, raster2camera,
|
||||
camera2world, image, id, nodes, triangles);
|
||||
double dt = get_elapsed_mcycles();
|
||||
minTimeISPC = std::min(dt, minTimeISPC);
|
||||
}
|
||||
printf("[rt ispc, 1 core]:\t\t[%.3f] million cycles for %d x %d image\n",
|
||||
minTimeISPC, width, height);
|
||||
|
||||
LinearBVHNode *nodes = new LinearBVHNode[nNodes];
|
||||
for (unsigned int i = 0; i < nNodes; ++i) {
|
||||
// Each node is 6x floats for a boox, then an integer for an offset
|
||||
// to the second child node, then an integer that encodes the type
|
||||
// of node, the total number of int it if a leaf node, etc.
|
||||
float b[6];
|
||||
READ(b[0], 6);
|
||||
nodes[i].bounds[0][0] = b[0];
|
||||
nodes[i].bounds[0][1] = b[1];
|
||||
nodes[i].bounds[0][2] = b[2];
|
||||
nodes[i].bounds[1][0] = b[3];
|
||||
nodes[i].bounds[1][1] = b[4];
|
||||
nodes[i].bounds[1][2] = b[5];
|
||||
READ(nodes[i].offset, 1);
|
||||
READ(nodes[i].nPrimitives, 1);
|
||||
READ(nodes[i].splitAxis, 1);
|
||||
READ(nodes[i].pad, 1);
|
||||
}
|
||||
writeImage(id, image, width, height, "rt-ispc-1core.ppm");
|
||||
#endif
|
||||
|
||||
// And then read the triangles
|
||||
uint nTris;
|
||||
READ(nTris, 1);
|
||||
Triangle *triangles = new Triangle[nTris];
|
||||
for (uint i = 0; i < nTris; ++i) {
|
||||
// 9x floats for the 3 vertices
|
||||
float v[9];
|
||||
READ(v[0], 9);
|
||||
float *vp = v;
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
triangles[i].p[j][0] = *vp++;
|
||||
triangles[i].p[j][1] = *vp++;
|
||||
triangles[i].p[j][2] = *vp++;
|
||||
}
|
||||
// And create an object id
|
||||
triangles[i].id = i+1;
|
||||
}
|
||||
fclose(f);
|
||||
memset(id, 0, width*height*sizeof(int));
|
||||
memset(image, 0, width*height*sizeof(float));
|
||||
|
||||
int height = int(baseHeight * scale);
|
||||
int width = int(baseWidth * scale);
|
||||
//
|
||||
// Run 3 iterations with ispc + 1 core, record the minimum time
|
||||
//
|
||||
double minTimeISPCtasks = 1e30;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
reset_and_start_timer();
|
||||
const double t0 = rtc();
|
||||
raytrace_ispc_tasks(width, height, baseWidth, baseHeight, raster2camera,
|
||||
camera2world, image, id, nodes, triangles);
|
||||
double dt = rtc() - t0; //get_elapsed_mcycles();
|
||||
minTimeISPCtasks = std::min(dt, minTimeISPCtasks);
|
||||
}
|
||||
printf("[rt ispc + tasks]:\t\t[%.3f] million cycles for %d x %d image\n",
|
||||
minTimeISPCtasks, width, height);
|
||||
|
||||
// allocate images; one to hold hit object ids, one to hold depth to
|
||||
// the first interseciton
|
||||
int *id = new int[width*height];
|
||||
float *image = new float[width*height];
|
||||
writeImage(id, image, width, height, "rt-ispc-tasks.ppm");
|
||||
|
||||
//
|
||||
// Run 3 iterations with ispc + 1 core, record the minimum time
|
||||
//
|
||||
double minTimeISPC = 1e30;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
reset_and_start_timer();
|
||||
raytrace_ispc(width, height, baseWidth, baseHeight, raster2camera,
|
||||
camera2world, image, id, nodes, triangles);
|
||||
double dt = get_elapsed_mcycles();
|
||||
minTimeISPC = std::min(dt, minTimeISPC);
|
||||
}
|
||||
printf("[rt ispc, 1 core]:\t\t[%.3f] million cycles for %d x %d image\n",
|
||||
minTimeISPC, width, height);
|
||||
memset(id, 0, width*height*sizeof(int));
|
||||
memset(image, 0, width*height*sizeof(float));
|
||||
|
||||
writeImage(id, image, width, height, "rt-ispc-1core.ppm");
|
||||
//
|
||||
// And 3 iterations with the serial implementation, reporting the
|
||||
// minimum time.
|
||||
//
|
||||
double minTimeSerial = 1e30;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
reset_and_start_timer();
|
||||
raytrace_serial(width, height, baseWidth, baseHeight, raster2camera,
|
||||
camera2world, image, id, nodes, triangles);
|
||||
double dt = get_elapsed_mcycles();
|
||||
minTimeSerial = std::min(dt, minTimeSerial);
|
||||
}
|
||||
printf("[rt serial]:\t\t\t[%.3f] million cycles for %d x %d image\n",
|
||||
minTimeSerial, width, height);
|
||||
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n",
|
||||
minTimeSerial / minTimeISPC, minTimeSerial / minTimeISPCtasks);
|
||||
|
||||
memset(id, 0, width*height*sizeof(int));
|
||||
memset(image, 0, width*height*sizeof(float));
|
||||
writeImage(id, image, width, height, "rt-serial.ppm");
|
||||
|
||||
//
|
||||
// Run 3 iterations with ispc + 1 core, record the minimum time
|
||||
//
|
||||
double minTimeISPCtasks = 1e30;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
reset_and_start_timer();
|
||||
raytrace_ispc_tasks(width, height, baseWidth, baseHeight, raster2camera,
|
||||
camera2world, image, id, nodes, triangles);
|
||||
double dt = get_elapsed_mcycles();
|
||||
minTimeISPCtasks = std::min(dt, minTimeISPCtasks);
|
||||
}
|
||||
printf("[rt ispc + tasks]:\t\t[%.3f] million cycles for %d x %d image\n",
|
||||
minTimeISPCtasks, width, height);
|
||||
|
||||
writeImage(id, image, width, height, "rt-ispc-tasks.ppm");
|
||||
|
||||
memset(id, 0, width*height*sizeof(int));
|
||||
memset(image, 0, width*height*sizeof(float));
|
||||
|
||||
//
|
||||
// And 3 iterations with the serial implementation, reporting the
|
||||
// minimum time.
|
||||
//
|
||||
double minTimeSerial = 1e30;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
reset_and_start_timer();
|
||||
raytrace_serial(width, height, baseWidth, baseHeight, raster2camera,
|
||||
camera2world, image, id, nodes, triangles);
|
||||
double dt = get_elapsed_mcycles();
|
||||
minTimeSerial = std::min(dt, minTimeSerial);
|
||||
}
|
||||
printf("[rt serial]:\t\t\t[%.3f] million cycles for %d x %d image\n",
|
||||
minTimeSerial, width, height);
|
||||
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n",
|
||||
minTimeSerial / minTimeISPC, minTimeSerial / minTimeISPCtasks);
|
||||
|
||||
writeImage(id, image, width, height, "rt-serial.ppm");
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user