+fixed rt.cpp to compile with nvvm
This commit is contained in:
@@ -3,6 +3,5 @@ EXAMPLE=rt
|
||||
CPP_SRC=rt.cpp rt_serial.cpp
|
||||
ISPC_SRC=rt.ispc
|
||||
ISPC_IA_TARGETS=avx
|
||||
ISPC_ARM_TARGETS=neon
|
||||
|
||||
include ../common.mk
|
||||
|
||||
@@ -47,222 +47,240 @@
|
||||
#include "../timing.h"
|
||||
#include "rt_ispc.h"
|
||||
|
||||
#include <sys/time.h>
|
||||
|
||||
|
||||
double rtc(void)
|
||||
{
|
||||
struct timeval Tvalue;
|
||||
double etime;
|
||||
struct timezone dummy;
|
||||
|
||||
gettimeofday(&Tvalue,&dummy);
|
||||
etime = (double) Tvalue.tv_sec +
|
||||
1.e-6*((double) Tvalue.tv_usec);
|
||||
return etime;
|
||||
}
|
||||
|
||||
using namespace ispc;
|
||||
|
||||
typedef unsigned int uint;
|
||||
|
||||
extern void raytrace_serial(int width, int height, int baseWidth, int baseHeight,
|
||||
const float raster2camera[4][4],
|
||||
const float camera2world[4][4], float image[],
|
||||
int id[], const LinearBVHNode nodes[],
|
||||
const Triangle triangles[]);
|
||||
const float raster2camera[4][4],
|
||||
const float camera2world[4][4], float image[],
|
||||
int id[], const LinearBVHNode nodes[],
|
||||
const Triangle triangles[]);
|
||||
|
||||
|
||||
static void writeImage(int *idImage, float *depthImage, int width, int height,
|
||||
const char *filename) {
|
||||
FILE *f = fopen(filename, "wb");
|
||||
if (!f) {
|
||||
perror(filename);
|
||||
exit(1);
|
||||
const char *filename) {
|
||||
FILE *f = fopen(filename, "wb");
|
||||
if (!f) {
|
||||
perror(filename);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
fprintf(f, "P6\n%d %d\n255\n", width, height);
|
||||
for (int y = 0; y < height; ++y) {
|
||||
for (int x = 0; x < width; ++x) {
|
||||
// use the bits from the object id of the hit object to make a
|
||||
// random color
|
||||
int id = idImage[y * width + x];
|
||||
unsigned char r = 0, g = 0, b = 0;
|
||||
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
// extract bit 3*i for red, 3*i+1 for green, 3*i+2 for blue
|
||||
int rbit = (id & (1 << (3*i))) >> (3*i);
|
||||
int gbit = (id & (1 << (3*i+1))) >> (3*i+1);
|
||||
int bbit = (id & (1 << (3*i+2))) >> (3*i+2);
|
||||
// and then set the bits of the colors starting from the
|
||||
// high bits...
|
||||
r |= rbit << (7-i);
|
||||
g |= gbit << (7-i);
|
||||
b |= bbit << (7-i);
|
||||
}
|
||||
fputc(r, f);
|
||||
fputc(g, f);
|
||||
fputc(b, f);
|
||||
}
|
||||
|
||||
fprintf(f, "P6\n%d %d\n255\n", width, height);
|
||||
for (int y = 0; y < height; ++y) {
|
||||
for (int x = 0; x < width; ++x) {
|
||||
// use the bits from the object id of the hit object to make a
|
||||
// random color
|
||||
int id = idImage[y * width + x];
|
||||
unsigned char r = 0, g = 0, b = 0;
|
||||
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
// extract bit 3*i for red, 3*i+1 for green, 3*i+2 for blue
|
||||
int rbit = (id & (1 << (3*i))) >> (3*i);
|
||||
int gbit = (id & (1 << (3*i+1))) >> (3*i+1);
|
||||
int bbit = (id & (1 << (3*i+2))) >> (3*i+2);
|
||||
// and then set the bits of the colors starting from the
|
||||
// high bits...
|
||||
r |= rbit << (7-i);
|
||||
g |= gbit << (7-i);
|
||||
b |= bbit << (7-i);
|
||||
}
|
||||
fputc(r, f);
|
||||
fputc(g, f);
|
||||
fputc(b, f);
|
||||
}
|
||||
}
|
||||
fclose(f);
|
||||
printf("Wrote image file %s\n", filename);
|
||||
}
|
||||
fclose(f);
|
||||
printf("Wrote image file %s\n", filename);
|
||||
}
|
||||
|
||||
|
||||
static void usage() {
|
||||
fprintf(stderr, "rt [--scale=<factor>] <scene name base>\n");
|
||||
exit(1);
|
||||
fprintf(stderr, "rt [--scale=<factor>] <scene name base>\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
float scale = 1.f;
|
||||
const char *filename = NULL;
|
||||
for (int i = 1; i < argc; ++i) {
|
||||
if (strncmp(argv[i], "--scale=", 8) == 0) {
|
||||
scale = atof(argv[i] + 8);
|
||||
if (scale == 0.f)
|
||||
usage();
|
||||
}
|
||||
else if (filename != NULL)
|
||||
usage();
|
||||
else
|
||||
filename = argv[i];
|
||||
}
|
||||
if (filename == NULL)
|
||||
float scale = 1.f;
|
||||
const char *filename = NULL;
|
||||
for (int i = 1; i < argc; ++i) {
|
||||
if (strncmp(argv[i], "--scale=", 8) == 0) {
|
||||
scale = atof(argv[i] + 8);
|
||||
if (scale == 0.f)
|
||||
usage();
|
||||
}
|
||||
else if (filename != NULL)
|
||||
usage();
|
||||
else
|
||||
filename = argv[i];
|
||||
}
|
||||
if (filename == NULL)
|
||||
usage();
|
||||
|
||||
#define READ(var, n) \
|
||||
if (fread(&(var), sizeof(var), n, f) != (unsigned int)n) { \
|
||||
fprintf(stderr, "Unexpected EOF reading scene file\n"); \
|
||||
return 1; \
|
||||
} else /* eat ; */
|
||||
if (fread(&(var), sizeof(var), n, f) != (unsigned int)n) { \
|
||||
fprintf(stderr, "Unexpected EOF reading scene file\n"); \
|
||||
return 1; \
|
||||
} else /* eat ; */
|
||||
|
||||
//
|
||||
// Read the camera specification information from the camera file
|
||||
//
|
||||
char fnbuf[1024];
|
||||
sprintf(fnbuf, "%s.camera", filename);
|
||||
FILE *f = fopen(fnbuf, "rb");
|
||||
if (!f) {
|
||||
perror(fnbuf);
|
||||
return 1;
|
||||
//
|
||||
// Read the camera specification information from the camera file
|
||||
//
|
||||
char fnbuf[1024];
|
||||
sprintf(fnbuf, "%s.camera", filename);
|
||||
FILE *f = fopen(fnbuf, "rb");
|
||||
if (!f) {
|
||||
perror(fnbuf);
|
||||
return 1;
|
||||
}
|
||||
|
||||
//
|
||||
// Nothing fancy, and trouble if we run on a big-endian system, just
|
||||
// fread in the bits
|
||||
//
|
||||
int baseWidth, baseHeight;
|
||||
float camera2world[4][4], raster2camera[4][4];
|
||||
READ(baseWidth, 1);
|
||||
READ(baseHeight, 1);
|
||||
READ(camera2world[0][0], 16);
|
||||
READ(raster2camera[0][0], 16);
|
||||
|
||||
//
|
||||
// Read in the serialized BVH
|
||||
//
|
||||
sprintf(fnbuf, "%s.bvh", filename);
|
||||
f = fopen(fnbuf, "rb");
|
||||
if (!f) {
|
||||
perror(fnbuf);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// The BVH file starts with an int that gives the total number of BVH
|
||||
// nodes
|
||||
uint nNodes;
|
||||
READ(nNodes, 1);
|
||||
|
||||
LinearBVHNode *nodes = new LinearBVHNode[nNodes];
|
||||
for (unsigned int i = 0; i < nNodes; ++i) {
|
||||
// Each node is 6x floats for a boox, then an integer for an offset
|
||||
// to the second child node, then an integer that encodes the type
|
||||
// of node, the total number of int it if a leaf node, etc.
|
||||
float b[6];
|
||||
READ(b[0], 6);
|
||||
nodes[i].bounds[0][0] = b[0];
|
||||
nodes[i].bounds[0][1] = b[1];
|
||||
nodes[i].bounds[0][2] = b[2];
|
||||
nodes[i].bounds[1][0] = b[3];
|
||||
nodes[i].bounds[1][1] = b[4];
|
||||
nodes[i].bounds[1][2] = b[5];
|
||||
READ(nodes[i].offset, 1);
|
||||
READ(nodes[i].nPrimitives, 1);
|
||||
READ(nodes[i].splitAxis, 1);
|
||||
READ(nodes[i].pad, 1);
|
||||
}
|
||||
|
||||
// And then read the triangles
|
||||
uint nTris;
|
||||
READ(nTris, 1);
|
||||
Triangle *triangles = new Triangle[nTris];
|
||||
for (uint i = 0; i < nTris; ++i) {
|
||||
// 9x floats for the 3 vertices
|
||||
float v[9];
|
||||
READ(v[0], 9);
|
||||
float *vp = v;
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
triangles[i].p[j][0] = *vp++;
|
||||
triangles[i].p[j][1] = *vp++;
|
||||
triangles[i].p[j][2] = *vp++;
|
||||
}
|
||||
// And create an object id
|
||||
triangles[i].id = i+1;
|
||||
}
|
||||
fclose(f);
|
||||
|
||||
//
|
||||
// Nothing fancy, and trouble if we run on a big-endian system, just
|
||||
// fread in the bits
|
||||
//
|
||||
int baseWidth, baseHeight;
|
||||
float camera2world[4][4], raster2camera[4][4];
|
||||
READ(baseWidth, 1);
|
||||
READ(baseHeight, 1);
|
||||
READ(camera2world[0][0], 16);
|
||||
READ(raster2camera[0][0], 16);
|
||||
int height = int(baseHeight * scale);
|
||||
int width = int(baseWidth * scale);
|
||||
|
||||
//
|
||||
// Read in the serialized BVH
|
||||
//
|
||||
sprintf(fnbuf, "%s.bvh", filename);
|
||||
f = fopen(fnbuf, "rb");
|
||||
if (!f) {
|
||||
perror(fnbuf);
|
||||
return 1;
|
||||
}
|
||||
// allocate images; one to hold hit object ids, one to hold depth to
|
||||
// the first interseciton
|
||||
int *id = new int[width*height];
|
||||
float *image = new float[width*height];
|
||||
|
||||
// The BVH file starts with an int that gives the total number of BVH
|
||||
// nodes
|
||||
uint nNodes;
|
||||
READ(nNodes, 1);
|
||||
//
|
||||
// Run 3 iterations with ispc + 1 core, record the minimum time
|
||||
//
|
||||
double minTimeISPC = 1e30;
|
||||
#if 0
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
reset_and_start_timer();
|
||||
raytrace_ispc(width, height, baseWidth, baseHeight, raster2camera,
|
||||
camera2world, image, id, nodes, triangles);
|
||||
double dt = get_elapsed_mcycles();
|
||||
minTimeISPC = std::min(dt, minTimeISPC);
|
||||
}
|
||||
printf("[rt ispc, 1 core]:\t\t[%.3f] million cycles for %d x %d image\n",
|
||||
minTimeISPC, width, height);
|
||||
|
||||
LinearBVHNode *nodes = new LinearBVHNode[nNodes];
|
||||
for (unsigned int i = 0; i < nNodes; ++i) {
|
||||
// Each node is 6x floats for a boox, then an integer for an offset
|
||||
// to the second child node, then an integer that encodes the type
|
||||
// of node, the total number of int it if a leaf node, etc.
|
||||
float b[6];
|
||||
READ(b[0], 6);
|
||||
nodes[i].bounds[0][0] = b[0];
|
||||
nodes[i].bounds[0][1] = b[1];
|
||||
nodes[i].bounds[0][2] = b[2];
|
||||
nodes[i].bounds[1][0] = b[3];
|
||||
nodes[i].bounds[1][1] = b[4];
|
||||
nodes[i].bounds[1][2] = b[5];
|
||||
READ(nodes[i].offset, 1);
|
||||
READ(nodes[i].nPrimitives, 1);
|
||||
READ(nodes[i].splitAxis, 1);
|
||||
READ(nodes[i].pad, 1);
|
||||
}
|
||||
writeImage(id, image, width, height, "rt-ispc-1core.ppm");
|
||||
#endif
|
||||
|
||||
// And then read the triangles
|
||||
uint nTris;
|
||||
READ(nTris, 1);
|
||||
Triangle *triangles = new Triangle[nTris];
|
||||
for (uint i = 0; i < nTris; ++i) {
|
||||
// 9x floats for the 3 vertices
|
||||
float v[9];
|
||||
READ(v[0], 9);
|
||||
float *vp = v;
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
triangles[i].p[j][0] = *vp++;
|
||||
triangles[i].p[j][1] = *vp++;
|
||||
triangles[i].p[j][2] = *vp++;
|
||||
}
|
||||
// And create an object id
|
||||
triangles[i].id = i+1;
|
||||
}
|
||||
fclose(f);
|
||||
memset(id, 0, width*height*sizeof(int));
|
||||
memset(image, 0, width*height*sizeof(float));
|
||||
|
||||
int height = int(baseHeight * scale);
|
||||
int width = int(baseWidth * scale);
|
||||
//
|
||||
// Run 3 iterations with ispc + 1 core, record the minimum time
|
||||
//
|
||||
double minTimeISPCtasks = 1e30;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
reset_and_start_timer();
|
||||
const double t0 = rtc();
|
||||
raytrace_ispc_tasks(width, height, baseWidth, baseHeight, raster2camera,
|
||||
camera2world, image, id, nodes, triangles);
|
||||
double dt = rtc() - t0; //get_elapsed_mcycles();
|
||||
minTimeISPCtasks = std::min(dt, minTimeISPCtasks);
|
||||
}
|
||||
printf("[rt ispc + tasks]:\t\t[%.3f] million cycles for %d x %d image\n",
|
||||
minTimeISPCtasks, width, height);
|
||||
|
||||
// allocate images; one to hold hit object ids, one to hold depth to
|
||||
// the first interseciton
|
||||
int *id = new int[width*height];
|
||||
float *image = new float[width*height];
|
||||
writeImage(id, image, width, height, "rt-ispc-tasks.ppm");
|
||||
|
||||
//
|
||||
// Run 3 iterations with ispc + 1 core, record the minimum time
|
||||
//
|
||||
double minTimeISPC = 1e30;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
reset_and_start_timer();
|
||||
raytrace_ispc(width, height, baseWidth, baseHeight, raster2camera,
|
||||
camera2world, image, id, nodes, triangles);
|
||||
double dt = get_elapsed_mcycles();
|
||||
minTimeISPC = std::min(dt, minTimeISPC);
|
||||
}
|
||||
printf("[rt ispc, 1 core]:\t\t[%.3f] million cycles for %d x %d image\n",
|
||||
minTimeISPC, width, height);
|
||||
memset(id, 0, width*height*sizeof(int));
|
||||
memset(image, 0, width*height*sizeof(float));
|
||||
|
||||
writeImage(id, image, width, height, "rt-ispc-1core.ppm");
|
||||
//
|
||||
// And 3 iterations with the serial implementation, reporting the
|
||||
// minimum time.
|
||||
//
|
||||
double minTimeSerial = 1e30;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
reset_and_start_timer();
|
||||
raytrace_serial(width, height, baseWidth, baseHeight, raster2camera,
|
||||
camera2world, image, id, nodes, triangles);
|
||||
double dt = get_elapsed_mcycles();
|
||||
minTimeSerial = std::min(dt, minTimeSerial);
|
||||
}
|
||||
printf("[rt serial]:\t\t\t[%.3f] million cycles for %d x %d image\n",
|
||||
minTimeSerial, width, height);
|
||||
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n",
|
||||
minTimeSerial / minTimeISPC, minTimeSerial / minTimeISPCtasks);
|
||||
|
||||
memset(id, 0, width*height*sizeof(int));
|
||||
memset(image, 0, width*height*sizeof(float));
|
||||
writeImage(id, image, width, height, "rt-serial.ppm");
|
||||
|
||||
//
|
||||
// Run 3 iterations with ispc + 1 core, record the minimum time
|
||||
//
|
||||
double minTimeISPCtasks = 1e30;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
reset_and_start_timer();
|
||||
raytrace_ispc_tasks(width, height, baseWidth, baseHeight, raster2camera,
|
||||
camera2world, image, id, nodes, triangles);
|
||||
double dt = get_elapsed_mcycles();
|
||||
minTimeISPCtasks = std::min(dt, minTimeISPCtasks);
|
||||
}
|
||||
printf("[rt ispc + tasks]:\t\t[%.3f] million cycles for %d x %d image\n",
|
||||
minTimeISPCtasks, width, height);
|
||||
|
||||
writeImage(id, image, width, height, "rt-ispc-tasks.ppm");
|
||||
|
||||
memset(id, 0, width*height*sizeof(int));
|
||||
memset(image, 0, width*height*sizeof(float));
|
||||
|
||||
//
|
||||
// And 3 iterations with the serial implementation, reporting the
|
||||
// minimum time.
|
||||
//
|
||||
double minTimeSerial = 1e30;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
reset_and_start_timer();
|
||||
raytrace_serial(width, height, baseWidth, baseHeight, raster2camera,
|
||||
camera2world, image, id, nodes, triangles);
|
||||
double dt = get_elapsed_mcycles();
|
||||
minTimeSerial = std::min(dt, minTimeSerial);
|
||||
}
|
||||
printf("[rt serial]:\t\t\t[%.3f] million cycles for %d x %d image\n",
|
||||
minTimeSerial, width, height);
|
||||
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n",
|
||||
minTimeSerial / minTimeISPC, minTimeSerial / minTimeISPCtasks);
|
||||
|
||||
writeImage(id, image, width, height, "rt-serial.ppm");
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -31,22 +31,32 @@
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#define bool int
|
||||
|
||||
#ifdef __NVPTX__
|
||||
#warning "emitting DEVICE code"
|
||||
#define programCount warpSize()
|
||||
#define programIndex laneIndex()
|
||||
#define taskIndex blockIndex0()
|
||||
#define taskCount blockCount0()
|
||||
#else
|
||||
#warning "emitting HOST code"
|
||||
#endif
|
||||
|
||||
#define bool int
|
||||
|
||||
typedef float<3> float3;
|
||||
|
||||
#if 0
|
||||
#define DIRISNEG
|
||||
#endif
|
||||
|
||||
struct Ray {
|
||||
float3 origin, dir, invDir;
|
||||
#ifdef DIRISNEG /* this fails to compile with nvvm */
|
||||
uniform unsigned int dirIsNeg[3];
|
||||
#else
|
||||
unsigned int dirIsNeg0, dirIsNeg1, dirIsNeg2;
|
||||
#endif
|
||||
|
||||
float mint, maxt;
|
||||
int hitId;
|
||||
};
|
||||
@@ -80,7 +90,7 @@ static inline float Dot(const float3 a, const float3 b) {
|
||||
}
|
||||
|
||||
|
||||
static void generateRay(uniform const float raster2camera[4][4],
|
||||
static inline void generateRay(uniform const float raster2camera[4][4],
|
||||
uniform const float camera2world[4][4],
|
||||
float x, float y, Ray &ray) {
|
||||
ray.mint = 0.f;
|
||||
@@ -110,13 +120,19 @@ static void generateRay(uniform const float raster2camera[4][4],
|
||||
|
||||
ray.invDir = 1.f / ray.dir;
|
||||
|
||||
#ifdef DIRISNEG
|
||||
ray.dirIsNeg[0] = any(ray.invDir.x < 0) ? 1 : 0;
|
||||
ray.dirIsNeg[1] = any(ray.invDir.y < 0) ? 1 : 0;
|
||||
ray.dirIsNeg[2] = any(ray.invDir.z < 0) ? 1 : 0;
|
||||
#else
|
||||
ray.dirIsNeg0 = any(ray.invDir.x < 0) ? 1 : 0;
|
||||
ray.dirIsNeg1 = any(ray.invDir.y < 0) ? 1 : 0;
|
||||
ray.dirIsNeg2 = any(ray.invDir.z < 0) ? 1 : 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
static bool BBoxIntersect(const uniform float bounds[2][3],
|
||||
static inline bool BBoxIntersect(const uniform float bounds[2][3],
|
||||
const Ray &ray) {
|
||||
uniform float3 bounds0 = { bounds[0][0], bounds[0][1], bounds[0][2] };
|
||||
uniform float3 bounds1 = { bounds[1][0], bounds[1][1], bounds[1][2] };
|
||||
@@ -155,7 +171,7 @@ static bool BBoxIntersect(const uniform float bounds[2][3],
|
||||
|
||||
|
||||
|
||||
static bool TriIntersect(const uniform Triangle &tri, Ray &ray) {
|
||||
static inline bool TriIntersect(const uniform Triangle &tri, Ray &ray) {
|
||||
uniform float3 p0 = { tri.p[0][0], tri.p[0][1], tri.p[0][2] };
|
||||
uniform float3 p1 = { tri.p[1][0], tri.p[1][1], tri.p[1][2] };
|
||||
uniform float3 p2 = { tri.p[2][0], tri.p[2][1], tri.p[2][2] };
|
||||
@@ -195,7 +211,7 @@ static bool TriIntersect(const uniform Triangle &tri, Ray &ray) {
|
||||
}
|
||||
|
||||
|
||||
bool BVHIntersect(const uniform LinearBVHNode nodes[],
|
||||
inline inline bool BVHIntersect(const uniform LinearBVHNode nodes[],
|
||||
const uniform Triangle tris[], Ray &r) {
|
||||
Ray ray = r;
|
||||
bool hit = false;
|
||||
@@ -206,9 +222,11 @@ bool BVHIntersect(const uniform LinearBVHNode nodes[],
|
||||
while (true) {
|
||||
// Check ray against BVH node
|
||||
uniform LinearBVHNode node = nodes[nodeNum];
|
||||
if (any(BBoxIntersect(node.bounds, ray))) {
|
||||
if (any(BBoxIntersect(node.bounds, ray)))
|
||||
{
|
||||
uniform unsigned int nPrimitives = node.nPrimitives;
|
||||
if (nPrimitives > 0) {
|
||||
if (nPrimitives > 0)
|
||||
{
|
||||
// Intersect ray with primitives in leaf BVH node
|
||||
uniform unsigned int primitivesOffset = node.offset;
|
||||
for (uniform unsigned int i = 0; i < nPrimitives; ++i) {
|
||||
@@ -219,13 +237,24 @@ bool BVHIntersect(const uniform LinearBVHNode nodes[],
|
||||
break;
|
||||
nodeNum = todo[--todoOffset];
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
// Put far BVH node on _todo_ stack, advance to near node
|
||||
if (r.dirIsNeg[node.splitAxis]) {
|
||||
#ifdef DIRISNEG
|
||||
const int dirIsNeg = r.dirIsNeg[node.splitAxis];
|
||||
#else
|
||||
int dirIsNeg;
|
||||
if (node.splitAxis == 0) dirIsNeg = r.dirIsNeg0;
|
||||
if (node.splitAxis == 1) dirIsNeg = r.dirIsNeg1;
|
||||
if (node.splitAxis == 2) dirIsNeg = r.dirIsNeg2;
|
||||
#endif
|
||||
if (dirIsNeg)
|
||||
{
|
||||
todo[todoOffset++] = nodeNum + 1;
|
||||
nodeNum = node.offset;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
todo[todoOffset++] = node.offset;
|
||||
nodeNum = nodeNum + 1;
|
||||
}
|
||||
@@ -244,7 +273,7 @@ bool BVHIntersect(const uniform LinearBVHNode nodes[],
|
||||
}
|
||||
|
||||
|
||||
static void raytrace_tile(uniform int x0, uniform int x1,
|
||||
static inline void raytrace_tile(uniform int x0, uniform int x1,
|
||||
uniform int y0, uniform int y1,
|
||||
uniform int width, uniform int height,
|
||||
uniform int baseWidth, uniform int baseHeight,
|
||||
@@ -256,15 +285,21 @@ static void raytrace_tile(uniform int x0, uniform int x1,
|
||||
uniform float widthScale = (float)(baseWidth) / (float)(width);
|
||||
uniform float heightScale = (float)(baseHeight) / (float)(height);
|
||||
|
||||
foreach_tiled (y = y0 ... y1, x = x0 ... x1) {
|
||||
// foreach_tiled (y = y0 ... y1, x = x0 ... x1)
|
||||
for (uniform int y = y0; y < y1; y++)
|
||||
for (uniform int xb = x0; xb < x1; xb += programCount)
|
||||
{
|
||||
const int x = xb + programIndex;
|
||||
Ray ray;
|
||||
generateRay(raster2camera, camera2world, x*widthScale,
|
||||
y*heightScale, ray);
|
||||
generateRay(raster2camera, camera2world, x*widthScale, y*heightScale, ray);
|
||||
BVHIntersect(nodes, triangles, ray);
|
||||
|
||||
int offset = y * width + x;
|
||||
image[offset] = ray.maxt;
|
||||
id[offset] = ray.hitId;
|
||||
if (x < x1)
|
||||
{
|
||||
image[offset] = ray.maxt;
|
||||
id[offset] = ray.hitId;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -284,37 +319,75 @@ export void raytrace_ispc(uniform int width, uniform int height,
|
||||
|
||||
task void raytrace_tile_task(uniform int width, uniform int height,
|
||||
uniform int baseWidth, uniform int baseHeight,
|
||||
const uniform float raster2camera[4][4],
|
||||
const uniform float camera2world[4][4],
|
||||
const uniform float _raster2camera[4][4],
|
||||
const uniform float _camera2world[4][4],
|
||||
uniform float image[], uniform int id[],
|
||||
const uniform LinearBVHNode nodes[],
|
||||
const uniform Triangle triangles[]) {
|
||||
uniform int dx = 16, dy = 16; // must match dx, dy below
|
||||
uniform int xBuckets = (width + (dx-1)) / dx;
|
||||
uniform int x0 = (taskIndex % xBuckets) * dx;
|
||||
uniform int x1 = min(x0 + dx, width);
|
||||
uniform int y0 = (taskIndex / xBuckets) * dy;
|
||||
uniform int y1 = min(y0 + dy, height);
|
||||
|
||||
raytrace_tile(x0, x1, y0, y1, width, height, baseWidth, baseHeight,
|
||||
raster2camera, camera2world, image,
|
||||
id, nodes, triangles);
|
||||
if (taskIndex >= taskCount) return;
|
||||
|
||||
uniform float raster2camera[4][4];
|
||||
raster2camera[0][0] = _raster2camera[0][0];
|
||||
raster2camera[0][1] = _raster2camera[0][1];
|
||||
raster2camera[0][2] = _raster2camera[0][2];
|
||||
raster2camera[0][3] = _raster2camera[0][3];
|
||||
raster2camera[1][0] = _raster2camera[1][0];
|
||||
raster2camera[1][1] = _raster2camera[1][1];
|
||||
raster2camera[1][2] = _raster2camera[1][2];
|
||||
raster2camera[1][3] = _raster2camera[1][3];
|
||||
raster2camera[2][0] = _raster2camera[2][0];
|
||||
raster2camera[2][1] = _raster2camera[2][1];
|
||||
raster2camera[2][2] = _raster2camera[2][2];
|
||||
raster2camera[2][3] = _raster2camera[2][3];
|
||||
raster2camera[3][0] = _raster2camera[3][0];
|
||||
raster2camera[3][1] = _raster2camera[3][1];
|
||||
raster2camera[3][2] = _raster2camera[3][2];
|
||||
raster2camera[3][3] = _raster2camera[3][3];
|
||||
|
||||
uniform float camera2world[4][4];
|
||||
camera2world[0][0] = _camera2world[0][0];
|
||||
camera2world[0][1] = _camera2world[0][1];
|
||||
camera2world[0][2] = _camera2world[0][2];
|
||||
camera2world[0][3] = _camera2world[0][3];
|
||||
camera2world[1][0] = _camera2world[1][0];
|
||||
camera2world[1][1] = _camera2world[1][1];
|
||||
camera2world[1][2] = _camera2world[1][2];
|
||||
camera2world[1][3] = _camera2world[1][3];
|
||||
camera2world[2][0] = _camera2world[2][0];
|
||||
camera2world[2][1] = _camera2world[2][1];
|
||||
camera2world[2][2] = _camera2world[2][2];
|
||||
camera2world[2][3] = _camera2world[2][3];
|
||||
camera2world[3][0] = _camera2world[3][0];
|
||||
camera2world[3][1] = _camera2world[3][1];
|
||||
camera2world[3][2] = _camera2world[3][2];
|
||||
camera2world[3][3] = _camera2world[3][3];
|
||||
|
||||
uniform int dx = 32, dy = 16; // must match dx, dy below
|
||||
uniform int xBuckets = (width + (dx-1)) / dx;
|
||||
uniform int x0 = (taskIndex % xBuckets) * dx;
|
||||
uniform int x1 = min(x0 + dx, width);
|
||||
uniform int y0 = (taskIndex / xBuckets) * dy;
|
||||
uniform int y1 = min(y0 + dy, height);
|
||||
|
||||
raytrace_tile(x0, x1, y0, y1, width, height, baseWidth, baseHeight,
|
||||
raster2camera, camera2world, image,
|
||||
id, nodes, triangles);
|
||||
}
|
||||
|
||||
|
||||
export void raytrace_ispc_tasks(uniform int width, uniform int height,
|
||||
uniform int baseWidth, uniform int baseHeight,
|
||||
const uniform float raster2camera[4][4],
|
||||
const uniform float camera2world[4][4],
|
||||
uniform float image[], uniform int id[],
|
||||
const uniform LinearBVHNode nodes[],
|
||||
const uniform Triangle triangles[]) {
|
||||
uniform int dx = 16, dy = 16;
|
||||
uniform int xBuckets = (width + (dx-1)) / dx;
|
||||
uniform int yBuckets = (height + (dy-1)) / dy;
|
||||
uniform int nTasks = xBuckets * yBuckets;
|
||||
launch[nTasks] raytrace_tile_task(width, height, baseWidth, baseHeight,
|
||||
raster2camera, camera2world,
|
||||
image, id, nodes, triangles);
|
||||
uniform int baseWidth, uniform int baseHeight,
|
||||
const uniform float raster2camera[4][4],
|
||||
const uniform float camera2world[4][4],
|
||||
uniform float image[], uniform int id[],
|
||||
const uniform LinearBVHNode nodes[],
|
||||
const uniform Triangle triangles[]) {
|
||||
uniform int dx = 32, dy = 16;
|
||||
uniform int xBuckets = (width + (dx-1)) / dx;
|
||||
uniform int yBuckets = (height + (dy-1)) / dy;
|
||||
uniform int nTasks = xBuckets * yBuckets;
|
||||
launch[nTasks] raytrace_tile_task(width, height, baseWidth, baseHeight,
|
||||
raster2camera, camera2world,
|
||||
image, id, nodes, triangles);
|
||||
}
|
||||
|
||||
|
||||
@@ -59,9 +59,7 @@
|
||||
#define ISPC_USE_PTHREADS
|
||||
#define ISPC_USE_PTHREADS_FULLY_SUBSCRIBED
|
||||
#define ISPC_USE_CILK
|
||||
*/
|
||||
#define ISPC_USE_OMP
|
||||
/*
|
||||
#define ISPC_USE_TBB_TASK_GROUP
|
||||
#define ISPC_USE_TBB_PARALLEL_FOR
|
||||
|
||||
|
||||
Reference in New Issue
Block a user