+fixed rt.cpp to compile with nvvm

This commit is contained in:
Evghenii
2013-11-09 19:02:14 +01:00
parent d0ddec469a
commit 356e9c6810
4 changed files with 318 additions and 230 deletions

View File

@@ -3,6 +3,5 @@ EXAMPLE=rt
CPP_SRC=rt.cpp rt_serial.cpp
ISPC_SRC=rt.ispc
ISPC_IA_TARGETS=avx
ISPC_ARM_TARGETS=neon
include ../common.mk

View File

@@ -47,222 +47,240 @@
#include "../timing.h"
#include "rt_ispc.h"
#include <sys/time.h>
double rtc(void)
{
struct timeval Tvalue;
double etime;
struct timezone dummy;
gettimeofday(&Tvalue,&dummy);
etime = (double) Tvalue.tv_sec +
1.e-6*((double) Tvalue.tv_usec);
return etime;
}
using namespace ispc;
typedef unsigned int uint;
extern void raytrace_serial(int width, int height, int baseWidth, int baseHeight,
const float raster2camera[4][4],
const float camera2world[4][4], float image[],
int id[], const LinearBVHNode nodes[],
const Triangle triangles[]);
const float raster2camera[4][4],
const float camera2world[4][4], float image[],
int id[], const LinearBVHNode nodes[],
const Triangle triangles[]);
static void writeImage(int *idImage, float *depthImage, int width, int height,
const char *filename) {
FILE *f = fopen(filename, "wb");
if (!f) {
perror(filename);
exit(1);
const char *filename) {
FILE *f = fopen(filename, "wb");
if (!f) {
perror(filename);
exit(1);
}
fprintf(f, "P6\n%d %d\n255\n", width, height);
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
// use the bits from the object id of the hit object to make a
// random color
int id = idImage[y * width + x];
unsigned char r = 0, g = 0, b = 0;
for (int i = 0; i < 8; ++i) {
// extract bit 3*i for red, 3*i+1 for green, 3*i+2 for blue
int rbit = (id & (1 << (3*i))) >> (3*i);
int gbit = (id & (1 << (3*i+1))) >> (3*i+1);
int bbit = (id & (1 << (3*i+2))) >> (3*i+2);
// and then set the bits of the colors starting from the
// high bits...
r |= rbit << (7-i);
g |= gbit << (7-i);
b |= bbit << (7-i);
}
fputc(r, f);
fputc(g, f);
fputc(b, f);
}
fprintf(f, "P6\n%d %d\n255\n", width, height);
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
// use the bits from the object id of the hit object to make a
// random color
int id = idImage[y * width + x];
unsigned char r = 0, g = 0, b = 0;
for (int i = 0; i < 8; ++i) {
// extract bit 3*i for red, 3*i+1 for green, 3*i+2 for blue
int rbit = (id & (1 << (3*i))) >> (3*i);
int gbit = (id & (1 << (3*i+1))) >> (3*i+1);
int bbit = (id & (1 << (3*i+2))) >> (3*i+2);
// and then set the bits of the colors starting from the
// high bits...
r |= rbit << (7-i);
g |= gbit << (7-i);
b |= bbit << (7-i);
}
fputc(r, f);
fputc(g, f);
fputc(b, f);
}
}
fclose(f);
printf("Wrote image file %s\n", filename);
}
fclose(f);
printf("Wrote image file %s\n", filename);
}
static void usage() {
fprintf(stderr, "rt [--scale=<factor>] <scene name base>\n");
exit(1);
fprintf(stderr, "rt [--scale=<factor>] <scene name base>\n");
exit(1);
}
int main(int argc, char *argv[]) {
float scale = 1.f;
const char *filename = NULL;
for (int i = 1; i < argc; ++i) {
if (strncmp(argv[i], "--scale=", 8) == 0) {
scale = atof(argv[i] + 8);
if (scale == 0.f)
usage();
}
else if (filename != NULL)
usage();
else
filename = argv[i];
}
if (filename == NULL)
float scale = 1.f;
const char *filename = NULL;
for (int i = 1; i < argc; ++i) {
if (strncmp(argv[i], "--scale=", 8) == 0) {
scale = atof(argv[i] + 8);
if (scale == 0.f)
usage();
}
else if (filename != NULL)
usage();
else
filename = argv[i];
}
if (filename == NULL)
usage();
#define READ(var, n) \
if (fread(&(var), sizeof(var), n, f) != (unsigned int)n) { \
fprintf(stderr, "Unexpected EOF reading scene file\n"); \
return 1; \
} else /* eat ; */
if (fread(&(var), sizeof(var), n, f) != (unsigned int)n) { \
fprintf(stderr, "Unexpected EOF reading scene file\n"); \
return 1; \
} else /* eat ; */
//
// Read the camera specification information from the camera file
//
char fnbuf[1024];
sprintf(fnbuf, "%s.camera", filename);
FILE *f = fopen(fnbuf, "rb");
if (!f) {
perror(fnbuf);
return 1;
//
// Read the camera specification information from the camera file
//
char fnbuf[1024];
sprintf(fnbuf, "%s.camera", filename);
FILE *f = fopen(fnbuf, "rb");
if (!f) {
perror(fnbuf);
return 1;
}
//
// Nothing fancy, and trouble if we run on a big-endian system, just
// fread in the bits
//
int baseWidth, baseHeight;
float camera2world[4][4], raster2camera[4][4];
READ(baseWidth, 1);
READ(baseHeight, 1);
READ(camera2world[0][0], 16);
READ(raster2camera[0][0], 16);
//
// Read in the serialized BVH
//
sprintf(fnbuf, "%s.bvh", filename);
f = fopen(fnbuf, "rb");
if (!f) {
perror(fnbuf);
return 1;
}
// The BVH file starts with an int that gives the total number of BVH
// nodes
uint nNodes;
READ(nNodes, 1);
LinearBVHNode *nodes = new LinearBVHNode[nNodes];
for (unsigned int i = 0; i < nNodes; ++i) {
// Each node is 6x floats for a boox, then an integer for an offset
// to the second child node, then an integer that encodes the type
// of node, the total number of int it if a leaf node, etc.
float b[6];
READ(b[0], 6);
nodes[i].bounds[0][0] = b[0];
nodes[i].bounds[0][1] = b[1];
nodes[i].bounds[0][2] = b[2];
nodes[i].bounds[1][0] = b[3];
nodes[i].bounds[1][1] = b[4];
nodes[i].bounds[1][2] = b[5];
READ(nodes[i].offset, 1);
READ(nodes[i].nPrimitives, 1);
READ(nodes[i].splitAxis, 1);
READ(nodes[i].pad, 1);
}
// And then read the triangles
uint nTris;
READ(nTris, 1);
Triangle *triangles = new Triangle[nTris];
for (uint i = 0; i < nTris; ++i) {
// 9x floats for the 3 vertices
float v[9];
READ(v[0], 9);
float *vp = v;
for (int j = 0; j < 3; ++j) {
triangles[i].p[j][0] = *vp++;
triangles[i].p[j][1] = *vp++;
triangles[i].p[j][2] = *vp++;
}
// And create an object id
triangles[i].id = i+1;
}
fclose(f);
//
// Nothing fancy, and trouble if we run on a big-endian system, just
// fread in the bits
//
int baseWidth, baseHeight;
float camera2world[4][4], raster2camera[4][4];
READ(baseWidth, 1);
READ(baseHeight, 1);
READ(camera2world[0][0], 16);
READ(raster2camera[0][0], 16);
int height = int(baseHeight * scale);
int width = int(baseWidth * scale);
//
// Read in the serialized BVH
//
sprintf(fnbuf, "%s.bvh", filename);
f = fopen(fnbuf, "rb");
if (!f) {
perror(fnbuf);
return 1;
}
// allocate images; one to hold hit object ids, one to hold depth to
// the first interseciton
int *id = new int[width*height];
float *image = new float[width*height];
// The BVH file starts with an int that gives the total number of BVH
// nodes
uint nNodes;
READ(nNodes, 1);
//
// Run 3 iterations with ispc + 1 core, record the minimum time
//
double minTimeISPC = 1e30;
#if 0
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
raytrace_ispc(width, height, baseWidth, baseHeight, raster2camera,
camera2world, image, id, nodes, triangles);
double dt = get_elapsed_mcycles();
minTimeISPC = std::min(dt, minTimeISPC);
}
printf("[rt ispc, 1 core]:\t\t[%.3f] million cycles for %d x %d image\n",
minTimeISPC, width, height);
LinearBVHNode *nodes = new LinearBVHNode[nNodes];
for (unsigned int i = 0; i < nNodes; ++i) {
// Each node is 6x floats for a boox, then an integer for an offset
// to the second child node, then an integer that encodes the type
// of node, the total number of int it if a leaf node, etc.
float b[6];
READ(b[0], 6);
nodes[i].bounds[0][0] = b[0];
nodes[i].bounds[0][1] = b[1];
nodes[i].bounds[0][2] = b[2];
nodes[i].bounds[1][0] = b[3];
nodes[i].bounds[1][1] = b[4];
nodes[i].bounds[1][2] = b[5];
READ(nodes[i].offset, 1);
READ(nodes[i].nPrimitives, 1);
READ(nodes[i].splitAxis, 1);
READ(nodes[i].pad, 1);
}
writeImage(id, image, width, height, "rt-ispc-1core.ppm");
#endif
// And then read the triangles
uint nTris;
READ(nTris, 1);
Triangle *triangles = new Triangle[nTris];
for (uint i = 0; i < nTris; ++i) {
// 9x floats for the 3 vertices
float v[9];
READ(v[0], 9);
float *vp = v;
for (int j = 0; j < 3; ++j) {
triangles[i].p[j][0] = *vp++;
triangles[i].p[j][1] = *vp++;
triangles[i].p[j][2] = *vp++;
}
// And create an object id
triangles[i].id = i+1;
}
fclose(f);
memset(id, 0, width*height*sizeof(int));
memset(image, 0, width*height*sizeof(float));
int height = int(baseHeight * scale);
int width = int(baseWidth * scale);
//
// Run 3 iterations with ispc + 1 core, record the minimum time
//
double minTimeISPCtasks = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
const double t0 = rtc();
raytrace_ispc_tasks(width, height, baseWidth, baseHeight, raster2camera,
camera2world, image, id, nodes, triangles);
double dt = rtc() - t0; //get_elapsed_mcycles();
minTimeISPCtasks = std::min(dt, minTimeISPCtasks);
}
printf("[rt ispc + tasks]:\t\t[%.3f] million cycles for %d x %d image\n",
minTimeISPCtasks, width, height);
// allocate images; one to hold hit object ids, one to hold depth to
// the first interseciton
int *id = new int[width*height];
float *image = new float[width*height];
writeImage(id, image, width, height, "rt-ispc-tasks.ppm");
//
// Run 3 iterations with ispc + 1 core, record the minimum time
//
double minTimeISPC = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
raytrace_ispc(width, height, baseWidth, baseHeight, raster2camera,
camera2world, image, id, nodes, triangles);
double dt = get_elapsed_mcycles();
minTimeISPC = std::min(dt, minTimeISPC);
}
printf("[rt ispc, 1 core]:\t\t[%.3f] million cycles for %d x %d image\n",
minTimeISPC, width, height);
memset(id, 0, width*height*sizeof(int));
memset(image, 0, width*height*sizeof(float));
writeImage(id, image, width, height, "rt-ispc-1core.ppm");
//
// And 3 iterations with the serial implementation, reporting the
// minimum time.
//
double minTimeSerial = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
raytrace_serial(width, height, baseWidth, baseHeight, raster2camera,
camera2world, image, id, nodes, triangles);
double dt = get_elapsed_mcycles();
minTimeSerial = std::min(dt, minTimeSerial);
}
printf("[rt serial]:\t\t\t[%.3f] million cycles for %d x %d image\n",
minTimeSerial, width, height);
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n",
minTimeSerial / minTimeISPC, minTimeSerial / minTimeISPCtasks);
memset(id, 0, width*height*sizeof(int));
memset(image, 0, width*height*sizeof(float));
writeImage(id, image, width, height, "rt-serial.ppm");
//
// Run 3 iterations with ispc + 1 core, record the minimum time
//
double minTimeISPCtasks = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
raytrace_ispc_tasks(width, height, baseWidth, baseHeight, raster2camera,
camera2world, image, id, nodes, triangles);
double dt = get_elapsed_mcycles();
minTimeISPCtasks = std::min(dt, minTimeISPCtasks);
}
printf("[rt ispc + tasks]:\t\t[%.3f] million cycles for %d x %d image\n",
minTimeISPCtasks, width, height);
writeImage(id, image, width, height, "rt-ispc-tasks.ppm");
memset(id, 0, width*height*sizeof(int));
memset(image, 0, width*height*sizeof(float));
//
// And 3 iterations with the serial implementation, reporting the
// minimum time.
//
double minTimeSerial = 1e30;
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
raytrace_serial(width, height, baseWidth, baseHeight, raster2camera,
camera2world, image, id, nodes, triangles);
double dt = get_elapsed_mcycles();
minTimeSerial = std::min(dt, minTimeSerial);
}
printf("[rt serial]:\t\t\t[%.3f] million cycles for %d x %d image\n",
minTimeSerial, width, height);
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n",
minTimeSerial / minTimeISPC, minTimeSerial / minTimeISPCtasks);
writeImage(id, image, width, height, "rt-serial.ppm");
return 0;
return 0;
}

View File

@@ -31,22 +31,32 @@
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define bool int
#ifdef __NVPTX__
#warning "emitting DEVICE code"
#define programCount warpSize()
#define programIndex laneIndex()
#define taskIndex blockIndex0()
#define taskCount blockCount0()
#else
#warning "emitting HOST code"
#endif
#define bool int
typedef float<3> float3;
#if 0
#define DIRISNEG
#endif
struct Ray {
float3 origin, dir, invDir;
#ifdef DIRISNEG /* this fails to compile with nvvm */
uniform unsigned int dirIsNeg[3];
#else
unsigned int dirIsNeg0, dirIsNeg1, dirIsNeg2;
#endif
float mint, maxt;
int hitId;
};
@@ -80,7 +90,7 @@ static inline float Dot(const float3 a, const float3 b) {
}
static void generateRay(uniform const float raster2camera[4][4],
static inline void generateRay(uniform const float raster2camera[4][4],
uniform const float camera2world[4][4],
float x, float y, Ray &ray) {
ray.mint = 0.f;
@@ -110,13 +120,19 @@ static void generateRay(uniform const float raster2camera[4][4],
ray.invDir = 1.f / ray.dir;
#ifdef DIRISNEG
ray.dirIsNeg[0] = any(ray.invDir.x < 0) ? 1 : 0;
ray.dirIsNeg[1] = any(ray.invDir.y < 0) ? 1 : 0;
ray.dirIsNeg[2] = any(ray.invDir.z < 0) ? 1 : 0;
#else
ray.dirIsNeg0 = any(ray.invDir.x < 0) ? 1 : 0;
ray.dirIsNeg1 = any(ray.invDir.y < 0) ? 1 : 0;
ray.dirIsNeg2 = any(ray.invDir.z < 0) ? 1 : 0;
#endif
}
static bool BBoxIntersect(const uniform float bounds[2][3],
static inline bool BBoxIntersect(const uniform float bounds[2][3],
const Ray &ray) {
uniform float3 bounds0 = { bounds[0][0], bounds[0][1], bounds[0][2] };
uniform float3 bounds1 = { bounds[1][0], bounds[1][1], bounds[1][2] };
@@ -155,7 +171,7 @@ static bool BBoxIntersect(const uniform float bounds[2][3],
static bool TriIntersect(const uniform Triangle &tri, Ray &ray) {
static inline bool TriIntersect(const uniform Triangle &tri, Ray &ray) {
uniform float3 p0 = { tri.p[0][0], tri.p[0][1], tri.p[0][2] };
uniform float3 p1 = { tri.p[1][0], tri.p[1][1], tri.p[1][2] };
uniform float3 p2 = { tri.p[2][0], tri.p[2][1], tri.p[2][2] };
@@ -195,7 +211,7 @@ static bool TriIntersect(const uniform Triangle &tri, Ray &ray) {
}
bool BVHIntersect(const uniform LinearBVHNode nodes[],
inline inline bool BVHIntersect(const uniform LinearBVHNode nodes[],
const uniform Triangle tris[], Ray &r) {
Ray ray = r;
bool hit = false;
@@ -206,9 +222,11 @@ bool BVHIntersect(const uniform LinearBVHNode nodes[],
while (true) {
// Check ray against BVH node
uniform LinearBVHNode node = nodes[nodeNum];
if (any(BBoxIntersect(node.bounds, ray))) {
if (any(BBoxIntersect(node.bounds, ray)))
{
uniform unsigned int nPrimitives = node.nPrimitives;
if (nPrimitives > 0) {
if (nPrimitives > 0)
{
// Intersect ray with primitives in leaf BVH node
uniform unsigned int primitivesOffset = node.offset;
for (uniform unsigned int i = 0; i < nPrimitives; ++i) {
@@ -219,13 +237,24 @@ bool BVHIntersect(const uniform LinearBVHNode nodes[],
break;
nodeNum = todo[--todoOffset];
}
else {
else
{
// Put far BVH node on _todo_ stack, advance to near node
if (r.dirIsNeg[node.splitAxis]) {
#ifdef DIRISNEG
const int dirIsNeg = r.dirIsNeg[node.splitAxis];
#else
int dirIsNeg;
if (node.splitAxis == 0) dirIsNeg = r.dirIsNeg0;
if (node.splitAxis == 1) dirIsNeg = r.dirIsNeg1;
if (node.splitAxis == 2) dirIsNeg = r.dirIsNeg2;
#endif
if (dirIsNeg)
{
todo[todoOffset++] = nodeNum + 1;
nodeNum = node.offset;
}
else {
else
{
todo[todoOffset++] = node.offset;
nodeNum = nodeNum + 1;
}
@@ -244,7 +273,7 @@ bool BVHIntersect(const uniform LinearBVHNode nodes[],
}
static void raytrace_tile(uniform int x0, uniform int x1,
static inline void raytrace_tile(uniform int x0, uniform int x1,
uniform int y0, uniform int y1,
uniform int width, uniform int height,
uniform int baseWidth, uniform int baseHeight,
@@ -256,15 +285,21 @@ static void raytrace_tile(uniform int x0, uniform int x1,
uniform float widthScale = (float)(baseWidth) / (float)(width);
uniform float heightScale = (float)(baseHeight) / (float)(height);
foreach_tiled (y = y0 ... y1, x = x0 ... x1) {
// foreach_tiled (y = y0 ... y1, x = x0 ... x1)
for (uniform int y = y0; y < y1; y++)
for (uniform int xb = x0; xb < x1; xb += programCount)
{
const int x = xb + programIndex;
Ray ray;
generateRay(raster2camera, camera2world, x*widthScale,
y*heightScale, ray);
generateRay(raster2camera, camera2world, x*widthScale, y*heightScale, ray);
BVHIntersect(nodes, triangles, ray);
int offset = y * width + x;
image[offset] = ray.maxt;
id[offset] = ray.hitId;
if (x < x1)
{
image[offset] = ray.maxt;
id[offset] = ray.hitId;
}
}
}
@@ -284,37 +319,75 @@ export void raytrace_ispc(uniform int width, uniform int height,
task void raytrace_tile_task(uniform int width, uniform int height,
uniform int baseWidth, uniform int baseHeight,
const uniform float raster2camera[4][4],
const uniform float camera2world[4][4],
const uniform float _raster2camera[4][4],
const uniform float _camera2world[4][4],
uniform float image[], uniform int id[],
const uniform LinearBVHNode nodes[],
const uniform Triangle triangles[]) {
uniform int dx = 16, dy = 16; // must match dx, dy below
uniform int xBuckets = (width + (dx-1)) / dx;
uniform int x0 = (taskIndex % xBuckets) * dx;
uniform int x1 = min(x0 + dx, width);
uniform int y0 = (taskIndex / xBuckets) * dy;
uniform int y1 = min(y0 + dy, height);
raytrace_tile(x0, x1, y0, y1, width, height, baseWidth, baseHeight,
raster2camera, camera2world, image,
id, nodes, triangles);
if (taskIndex >= taskCount) return;
uniform float raster2camera[4][4];
raster2camera[0][0] = _raster2camera[0][0];
raster2camera[0][1] = _raster2camera[0][1];
raster2camera[0][2] = _raster2camera[0][2];
raster2camera[0][3] = _raster2camera[0][3];
raster2camera[1][0] = _raster2camera[1][0];
raster2camera[1][1] = _raster2camera[1][1];
raster2camera[1][2] = _raster2camera[1][2];
raster2camera[1][3] = _raster2camera[1][3];
raster2camera[2][0] = _raster2camera[2][0];
raster2camera[2][1] = _raster2camera[2][1];
raster2camera[2][2] = _raster2camera[2][2];
raster2camera[2][3] = _raster2camera[2][3];
raster2camera[3][0] = _raster2camera[3][0];
raster2camera[3][1] = _raster2camera[3][1];
raster2camera[3][2] = _raster2camera[3][2];
raster2camera[3][3] = _raster2camera[3][3];
uniform float camera2world[4][4];
camera2world[0][0] = _camera2world[0][0];
camera2world[0][1] = _camera2world[0][1];
camera2world[0][2] = _camera2world[0][2];
camera2world[0][3] = _camera2world[0][3];
camera2world[1][0] = _camera2world[1][0];
camera2world[1][1] = _camera2world[1][1];
camera2world[1][2] = _camera2world[1][2];
camera2world[1][3] = _camera2world[1][3];
camera2world[2][0] = _camera2world[2][0];
camera2world[2][1] = _camera2world[2][1];
camera2world[2][2] = _camera2world[2][2];
camera2world[2][3] = _camera2world[2][3];
camera2world[3][0] = _camera2world[3][0];
camera2world[3][1] = _camera2world[3][1];
camera2world[3][2] = _camera2world[3][2];
camera2world[3][3] = _camera2world[3][3];
uniform int dx = 32, dy = 16; // must match dx, dy below
uniform int xBuckets = (width + (dx-1)) / dx;
uniform int x0 = (taskIndex % xBuckets) * dx;
uniform int x1 = min(x0 + dx, width);
uniform int y0 = (taskIndex / xBuckets) * dy;
uniform int y1 = min(y0 + dy, height);
raytrace_tile(x0, x1, y0, y1, width, height, baseWidth, baseHeight,
raster2camera, camera2world, image,
id, nodes, triangles);
}
export void raytrace_ispc_tasks(uniform int width, uniform int height,
uniform int baseWidth, uniform int baseHeight,
const uniform float raster2camera[4][4],
const uniform float camera2world[4][4],
uniform float image[], uniform int id[],
const uniform LinearBVHNode nodes[],
const uniform Triangle triangles[]) {
uniform int dx = 16, dy = 16;
uniform int xBuckets = (width + (dx-1)) / dx;
uniform int yBuckets = (height + (dy-1)) / dy;
uniform int nTasks = xBuckets * yBuckets;
launch[nTasks] raytrace_tile_task(width, height, baseWidth, baseHeight,
raster2camera, camera2world,
image, id, nodes, triangles);
uniform int baseWidth, uniform int baseHeight,
const uniform float raster2camera[4][4],
const uniform float camera2world[4][4],
uniform float image[], uniform int id[],
const uniform LinearBVHNode nodes[],
const uniform Triangle triangles[]) {
uniform int dx = 32, dy = 16;
uniform int xBuckets = (width + (dx-1)) / dx;
uniform int yBuckets = (height + (dy-1)) / dy;
uniform int nTasks = xBuckets * yBuckets;
launch[nTasks] raytrace_tile_task(width, height, baseWidth, baseHeight,
raster2camera, camera2world,
image, id, nodes, triangles);
}

View File

@@ -59,9 +59,7 @@
#define ISPC_USE_PTHREADS
#define ISPC_USE_PTHREADS_FULLY_SUBSCRIBED
#define ISPC_USE_CILK
*/
#define ISPC_USE_OMP
/*
#define ISPC_USE_TBB_TASK_GROUP
#define ISPC_USE_TBB_PARALLEL_FOR