added deferred example
This commit is contained in:
@@ -5,7 +5,7 @@ CXX=g++ -ffast-math
|
||||
CXXFLAGS=-O3 -I$(CUDATK)/include -Iobjs_gpu/ -D_CUDA_
|
||||
#
|
||||
NVCC=nvcc
|
||||
NVCC_FLAGS=-O3 -arch=sm_35 -D_CUDA_ -I../ -Xptxas=-v
|
||||
NVCC_FLAGS=-O3 -arch=sm_35 -D_CUDA_ -I../ -Xptxas=-v -Iobjs_gpu/
|
||||
ifdef PTXCC_REGMAX
|
||||
NVCC_FLAGS += --maxrregcount=$(PTXCC_REGMAX)
|
||||
endif
|
||||
@@ -52,13 +52,18 @@ LLC_FLAGS=-march=nvptx64 -mcpu=sm_35
|
||||
# .SUFFIXES: .bc .o .cu
|
||||
|
||||
ifdef LLVM_GPU
|
||||
OBJSgpu_llvm=$(ISPC_LLVM_OBJS) $(CXX_OBJS) $(NVCC_OBJS)
|
||||
PROGgpu_llvm = $(PROG)_llvm_gpu
|
||||
OBJSgpu_llvm=$(ISPC_LLVM_OBJS) $(CXX_OBJS) $(NVCC_OBJS)
|
||||
PROGgpu_llvm=$(PROG)_llvm_gpu
|
||||
else
|
||||
ISPC_LLVM_PTX=
|
||||
endif
|
||||
|
||||
|
||||
ifdef NVVM_GPU
|
||||
OBJSgpu_nvvm=$(ISPC_NVVM_OBJS) $(CXX_OBJS) $(NVCC_OBJS)
|
||||
PROGgpu_nvvm = $(PROG)_nvvm_gpu
|
||||
OBJSgpu_nvvm=$(ISPC_NVVM_OBJS) $(CXX_OBJS) $(NVCC_OBJS) $(ISPC_LVVM_PTX)
|
||||
PROGgpu_nvvm=$(PROG)_nvvm_gpu
|
||||
else
|
||||
ISPC_NVVM_PTX=
|
||||
endif
|
||||
|
||||
ifdef CU_SRC
|
||||
@@ -68,9 +73,9 @@ endif
|
||||
|
||||
|
||||
all: dirs \
|
||||
$(PROGgpu_nvvm) $(ISPC_NVVM_PTX) \
|
||||
$(PROGgpu_llvm) $(ISPC_LLVM_PTX) \
|
||||
$(PROGcu) $(ISPC_BC)
|
||||
$(PROGgpu_nvvm) \
|
||||
$(PROGgpu_llvm) \
|
||||
$(PROGcu) $(ISPC_BC) $(ISPC_HEADERS) $(ISPC_NVVM_PTX) $(ISPC_LLVM_PTX)
|
||||
|
||||
dirs:
|
||||
/bin/mkdir -p objs_gpu/
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
|
||||
EXAMPLE=deferred_shading
|
||||
CPP_SRC=common.cpp main.cpp dynamic_c.cpp dynamic_cilk.cpp
|
||||
CPP_SRC=common.cpp main.cpp dynamic_c.cpp
|
||||
# CPP_SRC+=dynamic_cilk.cpp
|
||||
ISPC_SRC=kernels.ispc
|
||||
ISPC_IA_TARGETS=avx1-i32x16
|
||||
ISPC_ARM_TARGETS=neon
|
||||
|
||||
@@ -4,6 +4,9 @@ CU_SRC=kernels.cu
|
||||
CXX_SRC=common.cpp main.cpp
|
||||
PTXCC_REGMAX=64
|
||||
|
||||
NVVM_GPU=1
|
||||
LLVM_GPU=1
|
||||
|
||||
include ../common_gpu.mk
|
||||
|
||||
|
||||
|
||||
@@ -60,11 +60,13 @@
|
||||
#endif
|
||||
#include "deferred.h"
|
||||
#include "../timing.h"
|
||||
#include "../ispc_malloc.h"
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
static void *
|
||||
lAlignedMalloc(size_t size, int32_t alignment) {
|
||||
#ifndef _CUDA_
|
||||
#ifdef ISPC_IS_WINDOWS
|
||||
return _aligned_malloc(size, alignment);
|
||||
#endif
|
||||
@@ -79,11 +81,18 @@ lAlignedMalloc(size_t size, int32_t alignment) {
|
||||
((void**)amem)[-1] = mem;
|
||||
return amem;
|
||||
#endif
|
||||
#else
|
||||
void *ptr;
|
||||
ispc_malloc(&ptr, size);
|
||||
return ptr;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
lAlignedFree(void *ptr) {
|
||||
#ifndef _CUDA_
|
||||
#ifdef ISPC_IS_WINDOWS
|
||||
_aligned_free(ptr);
|
||||
#endif
|
||||
@@ -93,6 +102,9 @@ lAlignedFree(void *ptr) {
|
||||
#ifdef ISPC_IS_APPLE
|
||||
free(((void**)ptr)[-1]);
|
||||
#endif
|
||||
#else
|
||||
ispc_free(ptr);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -35,7 +35,7 @@
|
||||
#define DEFERRED_H
|
||||
|
||||
// Currently tile widths must be a multiple of SIMD width (i.e. 8 for ispc sse4x2)!
|
||||
#define MIN_TILE_WIDTH 16
|
||||
#define MIN_TILE_WIDTH 64
|
||||
#define MIN_TILE_HEIGHT 16
|
||||
#define MAX_LIGHTS 1024
|
||||
|
||||
|
||||
BIN
examples_ptx/deferred/ispc_malloc_gcc.o
Normal file
BIN
examples_ptx/deferred/ispc_malloc_gcc.o
Normal file
Binary file not shown.
@@ -733,7 +733,7 @@ RenderTile( int num_groups_x, int num_groups_y,
|
||||
|
||||
|
||||
extern "C" __global__ void
|
||||
RenderStatic( InputHeader inputHeaderPtr[],
|
||||
RenderStatic___export( InputHeader inputHeaderPtr[],
|
||||
InputDataArrays inputDataPtr[],
|
||||
int visualizeLightCount,
|
||||
// Output
|
||||
@@ -759,3 +759,20 @@ RenderStatic( InputHeader inputHeaderPtr[],
|
||||
framebuffer_r, framebuffer_g, framebuffer_b);
|
||||
cudaDeviceSynchronize();
|
||||
}
|
||||
extern "C" __host__ void
|
||||
RenderStatic( InputHeader inputHeaderPtr[],
|
||||
InputDataArrays inputDataPtr[],
|
||||
int visualizeLightCount,
|
||||
// Output
|
||||
unsigned int8 framebuffer_r[],
|
||||
unsigned int8 framebuffer_g[],
|
||||
unsigned int8 framebuffer_b[]) {
|
||||
RenderStatic___export<<<1,32>>>( inputHeaderPtr,
|
||||
inputDataPtr,
|
||||
visualizeLightCount,
|
||||
// Output
|
||||
framebuffer_r,
|
||||
framebuffer_g,
|
||||
framebuffer_b);
|
||||
cudaDeviceSynchronize();
|
||||
}
|
||||
|
||||
@@ -97,6 +97,9 @@ Float32ToUnorm8(float f) {
|
||||
}
|
||||
|
||||
|
||||
#if 1
|
||||
inline
|
||||
#endif
|
||||
static void
|
||||
ComputeZBounds(
|
||||
uniform int32 tileStartX, uniform int32 tileEndX,
|
||||
@@ -133,8 +136,13 @@ ComputeZBounds(
|
||||
maxZ = reduce_max(laneMaxZ);
|
||||
}
|
||||
|
||||
|
||||
export uniform int32
|
||||
#if 1
|
||||
inline
|
||||
#endif
|
||||
#ifndef __NVPTX__
|
||||
export
|
||||
#endif
|
||||
uniform int32
|
||||
IntersectLightsWithTileMinMax(
|
||||
uniform int32 tileStartX, uniform int32 tileEndX,
|
||||
uniform int32 tileStartY, uniform int32 tileEndY,
|
||||
@@ -212,12 +220,18 @@ IntersectLightsWithTileMinMax(
|
||||
d = light_positionView_z * frustumPlanes_z[3] +
|
||||
light_positionView_y * frustumPlanes_xy[3];
|
||||
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
|
||||
|
||||
|
||||
#if 0
|
||||
// Pack and store intersecting lights
|
||||
cif (inFrustum) {
|
||||
tileNumLights += packed_store_active(&tileLightIndices[tileNumLights],
|
||||
lightIndex);
|
||||
}
|
||||
#else
|
||||
const bool active = inFrustum && lightIndex < numLights;
|
||||
if(any(active))
|
||||
tileNumLights += packed_store_active(active, &tileLightIndices[tileNumLights], lightIndex);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
@@ -225,6 +239,9 @@ IntersectLightsWithTileMinMax(
|
||||
}
|
||||
|
||||
|
||||
#if 1
|
||||
inline
|
||||
#endif
|
||||
static uniform int32
|
||||
IntersectLightsWithTile(
|
||||
uniform int32 tileStartX, uniform int32 tileEndX,
|
||||
@@ -262,7 +279,13 @@ IntersectLightsWithTile(
|
||||
}
|
||||
|
||||
|
||||
export void
|
||||
#if 1
|
||||
inline
|
||||
#endif
|
||||
#ifndef __NVPTX__
|
||||
export
|
||||
#endif
|
||||
void
|
||||
ShadeTile(
|
||||
uniform int32 tileStartX, uniform int32 tileEndX,
|
||||
uniform int32 tileStartY, uniform int32 tileEndY,
|
||||
@@ -451,13 +474,17 @@ ShadeTile(
|
||||
|
||||
task void
|
||||
RenderTile(uniform int num_groups_x, uniform int num_groups_y,
|
||||
uniform InputHeader &inputHeader,
|
||||
uniform InputDataArrays &inputData,
|
||||
uniform InputHeader inputHeaderPtr[],
|
||||
uniform InputDataArrays inputDataPtr[],
|
||||
uniform int visualizeLightCount,
|
||||
// Output
|
||||
uniform unsigned int8 framebuffer_r[],
|
||||
uniform unsigned int8 framebuffer_g[],
|
||||
uniform unsigned int8 framebuffer_b[]) {
|
||||
|
||||
uniform InputHeader inputHeader = *inputHeaderPtr;
|
||||
uniform InputDataArrays inputData = *inputDataPtr;
|
||||
|
||||
uniform int32 group_y = taskIndex / num_groups_x;
|
||||
uniform int32 group_x = taskIndex % num_groups_x;
|
||||
uniform int32 tile_start_x = group_x * MIN_TILE_WIDTH;
|
||||
@@ -473,7 +500,11 @@ RenderTile(uniform int num_groups_x, uniform int num_groups_y,
|
||||
uniform float cameraProj_32 = inputHeader.cameraProj[3][2];
|
||||
|
||||
// Light intersection: figure out which lights illuminate this tile.
|
||||
#ifdef __NVPTX__
|
||||
uniform int * uniform tileLightIndices = uniform new uniform int [MAX_LIGHTS];
|
||||
#else
|
||||
uniform int tileLightIndices[MAX_LIGHTS]; // Light list for the tile
|
||||
#endif
|
||||
uniform int numTileLights =
|
||||
IntersectLightsWithTile(tile_start_x, tile_end_x,
|
||||
tile_start_y, tile_end_y,
|
||||
@@ -495,17 +526,24 @@ RenderTile(uniform int num_groups_x, uniform int num_groups_y,
|
||||
cameraProj_00, cameraProj_11, cameraProj_22, cameraProj_32,
|
||||
tileLightIndices, numTileLights, visualizeLightCount,
|
||||
framebuffer_r, framebuffer_g, framebuffer_b);
|
||||
#ifdef __NVPTX__
|
||||
delete tileLightIndices;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
export void
|
||||
RenderStatic(uniform InputHeader &inputHeader,
|
||||
uniform InputDataArrays &inputData,
|
||||
RenderStatic(uniform InputHeader inputHeaderPtr[],
|
||||
uniform InputDataArrays inputDataPtr[],
|
||||
uniform int visualizeLightCount,
|
||||
// Output
|
||||
uniform unsigned int8 framebuffer_r[],
|
||||
uniform unsigned int8 framebuffer_g[],
|
||||
uniform unsigned int8 framebuffer_b[]) {
|
||||
|
||||
uniform InputHeader inputHeader = *inputHeaderPtr;
|
||||
uniform InputDataArrays inputData = *inputDataPtr;
|
||||
|
||||
uniform int num_groups_x = (inputHeader.framebufferWidth +
|
||||
MIN_TILE_WIDTH - 1) / MIN_TILE_WIDTH;
|
||||
uniform int num_groups_y = (inputHeader.framebufferHeight +
|
||||
@@ -515,7 +553,7 @@ RenderStatic(uniform InputHeader &inputHeader,
|
||||
// Launch a task to render each tile, each of which is MIN_TILE_WIDTH
|
||||
// by MIN_TILE_HEIGHT pixels.
|
||||
launch[num_groups] RenderTile(num_groups_x, num_groups_y,
|
||||
inputHeader, inputData, visualizeLightCount,
|
||||
inputHeaderPtr, inputDataPtr, visualizeLightCount,
|
||||
framebuffer_r, framebuffer_g, framebuffer_b);
|
||||
}
|
||||
|
||||
|
||||
@@ -1,556 +0,0 @@
|
||||
/*
|
||||
Copyright (c) 2010-2011, Intel Corporation
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
* Neither the name of Intel Corporation nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifdef __NVPTX__
|
||||
#warning "emitting DEVICE code"
|
||||
#define programCount warpSize()
|
||||
#define programIndex laneIndex()
|
||||
#define taskIndex blockIndex0()
|
||||
#define taskCount blockCount0()
|
||||
#define cif if
|
||||
#else
|
||||
#warning "emitting HOST code"
|
||||
#endif
|
||||
|
||||
|
||||
#include "deferred.h"
|
||||
|
||||
struct InputDataArrays
|
||||
{
|
||||
float *zBuffer;
|
||||
unsigned int16 *normalEncoded_x; // half float
|
||||
unsigned int16 *normalEncoded_y; // half float
|
||||
unsigned int16 *specularAmount; // half float
|
||||
unsigned int16 *specularPower; // half float
|
||||
unsigned int8 *albedo_x; // unorm8
|
||||
unsigned int8 *albedo_y; // unorm8
|
||||
unsigned int8 *albedo_z; // unorm8
|
||||
float *lightPositionView_x;
|
||||
float *lightPositionView_y;
|
||||
float *lightPositionView_z;
|
||||
float *lightAttenuationBegin;
|
||||
float *lightColor_x;
|
||||
float *lightColor_y;
|
||||
float *lightColor_z;
|
||||
float *lightAttenuationEnd;
|
||||
};
|
||||
|
||||
struct InputHeader
|
||||
{
|
||||
float cameraProj[4][4];
|
||||
float cameraNear;
|
||||
float cameraFar;
|
||||
|
||||
int32 framebufferWidth;
|
||||
int32 framebufferHeight;
|
||||
int32 numLights;
|
||||
int32 inputDataChunkSize;
|
||||
int32 inputDataArrayOffsets[idaNum];
|
||||
};
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Common utility routines
|
||||
|
||||
static inline float
|
||||
dot3(float x, float y, float z, float a, float b, float c) {
|
||||
return (x*a + y*b + z*c);
|
||||
}
|
||||
|
||||
|
||||
static inline void
|
||||
normalize3(float x, float y, float z, float &ox, float &oy, float &oz) {
|
||||
float n = rsqrt(x*x + y*y + z*z);
|
||||
ox = x * n;
|
||||
oy = y * n;
|
||||
oz = z * n;
|
||||
}
|
||||
|
||||
|
||||
static inline float
|
||||
Unorm8ToFloat32(unsigned int8 u) {
|
||||
return (float)u * (1.0f / 255.0f);
|
||||
}
|
||||
|
||||
|
||||
static inline unsigned int8
|
||||
Float32ToUnorm8(float f) {
|
||||
return (unsigned int8)(f * 255.0f);
|
||||
}
|
||||
|
||||
|
||||
static inline void
|
||||
ComputeZBounds(
|
||||
uniform int32 tileStartX, uniform int32 tileEndX,
|
||||
uniform int32 tileStartY, uniform int32 tileEndY,
|
||||
// G-buffer data
|
||||
uniform float zBuffer[],
|
||||
uniform int32 gBufferWidth,
|
||||
// Camera data
|
||||
uniform float cameraProj_33, uniform float cameraProj_43,
|
||||
uniform float cameraNear, uniform float cameraFar,
|
||||
// Output
|
||||
uniform float &minZ,
|
||||
uniform float &maxZ
|
||||
)
|
||||
{
|
||||
// Find Z bounds
|
||||
float laneMinZ = cameraFar;
|
||||
float laneMaxZ = cameraNear;
|
||||
for (uniform int32 y = tileStartY; y < tileEndY; ++y)
|
||||
foreach (x = tileStartX ... tileEndX)
|
||||
{
|
||||
// Unproject depth buffer Z value into view space
|
||||
float z = zBuffer[y * gBufferWidth + x];
|
||||
float viewSpaceZ = cameraProj_43 / (z - cameraProj_33);
|
||||
|
||||
// Work out Z bounds for our samples
|
||||
// Avoid considering skybox/background or otherwise invalid pixels
|
||||
if ((viewSpaceZ < cameraFar) && (viewSpaceZ >= cameraNear)) {
|
||||
laneMinZ = min(laneMinZ, viewSpaceZ);
|
||||
laneMaxZ = max(laneMaxZ, viewSpaceZ);
|
||||
}
|
||||
}
|
||||
minZ = reduce_min(laneMinZ);
|
||||
maxZ = reduce_max(laneMaxZ);
|
||||
}
|
||||
|
||||
|
||||
static inline uniform int32
|
||||
IntersectLightsWithTileMinMax(
|
||||
uniform int32 tileStartX, uniform int32 tileEndX,
|
||||
uniform int32 tileStartY, uniform int32 tileEndY,
|
||||
// Tile data
|
||||
uniform float minZ,
|
||||
uniform float maxZ,
|
||||
// G-buffer data
|
||||
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
|
||||
// Camera data
|
||||
uniform float cameraProj_11, uniform float cameraProj_22,
|
||||
// Light Data
|
||||
uniform int32 numLights,
|
||||
uniform float light_positionView_x_array[],
|
||||
uniform float light_positionView_y_array[],
|
||||
uniform float light_positionView_z_array[],
|
||||
uniform float light_attenuationEnd_array[],
|
||||
// Output
|
||||
uniform int32 tileLightIndices[]
|
||||
)
|
||||
{
|
||||
uniform float gBufferScale_x = 0.5f * (float)gBufferWidth;
|
||||
uniform float gBufferScale_y = 0.5f * (float)gBufferHeight;
|
||||
|
||||
uniform float frustumPlanes_xy[4] = {
|
||||
-(cameraProj_11 * gBufferScale_x),
|
||||
(cameraProj_11 * gBufferScale_x),
|
||||
(cameraProj_22 * gBufferScale_y),
|
||||
-(cameraProj_22 * gBufferScale_y) };
|
||||
uniform float frustumPlanes_z[4] = {
|
||||
tileEndX - gBufferScale_x,
|
||||
-tileStartX + gBufferScale_x,
|
||||
tileEndY - gBufferScale_y,
|
||||
-tileStartY + gBufferScale_y };
|
||||
|
||||
for (uniform int i = 0; i < 4; ++i) {
|
||||
uniform float norm = rsqrt(frustumPlanes_xy[i] * frustumPlanes_xy[i] +
|
||||
frustumPlanes_z[i] * frustumPlanes_z[i]);
|
||||
frustumPlanes_xy[i] *= norm;
|
||||
frustumPlanes_z[i] *= norm;
|
||||
}
|
||||
|
||||
uniform int32 tileNumLights = 0;
|
||||
|
||||
foreach (lightIndex = 0 ... numLights)
|
||||
{
|
||||
float light_positionView_z = light_positionView_z_array[lightIndex];
|
||||
float light_attenuationEnd = light_attenuationEnd_array[lightIndex];
|
||||
float light_attenuationEndNeg = -light_attenuationEnd;
|
||||
|
||||
float d = light_positionView_z - minZ;
|
||||
bool inFrustum = (d >= light_attenuationEndNeg);
|
||||
|
||||
d = maxZ - light_positionView_z;
|
||||
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
|
||||
|
||||
// This seems better than cif(!inFrustum) ccontinue; here since we
|
||||
// don't actually need to mask the rest of this function - this is
|
||||
// just a greedy early-out. Could also structure all of this as
|
||||
// nested if() statements, but this a bit easier to read
|
||||
if (any(inFrustum))
|
||||
{
|
||||
float light_positionView_x = light_positionView_x_array[lightIndex];
|
||||
float light_positionView_y = light_positionView_y_array[lightIndex];
|
||||
|
||||
d = light_positionView_z * frustumPlanes_z[0] +
|
||||
light_positionView_x * frustumPlanes_xy[0];
|
||||
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
|
||||
|
||||
d = light_positionView_z * frustumPlanes_z[1] +
|
||||
light_positionView_x * frustumPlanes_xy[1];
|
||||
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
|
||||
|
||||
d = light_positionView_z * frustumPlanes_z[2] +
|
||||
light_positionView_y * frustumPlanes_xy[2];
|
||||
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
|
||||
|
||||
d = light_positionView_z * frustumPlanes_z[3] +
|
||||
light_positionView_y * frustumPlanes_xy[3];
|
||||
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
|
||||
|
||||
// Pack and store intersecting lights
|
||||
const bool active = inFrustum && lightIndex < numLights;
|
||||
|
||||
if(any(active))
|
||||
tileNumLights += packed_store_active(active, &tileLightIndices[tileNumLights], lightIndex);
|
||||
}
|
||||
}
|
||||
|
||||
return tileNumLights;
|
||||
}
|
||||
|
||||
|
||||
static inline uniform int32
|
||||
IntersectLightsWithTile(
|
||||
uniform int32 tileStartX, uniform int32 tileEndX,
|
||||
uniform int32 tileStartY, uniform int32 tileEndY,
|
||||
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
|
||||
// G-buffer data
|
||||
uniform float zBuffer[],
|
||||
// Camera data
|
||||
uniform float cameraProj_11, uniform float cameraProj_22,
|
||||
uniform float cameraProj_33, uniform float cameraProj_43,
|
||||
uniform float cameraNear, uniform float cameraFar,
|
||||
// Light Data
|
||||
uniform int32 numLights,
|
||||
uniform float light_positionView_x_array[],
|
||||
uniform float light_positionView_y_array[],
|
||||
uniform float light_positionView_z_array[],
|
||||
uniform float light_attenuationEnd_array[],
|
||||
// Output
|
||||
uniform int32 tileLightIndices[]
|
||||
)
|
||||
{
|
||||
uniform float minZ, maxZ;
|
||||
ComputeZBounds(tileStartX, tileEndX, tileStartY, tileEndY,
|
||||
zBuffer, gBufferWidth, cameraProj_33, cameraProj_43, cameraNear, cameraFar,
|
||||
minZ, maxZ);
|
||||
|
||||
uniform int32 tileNumLights = IntersectLightsWithTileMinMax(
|
||||
tileStartX, tileEndX, tileStartY, tileEndY, minZ, maxZ,
|
||||
gBufferWidth, gBufferHeight, cameraProj_11, cameraProj_22,
|
||||
MAX_LIGHTS, light_positionView_x_array, light_positionView_y_array,
|
||||
light_positionView_z_array, light_attenuationEnd_array,
|
||||
tileLightIndices);
|
||||
|
||||
return tileNumLights;
|
||||
}
|
||||
|
||||
|
||||
static inline void
|
||||
ShadeTile(
|
||||
uniform int32 tileStartX, uniform int32 tileEndX,
|
||||
uniform int32 tileStartY, uniform int32 tileEndY,
|
||||
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
|
||||
const uniform InputDataArrays &inputData,
|
||||
// Camera data
|
||||
uniform float cameraProj_11, uniform float cameraProj_22,
|
||||
uniform float cameraProj_33, uniform float cameraProj_43,
|
||||
// Light list
|
||||
uniform int32 tileLightIndices[],
|
||||
uniform int32 tileNumLights,
|
||||
// UI
|
||||
uniform bool visualizeLightCount,
|
||||
// Output
|
||||
uniform unsigned int8 framebuffer_r[],
|
||||
uniform unsigned int8 framebuffer_g[],
|
||||
uniform unsigned int8 framebuffer_b[]
|
||||
)
|
||||
{
|
||||
if (tileNumLights == 0 || visualizeLightCount) {
|
||||
uniform unsigned int8 c = (unsigned int8)(min(tileNumLights << 2, 255));
|
||||
for (uniform int32 y = tileStartY; y < tileEndY; ++y)
|
||||
foreach (x = tileStartX ... tileEndX)
|
||||
{
|
||||
int32 framebufferIndex = (y * gBufferWidth + x);
|
||||
framebuffer_r[framebufferIndex] = c;
|
||||
framebuffer_g[framebufferIndex] = c;
|
||||
framebuffer_b[framebufferIndex] = c;
|
||||
}
|
||||
} else {
|
||||
uniform float twoOverGBufferWidth = 2.0f / gBufferWidth;
|
||||
uniform float twoOverGBufferHeight = 2.0f / gBufferHeight;
|
||||
|
||||
for (uniform int32 y = tileStartY; y < tileEndY; ++y) {
|
||||
uniform float positionScreen_y = -(((0.5f + y) * twoOverGBufferHeight) - 1.f);
|
||||
|
||||
foreach (x = tileStartX ... tileEndX) {
|
||||
int32 gBufferOffset = y * gBufferWidth + x;
|
||||
|
||||
// Reconstruct position and (negative) view vector from G-buffer
|
||||
float surface_positionView_x, surface_positionView_y, surface_positionView_z;
|
||||
float Vneg_x, Vneg_y, Vneg_z;
|
||||
|
||||
float z = inputData.zBuffer[gBufferOffset];
|
||||
|
||||
// Compute screen/clip-space position
|
||||
// NOTE: Mind DX11 viewport transform and pixel center!
|
||||
float positionScreen_x = (0.5f + (float)(x)) *
|
||||
twoOverGBufferWidth - 1.0f;
|
||||
|
||||
// Unproject depth buffer Z value into view space
|
||||
surface_positionView_z = cameraProj_43 / (z - cameraProj_33);
|
||||
surface_positionView_x = positionScreen_x * surface_positionView_z /
|
||||
cameraProj_11;
|
||||
surface_positionView_y = positionScreen_y * surface_positionView_z /
|
||||
cameraProj_22;
|
||||
|
||||
// We actually end up with a vector pointing *at* the
|
||||
// surface (i.e. the negative view vector)
|
||||
normalize3(surface_positionView_x, surface_positionView_y,
|
||||
surface_positionView_z, Vneg_x, Vneg_y, Vneg_z);
|
||||
|
||||
// Reconstruct normal from G-buffer
|
||||
float surface_normal_x, surface_normal_y, surface_normal_z;
|
||||
float normal_x = half_to_float(inputData.normalEncoded_x[gBufferOffset]);
|
||||
float normal_y = half_to_float(inputData.normalEncoded_y[gBufferOffset]);
|
||||
|
||||
float f = (normal_x - normal_x * normal_x) + (normal_y - normal_y * normal_y);
|
||||
float m = sqrt(4.0f * f - 1.0f);
|
||||
|
||||
surface_normal_x = m * (4.0f * normal_x - 2.0f);
|
||||
surface_normal_y = m * (4.0f * normal_y - 2.0f);
|
||||
surface_normal_z = 3.0f - 8.0f * f;
|
||||
|
||||
// Load other G-buffer parameters
|
||||
float surface_specularAmount =
|
||||
half_to_float(inputData.specularAmount[gBufferOffset]);
|
||||
float surface_specularPower =
|
||||
half_to_float(inputData.specularPower[gBufferOffset]);
|
||||
float surface_albedo_x = Unorm8ToFloat32(inputData.albedo_x[gBufferOffset]);
|
||||
float surface_albedo_y = Unorm8ToFloat32(inputData.albedo_y[gBufferOffset]);
|
||||
float surface_albedo_z = Unorm8ToFloat32(inputData.albedo_z[gBufferOffset]);
|
||||
|
||||
float lit_x = 0.0f;
|
||||
float lit_y = 0.0f;
|
||||
float lit_z = 0.0f;
|
||||
for (uniform int32 tileLightIndex = 0; tileLightIndex < tileNumLights;
|
||||
++tileLightIndex) {
|
||||
uniform int32 lightIndex = tileLightIndices[tileLightIndex];
|
||||
|
||||
// Gather light data relevant to initial culling
|
||||
uniform float light_positionView_x =
|
||||
inputData.lightPositionView_x[lightIndex];
|
||||
uniform float light_positionView_y =
|
||||
inputData.lightPositionView_y[lightIndex];
|
||||
uniform float light_positionView_z =
|
||||
inputData.lightPositionView_z[lightIndex];
|
||||
uniform float light_attenuationEnd =
|
||||
inputData.lightAttenuationEnd[lightIndex];
|
||||
|
||||
// Compute light vector
|
||||
float L_x = light_positionView_x - surface_positionView_x;
|
||||
float L_y = light_positionView_y - surface_positionView_y;
|
||||
float L_z = light_positionView_z - surface_positionView_z;
|
||||
|
||||
float distanceToLight2 = dot3(L_x, L_y, L_z, L_x, L_y, L_z);
|
||||
|
||||
// Clip at end of attenuation
|
||||
float light_attenutaionEnd2 = light_attenuationEnd * light_attenuationEnd;
|
||||
|
||||
cif (distanceToLight2 < light_attenutaionEnd2) {
|
||||
float distanceToLight = sqrt(distanceToLight2);
|
||||
|
||||
// HLSL "rcp" is allowed to be fairly inaccurate
|
||||
float distanceToLightRcp = rcp(distanceToLight);
|
||||
L_x *= distanceToLightRcp;
|
||||
L_y *= distanceToLightRcp;
|
||||
L_z *= distanceToLightRcp;
|
||||
|
||||
// Start computing brdf
|
||||
float NdotL = dot3(surface_normal_x, surface_normal_y,
|
||||
surface_normal_z, L_x, L_y, L_z);
|
||||
|
||||
// Clip back facing
|
||||
cif (NdotL > 0.0f) {
|
||||
uniform float light_attenuationBegin =
|
||||
inputData.lightAttenuationBegin[lightIndex];
|
||||
|
||||
// Light distance attenuation (linstep)
|
||||
float lightRange = (light_attenuationEnd - light_attenuationBegin);
|
||||
float falloffPosition = (light_attenuationEnd - distanceToLight);
|
||||
float attenuation = min(falloffPosition / lightRange, 1.0f);
|
||||
|
||||
float H_x = (L_x - Vneg_x);
|
||||
float H_y = (L_y - Vneg_y);
|
||||
float H_z = (L_z - Vneg_z);
|
||||
normalize3(H_x, H_y, H_z, H_x, H_y, H_z);
|
||||
|
||||
float NdotH = dot3(surface_normal_x, surface_normal_y,
|
||||
surface_normal_z, H_x, H_y, H_z);
|
||||
NdotH = max(NdotH, 0.0f);
|
||||
|
||||
float specular = pow(NdotH, surface_specularPower);
|
||||
float specularNorm = (surface_specularPower + 2.0f) *
|
||||
(1.0f / 8.0f);
|
||||
float specularContrib = surface_specularAmount *
|
||||
specularNorm * specular;
|
||||
|
||||
float k = attenuation * NdotL * (1.0f + specularContrib);
|
||||
|
||||
uniform float light_color_x = inputData.lightColor_x[lightIndex];
|
||||
uniform float light_color_y = inputData.lightColor_y[lightIndex];
|
||||
uniform float light_color_z = inputData.lightColor_z[lightIndex];
|
||||
|
||||
float lightContrib_x = surface_albedo_x * light_color_x;
|
||||
float lightContrib_y = surface_albedo_y * light_color_y;
|
||||
float lightContrib_z = surface_albedo_z * light_color_z;
|
||||
|
||||
lit_x += lightContrib_x * k;
|
||||
lit_y += lightContrib_y * k;
|
||||
lit_z += lightContrib_z * k;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Gamma correct
|
||||
// These pows are pretty slow right now, but we can do
|
||||
// something faster if really necessary to squeeze every
|
||||
// last bit of performance out of it
|
||||
float gamma = 1.0 / 2.2f;
|
||||
lit_x = pow(clamp(lit_x, 0.0f, 1.0f), gamma);
|
||||
lit_y = pow(clamp(lit_y, 0.0f, 1.0f), gamma);
|
||||
lit_z = pow(clamp(lit_z, 0.0f, 1.0f), gamma);
|
||||
|
||||
framebuffer_r[gBufferOffset] = Float32ToUnorm8(lit_x);
|
||||
framebuffer_g[gBufferOffset] = Float32ToUnorm8(lit_y);
|
||||
framebuffer_b[gBufferOffset] = Float32ToUnorm8(lit_z);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Static decomposition
|
||||
|
||||
void task
|
||||
RenderTile(uniform int num_groups_x, uniform int num_groups_y,
|
||||
const uniform InputHeader inputHeaderPtr[],
|
||||
const uniform InputDataArrays inputDataPtr[],
|
||||
uniform int visualizeLightCount,
|
||||
// Output
|
||||
uniform unsigned int8 framebuffer_r[],
|
||||
uniform unsigned int8 framebuffer_g[],
|
||||
uniform unsigned int8 framebuffer_b[]) {
|
||||
if (taskIndex >= taskCount) return;
|
||||
const uniform InputHeader inputHeader = *inputHeaderPtr;
|
||||
const uniform InputDataArrays inputData = *inputDataPtr;
|
||||
|
||||
uniform int32 group_y = taskIndex / num_groups_x;
|
||||
uniform int32 group_x = taskIndex % num_groups_x;
|
||||
uniform int32 tile_start_x = group_x * MIN_TILE_WIDTH;
|
||||
uniform int32 tile_start_y = group_y * MIN_TILE_HEIGHT;
|
||||
uniform int32 tile_end_x = tile_start_x + MIN_TILE_WIDTH;
|
||||
uniform int32 tile_end_y = tile_start_y + MIN_TILE_HEIGHT;
|
||||
|
||||
uniform int framebufferWidth = inputHeader.framebufferWidth;
|
||||
uniform int framebufferHeight = inputHeader.framebufferHeight;
|
||||
uniform float cameraProj_00 = inputHeader.cameraProj[0][0];
|
||||
uniform float cameraProj_11 = inputHeader.cameraProj[1][1];
|
||||
uniform float cameraProj_22 = inputHeader.cameraProj[2][2];
|
||||
uniform float cameraProj_32 = inputHeader.cameraProj[3][2];
|
||||
|
||||
// Light intersection: figure out which lights illuminate this tile.
|
||||
#if 1
|
||||
uniform int * uniform tileLightIndices = uniform new uniform int [MAX_LIGHTS];
|
||||
#else
|
||||
uniform int tileLightIndices[MAX_LIGHTS]; // Light list for the tile
|
||||
#endif
|
||||
#if 1
|
||||
uniform int numTileLights =
|
||||
IntersectLightsWithTile(tile_start_x, tile_end_x,
|
||||
tile_start_y, tile_end_y,
|
||||
framebufferWidth, framebufferHeight,
|
||||
inputData.zBuffer,
|
||||
cameraProj_00, cameraProj_11,
|
||||
cameraProj_22, cameraProj_32,
|
||||
inputHeader.cameraNear, inputHeader.cameraFar,
|
||||
MAX_LIGHTS,
|
||||
inputData.lightPositionView_x,
|
||||
inputData.lightPositionView_y,
|
||||
inputData.lightPositionView_z,
|
||||
inputData.lightAttenuationEnd,
|
||||
tileLightIndices);
|
||||
|
||||
// And now shade the tile, using the lights in tileLightIndices
|
||||
ShadeTile(tile_start_x, tile_end_x, tile_start_y, tile_end_y,
|
||||
framebufferWidth, framebufferHeight, inputData,
|
||||
cameraProj_00, cameraProj_11, cameraProj_22, cameraProj_32,
|
||||
tileLightIndices, numTileLights, visualizeLightCount,
|
||||
framebuffer_r, framebuffer_g, framebuffer_b);
|
||||
#endif
|
||||
#if 1
|
||||
delete tileLightIndices;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
export void
|
||||
RenderStatic(uniform InputHeader inputHeaderPtr[],
|
||||
uniform InputDataArrays inputDataPtr[],
|
||||
uniform int visualizeLightCount,
|
||||
// Output
|
||||
uniform unsigned int8 framebuffer_r[],
|
||||
uniform unsigned int8 framebuffer_g[],
|
||||
uniform unsigned int8 framebuffer_b[]) {
|
||||
|
||||
const uniform InputHeader inputHeader = *inputHeaderPtr;
|
||||
const uniform InputDataArrays inputData = *inputDataPtr;
|
||||
|
||||
|
||||
uniform int num_groups_x = (inputHeader.framebufferWidth +
|
||||
MIN_TILE_WIDTH - 1) / MIN_TILE_WIDTH;
|
||||
uniform int num_groups_y = (inputHeader.framebufferHeight +
|
||||
MIN_TILE_HEIGHT - 1) / MIN_TILE_HEIGHT;
|
||||
uniform int num_groups = num_groups_x * num_groups_y;
|
||||
|
||||
// Launch a task to render each tile, each of which is MIN_TILE_WIDTH
|
||||
// by MIN_TILE_HEIGHT pixels.
|
||||
launch[num_groups] RenderTile(num_groups_x, num_groups_y,
|
||||
inputHeaderPtr, inputDataPtr, visualizeLightCount,
|
||||
framebuffer_r, framebuffer_g, framebuffer_b);
|
||||
sync;
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -83,10 +83,12 @@ int main(int argc, char** argv) {
|
||||
Framebuffer framebuffer(input->header.framebufferWidth,
|
||||
input->header.framebufferHeight);
|
||||
|
||||
#ifndef _CUDA_
|
||||
InitDynamicC(input);
|
||||
#ifdef __cilk
|
||||
#if 0 //def __cilk
|
||||
InitDynamicCilk(input);
|
||||
#endif // __cilk
|
||||
#endif
|
||||
|
||||
int nframes = test_iterations[2];
|
||||
double ispcCycles = 1e30;
|
||||
@@ -94,11 +96,11 @@ int main(int argc, char** argv) {
|
||||
framebuffer.clear();
|
||||
reset_and_start_timer();
|
||||
for (int j = 0; j < nframes; ++j)
|
||||
ispc::RenderStatic(input->header, input->arrays,
|
||||
ispc::RenderStatic(&input->header, &input->arrays,
|
||||
VISUALIZE_LIGHT_COUNT,
|
||||
framebuffer.r, framebuffer.g, framebuffer.b);
|
||||
double msec = get_elapsed_msec() / nframes;
|
||||
printf("@time of ISPC + TASKS run:\t\t\t[%.3f] msec\n", msec);
|
||||
printf("@time of ISPC + TASKS run:\t\t\t[%.3f] msec [%.3f fps]\n", msec, 1.0e3/msec);
|
||||
ispcCycles = std::min(ispcCycles, msec);
|
||||
}
|
||||
printf("[ispc static + tasks]:\t\t[%.3f] msec to render "
|
||||
@@ -106,8 +108,9 @@ int main(int argc, char** argv) {
|
||||
input->header.framebufferWidth, input->header.framebufferHeight);
|
||||
WriteFrame("deferred-ispc-static.ppm", input, framebuffer);
|
||||
|
||||
#ifndef _CUDA_
|
||||
nframes = 3;
|
||||
#ifdef __cilk
|
||||
#if 0 //def __cilk
|
||||
double dynamicCilkCycles = 1e30;
|
||||
for (int i = 0; i < test_iterations[1]; ++i) {
|
||||
framebuffer.clear();
|
||||
@@ -115,7 +118,7 @@ int main(int argc, char** argv) {
|
||||
for (int j = 0; j < nframes; ++j)
|
||||
DispatchDynamicCilk(input, &framebuffer);
|
||||
double msec = get_elapsed_msec() / nframes;
|
||||
printf("@time of serial run:\t\t\t[%.3f] msec\n", msec);
|
||||
printf("@time of serial run:\t\t\t[%.3f] msec [%.3f fps]\n", msec, 1.0e3/msec);
|
||||
dynamicCilkCycles = std::min(dynamicCilkCycles, msec);
|
||||
}
|
||||
printf("[ispc + Cilk dynamic]:\t\t[%.3f] msec to render image\n",
|
||||
@@ -130,19 +133,20 @@ int main(int argc, char** argv) {
|
||||
for (int j = 0; j < nframes; ++j)
|
||||
DispatchDynamicC(input, &framebuffer);
|
||||
double msec = get_elapsed_msec() / nframes;
|
||||
printf("@time of serial run:\t\t\t[%.3f] msec\n", msec);
|
||||
printf("@time of serial run:\t\t\t[%.3f] msec [%.3f fps]\n", msec, 1.0e3/msec);
|
||||
serialCycles = std::min(serialCycles, msec);
|
||||
}
|
||||
printf("[C++ serial dynamic, 1 core]:\t[%.3f] msec to render image\n",
|
||||
serialCycles);
|
||||
WriteFrame("deferred-serial-dynamic.ppm", input, framebuffer);
|
||||
|
||||
#ifdef __cilk
|
||||
#if 0 //def __cilk
|
||||
printf("\t\t\t\t(%.2fx speedup from static ISPC, %.2fx from Cilk+ISPC)\n",
|
||||
serialCycles/ispcCycles, serialCycles/dynamicCilkCycles);
|
||||
#else
|
||||
printf("\t\t\t\t(%.2fx speedup from ISPC + tasks)\n", serialCycles/ispcCycles);
|
||||
#endif // __cilk
|
||||
#endif
|
||||
|
||||
DeleteInputData(input);
|
||||
|
||||
|
||||
37
examples_ptx/deferred/test.cpp
Normal file
37
examples_ptx/deferred/test.cpp
Normal file
@@ -0,0 +1,37 @@
|
||||
#include <iostream>
|
||||
#include <cstdlib>
|
||||
#include <cstdio>
|
||||
|
||||
struct Case
|
||||
{
|
||||
int a; float b;
|
||||
};
|
||||
|
||||
#if 0
|
||||
void * operator new(size_t s) throw(std::bad_alloc)
|
||||
{
|
||||
fprintf(stderr, "alloc %d bytes\n", (int)s);
|
||||
return (void*)0x123;
|
||||
}
|
||||
void operator delete(void *p) throw()
|
||||
{
|
||||
fprintf(stderr, " free \n");
|
||||
}
|
||||
#else
|
||||
inline void *malloc(size_t size)
|
||||
{
|
||||
fprintf(stderr, "alloc %d bytes\n", (int)size);
|
||||
return (void*)0x123;
|
||||
}
|
||||
inline void free(void *ptr)
|
||||
{
|
||||
fprintf(stderr, " free \n");
|
||||
}
|
||||
#endif
|
||||
|
||||
int main()
|
||||
{
|
||||
Case *ptr = new Case[10];
|
||||
delete ptr;
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user