Clean up the API, so the caller doesn't have to pass in a vector so the function can track PHI nodes (do that internally instead.) Handle casts in lValuesAreEqual().
1004 lines
34 KiB
C++
1004 lines
34 KiB
C++
/*
|
|
Copyright (c) 2010-2012, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
* Neither the name of Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/** @file llvmutil.cpp
|
|
@brief Implementations of various LLVM utility types and classes.
|
|
*/
|
|
|
|
#include "llvmutil.h"
|
|
#include "ispc.h"
|
|
#include "type.h"
|
|
#include <llvm/Instructions.h>
|
|
#include <llvm/BasicBlock.h>
|
|
#include <set>
|
|
#include <map>
|
|
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::VoidType = NULL;
|
|
LLVM_TYPE_CONST llvm::PointerType *LLVMTypes::VoidPointerType = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::PointerIntType = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::BoolType = NULL;
|
|
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::Int8Type = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::Int16Type = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::Int32Type = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::Int64Type = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::FloatType = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::DoubleType = NULL;
|
|
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::Int8PointerType = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::Int16PointerType = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::Int32PointerType = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::Int64PointerType = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::FloatPointerType = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::DoublePointerType = NULL;
|
|
|
|
LLVM_TYPE_CONST llvm::VectorType *LLVMTypes::MaskType = NULL;
|
|
LLVM_TYPE_CONST llvm::VectorType *LLVMTypes::BoolVectorType = NULL;
|
|
|
|
LLVM_TYPE_CONST llvm::VectorType *LLVMTypes::Int1VectorType = NULL;
|
|
LLVM_TYPE_CONST llvm::VectorType *LLVMTypes::Int8VectorType = NULL;
|
|
LLVM_TYPE_CONST llvm::VectorType *LLVMTypes::Int16VectorType = NULL;
|
|
LLVM_TYPE_CONST llvm::VectorType *LLVMTypes::Int32VectorType = NULL;
|
|
LLVM_TYPE_CONST llvm::VectorType *LLVMTypes::Int64VectorType = NULL;
|
|
LLVM_TYPE_CONST llvm::VectorType *LLVMTypes::FloatVectorType = NULL;
|
|
LLVM_TYPE_CONST llvm::VectorType *LLVMTypes::DoubleVectorType = NULL;
|
|
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::Int8VectorPointerType = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::Int16VectorPointerType = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::Int32VectorPointerType = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::Int64VectorPointerType = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::FloatVectorPointerType = NULL;
|
|
LLVM_TYPE_CONST llvm::Type *LLVMTypes::DoubleVectorPointerType = NULL;
|
|
|
|
LLVM_TYPE_CONST llvm::VectorType *LLVMTypes::VoidPointerVectorType = NULL;
|
|
|
|
llvm::Constant *LLVMTrue = NULL;
|
|
llvm::Constant *LLVMFalse = NULL;
|
|
llvm::Constant *LLVMMaskAllOn = NULL;
|
|
llvm::Constant *LLVMMaskAllOff = NULL;
|
|
|
|
|
|
void
|
|
InitLLVMUtil(llvm::LLVMContext *ctx, Target target) {
|
|
LLVMTypes::VoidType = llvm::Type::getVoidTy(*ctx);
|
|
LLVMTypes::VoidPointerType = llvm::PointerType::get(llvm::Type::getInt8Ty(*ctx), 0);
|
|
LLVMTypes::PointerIntType = target.is32Bit ? llvm::Type::getInt32Ty(*ctx) :
|
|
llvm::Type::getInt64Ty(*ctx);
|
|
|
|
LLVMTypes::BoolType = llvm::Type::getInt1Ty(*ctx);
|
|
LLVMTypes::Int8Type = llvm::Type::getInt8Ty(*ctx);
|
|
LLVMTypes::Int16Type = llvm::Type::getInt16Ty(*ctx);
|
|
LLVMTypes::Int32Type = llvm::Type::getInt32Ty(*ctx);
|
|
LLVMTypes::Int64Type = llvm::Type::getInt64Ty(*ctx);
|
|
LLVMTypes::FloatType = llvm::Type::getFloatTy(*ctx);
|
|
LLVMTypes::DoubleType = llvm::Type::getDoubleTy(*ctx);
|
|
|
|
LLVMTypes::Int8PointerType = llvm::PointerType::get(LLVMTypes::Int8Type, 0);
|
|
LLVMTypes::Int16PointerType = llvm::PointerType::get(LLVMTypes::Int16Type, 0);
|
|
LLVMTypes::Int32PointerType = llvm::PointerType::get(LLVMTypes::Int32Type, 0);
|
|
LLVMTypes::Int64PointerType = llvm::PointerType::get(LLVMTypes::Int64Type, 0);
|
|
LLVMTypes::FloatPointerType = llvm::PointerType::get(LLVMTypes::FloatType, 0);
|
|
LLVMTypes::DoublePointerType = llvm::PointerType::get(LLVMTypes::DoubleType, 0);
|
|
|
|
if (target.maskBitCount == 1)
|
|
LLVMTypes::MaskType = LLVMTypes::BoolVectorType =
|
|
llvm::VectorType::get(llvm::Type::getInt1Ty(*ctx), target.vectorWidth);
|
|
else {
|
|
Assert(target.maskBitCount == 32);
|
|
LLVMTypes::MaskType = LLVMTypes::BoolVectorType =
|
|
llvm::VectorType::get(llvm::Type::getInt32Ty(*ctx), target.vectorWidth);
|
|
}
|
|
|
|
LLVMTypes::Int1VectorType =
|
|
llvm::VectorType::get(llvm::Type::getInt1Ty(*ctx), target.vectorWidth);
|
|
LLVMTypes::Int8VectorType =
|
|
llvm::VectorType::get(LLVMTypes::Int8Type, target.vectorWidth);
|
|
LLVMTypes::Int16VectorType =
|
|
llvm::VectorType::get(LLVMTypes::Int16Type, target.vectorWidth);
|
|
LLVMTypes::Int32VectorType =
|
|
llvm::VectorType::get(LLVMTypes::Int32Type, target.vectorWidth);
|
|
LLVMTypes::Int64VectorType =
|
|
llvm::VectorType::get(LLVMTypes::Int64Type, target.vectorWidth);
|
|
LLVMTypes::FloatVectorType =
|
|
llvm::VectorType::get(LLVMTypes::FloatType, target.vectorWidth);
|
|
LLVMTypes::DoubleVectorType =
|
|
llvm::VectorType::get(LLVMTypes::DoubleType, target.vectorWidth);
|
|
|
|
LLVMTypes::Int8VectorPointerType = llvm::PointerType::get(LLVMTypes::Int8VectorType, 0);
|
|
LLVMTypes::Int16VectorPointerType = llvm::PointerType::get(LLVMTypes::Int16VectorType, 0);
|
|
LLVMTypes::Int32VectorPointerType = llvm::PointerType::get(LLVMTypes::Int32VectorType, 0);
|
|
LLVMTypes::Int64VectorPointerType = llvm::PointerType::get(LLVMTypes::Int64VectorType, 0);
|
|
LLVMTypes::FloatVectorPointerType = llvm::PointerType::get(LLVMTypes::FloatVectorType, 0);
|
|
LLVMTypes::DoubleVectorPointerType = llvm::PointerType::get(LLVMTypes::DoubleVectorType, 0);
|
|
|
|
LLVMTypes::VoidPointerVectorType = g->target.is32Bit ? LLVMTypes::Int32VectorType :
|
|
LLVMTypes::Int64VectorType;
|
|
|
|
LLVMTrue = llvm::ConstantInt::getTrue(*ctx);
|
|
LLVMFalse = llvm::ConstantInt::getFalse(*ctx);
|
|
|
|
std::vector<llvm::Constant *> maskOnes;
|
|
llvm::Constant *onMask = NULL;
|
|
if (target.maskBitCount == 1)
|
|
onMask = llvm::ConstantInt::get(llvm::Type::getInt1Ty(*ctx), 1,
|
|
false /*unsigned*/); // 0x1
|
|
else
|
|
onMask = llvm::ConstantInt::get(llvm::Type::getInt32Ty(*ctx), -1,
|
|
true /*signed*/); // 0xffffffff
|
|
|
|
for (int i = 0; i < target.vectorWidth; ++i)
|
|
maskOnes.push_back(onMask);
|
|
LLVMMaskAllOn = llvm::ConstantVector::get(maskOnes);
|
|
|
|
std::vector<llvm::Constant *> maskZeros;
|
|
llvm::Constant *offMask = NULL;
|
|
if (target.maskBitCount == 1)
|
|
offMask = llvm::ConstantInt::get(llvm::Type::getInt1Ty(*ctx), 0,
|
|
true /*signed*/);
|
|
else
|
|
offMask = llvm::ConstantInt::get(llvm::Type::getInt32Ty(*ctx), 0,
|
|
true /*signed*/);
|
|
|
|
for (int i = 0; i < target.vectorWidth; ++i)
|
|
maskZeros.push_back(offMask);
|
|
LLVMMaskAllOff = llvm::ConstantVector::get(maskZeros);
|
|
}
|
|
|
|
|
|
llvm::ConstantInt *
|
|
LLVMInt8(int8_t ival) {
|
|
return llvm::ConstantInt::get(llvm::Type::getInt8Ty(*g->ctx), ival,
|
|
true /*signed*/);
|
|
}
|
|
|
|
|
|
llvm::ConstantInt *
|
|
LLVMUInt8(uint8_t ival) {
|
|
return llvm::ConstantInt::get(llvm::Type::getInt8Ty(*g->ctx), ival,
|
|
false /*unsigned*/);
|
|
}
|
|
|
|
|
|
llvm::ConstantInt *
|
|
LLVMInt16(int16_t ival) {
|
|
return llvm::ConstantInt::get(llvm::Type::getInt16Ty(*g->ctx), ival,
|
|
true /*signed*/);
|
|
}
|
|
|
|
|
|
llvm::ConstantInt *
|
|
LLVMUInt16(uint16_t ival) {
|
|
return llvm::ConstantInt::get(llvm::Type::getInt16Ty(*g->ctx), ival,
|
|
false /*unsigned*/);
|
|
}
|
|
|
|
|
|
llvm::ConstantInt *
|
|
LLVMInt32(int32_t ival) {
|
|
return llvm::ConstantInt::get(llvm::Type::getInt32Ty(*g->ctx), ival,
|
|
true /*signed*/);
|
|
}
|
|
|
|
|
|
llvm::ConstantInt *
|
|
LLVMUInt32(uint32_t ival) {
|
|
return llvm::ConstantInt::get(llvm::Type::getInt32Ty(*g->ctx), ival,
|
|
false /*unsigned*/);
|
|
}
|
|
|
|
|
|
llvm::ConstantInt *
|
|
LLVMInt64(int64_t ival) {
|
|
return llvm::ConstantInt::get(llvm::Type::getInt64Ty(*g->ctx), ival,
|
|
true /*signed*/);
|
|
}
|
|
|
|
|
|
llvm::ConstantInt *
|
|
LLVMUInt64(uint64_t ival) {
|
|
return llvm::ConstantInt::get(llvm::Type::getInt64Ty(*g->ctx), ival,
|
|
false /*unsigned*/);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMFloat(float fval) {
|
|
return llvm::ConstantFP::get(llvm::Type::getFloatTy(*g->ctx), fval);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMDouble(double dval) {
|
|
return llvm::ConstantFP::get(llvm::Type::getDoubleTy(*g->ctx), dval);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMInt8Vector(int8_t ival) {
|
|
llvm::Constant *v = LLVMInt8(ival);
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(v);
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMInt8Vector(const int8_t *ivec) {
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(LLVMInt8(ivec[i]));
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMUInt8Vector(uint8_t ival) {
|
|
llvm::Constant *v = LLVMUInt8(ival);
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(v);
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMUInt8Vector(const uint8_t *ivec) {
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(LLVMUInt8(ivec[i]));
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMInt16Vector(int16_t ival) {
|
|
llvm::Constant *v = LLVMInt16(ival);
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(v);
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMInt16Vector(const int16_t *ivec) {
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(LLVMInt16(ivec[i]));
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMUInt16Vector(uint16_t ival) {
|
|
llvm::Constant *v = LLVMUInt16(ival);
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(v);
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMUInt16Vector(const uint16_t *ivec) {
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(LLVMUInt16(ivec[i]));
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMInt32Vector(int32_t ival) {
|
|
llvm::Constant *v = LLVMInt32(ival);
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(v);
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMInt32Vector(const int32_t *ivec) {
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(LLVMInt32(ivec[i]));
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMUInt32Vector(uint32_t ival) {
|
|
llvm::Constant *v = LLVMUInt32(ival);
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(v);
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMUInt32Vector(const uint32_t *ivec) {
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(LLVMUInt32(ivec[i]));
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMFloatVector(float fval) {
|
|
llvm::Constant *v = LLVMFloat(fval);
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(v);
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMFloatVector(const float *fvec) {
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(LLVMFloat(fvec[i]));
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMDoubleVector(double dval) {
|
|
llvm::Constant *v = LLVMDouble(dval);
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(v);
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMDoubleVector(const double *dvec) {
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(LLVMDouble(dvec[i]));
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMInt64Vector(int64_t ival) {
|
|
llvm::Constant *v = LLVMInt64(ival);
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(v);
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMInt64Vector(const int64_t *ivec) {
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(LLVMInt64(ivec[i]));
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMUInt64Vector(uint64_t ival) {
|
|
llvm::Constant *v = LLVMUInt64(ival);
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(v);
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMUInt64Vector(const uint64_t *ivec) {
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(LLVMUInt64(ivec[i]));
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMBoolVector(bool b) {
|
|
llvm::Constant *v;
|
|
if (LLVMTypes::BoolVectorType == LLVMTypes::Int32VectorType)
|
|
v = llvm::ConstantInt::get(LLVMTypes::Int32Type, b ? 0xffffffff : 0,
|
|
false /*unsigned*/);
|
|
else {
|
|
Assert(LLVMTypes::BoolVectorType->getElementType() ==
|
|
llvm::Type::getInt1Ty(*g->ctx));
|
|
v = b ? LLVMTrue : LLVMFalse;
|
|
}
|
|
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i)
|
|
vals.push_back(v);
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMBoolVector(const bool *bvec) {
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < g->target.vectorWidth; ++i) {
|
|
llvm::Constant *v;
|
|
if (LLVMTypes::BoolVectorType == LLVMTypes::Int32VectorType)
|
|
v = llvm::ConstantInt::get(LLVMTypes::Int32Type, bvec[i] ? 0xffffffff : 0,
|
|
false /*unsigned*/);
|
|
else {
|
|
Assert(LLVMTypes::BoolVectorType->getElementType() ==
|
|
llvm::Type::getInt1Ty(*g->ctx));
|
|
v = bvec[i] ? LLVMTrue : LLVMFalse;
|
|
}
|
|
|
|
vals.push_back(v);
|
|
}
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMIntAsType(int64_t val, LLVM_TYPE_CONST llvm::Type *type) {
|
|
LLVM_TYPE_CONST llvm::VectorType *vecType =
|
|
llvm::dyn_cast<LLVM_TYPE_CONST llvm::VectorType>(type);
|
|
|
|
if (vecType != NULL) {
|
|
llvm::Constant *v = llvm::ConstantInt::get(vecType->getElementType(),
|
|
val, true /* signed */);
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < (int)vecType->getNumElements(); ++i)
|
|
vals.push_back(v);
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
else
|
|
return llvm::ConstantInt::get(type, val, true /* signed */);
|
|
}
|
|
|
|
|
|
llvm::Constant *
|
|
LLVMUIntAsType(uint64_t val, LLVM_TYPE_CONST llvm::Type *type) {
|
|
LLVM_TYPE_CONST llvm::VectorType *vecType =
|
|
llvm::dyn_cast<LLVM_TYPE_CONST llvm::VectorType>(type);
|
|
|
|
if (vecType != NULL) {
|
|
llvm::Constant *v = llvm::ConstantInt::get(vecType->getElementType(),
|
|
val, false /* unsigned */);
|
|
std::vector<llvm::Constant *> vals;
|
|
for (int i = 0; i < (int)vecType->getNumElements(); ++i)
|
|
vals.push_back(v);
|
|
return llvm::ConstantVector::get(vals);
|
|
}
|
|
else
|
|
return llvm::ConstantInt::get(type, val, false /* unsigned */);
|
|
}
|
|
|
|
|
|
/** Conservative test to see if two llvm::Values are equal. There are
|
|
(potentially many) cases where the two values actually are equal but
|
|
this will return false. However, if it does return true, the two
|
|
vectors definitely are equal.
|
|
*/
|
|
static bool
|
|
lValuesAreEqual(llvm::Value *v0, llvm::Value *v1,
|
|
std::vector<llvm::PHINode *> &seenPhi0,
|
|
std::vector<llvm::PHINode *> &seenPhi1) {
|
|
// Thanks to the fact that LLVM hashes and returns the same pointer for
|
|
// constants (of all sorts, even constant expressions), this first test
|
|
// actually catches a lot of cases. LLVM's SSA form also helps a lot
|
|
// with this..
|
|
if (v0 == v1)
|
|
return true;
|
|
|
|
Assert(seenPhi0.size() == seenPhi1.size());
|
|
for (unsigned int i = 0; i < seenPhi0.size(); ++i)
|
|
if (v0 == seenPhi0[i] && v1 == seenPhi1[i])
|
|
return true;
|
|
|
|
llvm::BinaryOperator *bo0 = llvm::dyn_cast<llvm::BinaryOperator>(v0);
|
|
llvm::BinaryOperator *bo1 = llvm::dyn_cast<llvm::BinaryOperator>(v1);
|
|
if (bo0 != NULL && bo1 != NULL) {
|
|
if (bo0->getOpcode() != bo1->getOpcode())
|
|
return false;
|
|
return (lValuesAreEqual(bo0->getOperand(0), bo1->getOperand(0),
|
|
seenPhi0, seenPhi1) &&
|
|
lValuesAreEqual(bo0->getOperand(1), bo1->getOperand(1),
|
|
seenPhi0, seenPhi1));
|
|
}
|
|
|
|
llvm::CastInst *cast0 = llvm::dyn_cast<llvm::CastInst>(v0);
|
|
llvm::CastInst *cast1 = llvm::dyn_cast<llvm::CastInst>(v1);
|
|
if (cast0 != NULL && cast1 != NULL) {
|
|
if (cast0->getOpcode() != cast1->getOpcode())
|
|
return NULL;
|
|
return lValuesAreEqual(cast0->getOperand(0), cast1->getOperand(0),
|
|
seenPhi0, seenPhi1);
|
|
}
|
|
|
|
llvm::PHINode *phi0 = llvm::dyn_cast<llvm::PHINode>(v0);
|
|
llvm::PHINode *phi1 = llvm::dyn_cast<llvm::PHINode>(v1);
|
|
if (phi0 != NULL && phi1 != NULL) {
|
|
if (phi0->getNumIncomingValues() != phi1->getNumIncomingValues())
|
|
return false;
|
|
|
|
seenPhi0.push_back(phi0);
|
|
seenPhi1.push_back(phi1);
|
|
|
|
unsigned int numIncoming = phi0->getNumIncomingValues();
|
|
// Check all of the incoming values: if all of them are all equal,
|
|
// then we're good.
|
|
bool anyFailure = false;
|
|
for (unsigned int i = 0; i < numIncoming; ++i) {
|
|
// FIXME: should it be ok if the incoming blocks are different,
|
|
// where we just return faliure in this case?
|
|
Assert(phi0->getIncomingBlock(i) == phi1->getIncomingBlock(i));
|
|
if (!lValuesAreEqual(phi0->getIncomingValue(i),
|
|
phi1->getIncomingValue(i), seenPhi0, seenPhi1)) {
|
|
anyFailure = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
seenPhi0.pop_back();
|
|
seenPhi1.pop_back();
|
|
|
|
return !anyFailure;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/** Given an llvm::Value known to be an integer, return its value as
|
|
an int64_t.
|
|
*/
|
|
static int64_t
|
|
lGetIntValue(llvm::Value *offset) {
|
|
llvm::ConstantInt *intOffset = llvm::dyn_cast<llvm::ConstantInt>(offset);
|
|
Assert(intOffset && (intOffset->getBitWidth() == 32 ||
|
|
intOffset->getBitWidth() == 64));
|
|
return intOffset->getSExtValue();
|
|
}
|
|
|
|
|
|
void
|
|
LLVMFlattenInsertChain(llvm::InsertElementInst *ie, int vectorWidth,
|
|
llvm::Value **elements) {
|
|
for (int i = 0; i < vectorWidth; ++i)
|
|
elements[i] = NULL;
|
|
|
|
while (ie != NULL) {
|
|
int64_t iOffset = lGetIntValue(ie->getOperand(2));
|
|
Assert(iOffset >= 0 && iOffset < vectorWidth);
|
|
Assert(elements[iOffset] == NULL);
|
|
|
|
// Get the scalar value from this insert
|
|
elements[iOffset] = ie->getOperand(1);
|
|
|
|
// Do we have another insert?
|
|
llvm::Value *insertBase = ie->getOperand(0);
|
|
ie = llvm::dyn_cast<llvm::InsertElementInst>(insertBase);
|
|
if (ie == NULL) {
|
|
if (llvm::isa<llvm::UndefValue>(insertBase))
|
|
return;
|
|
|
|
// Get the value out of a constant vector if that's what we
|
|
// have
|
|
llvm::ConstantVector *cv =
|
|
llvm::dyn_cast<llvm::ConstantVector>(insertBase);
|
|
|
|
// FIXME: this assert is a little questionable; we probably
|
|
// shouldn't fail in this case but should just return an
|
|
// incomplete result. But there aren't currently any known
|
|
// cases where we have anything other than an undef value or a
|
|
// constant vector at the base, so if that ever does happen,
|
|
// it'd be nice to know what happend so that perhaps we can
|
|
// handle it.
|
|
// FIXME: Also, should we handle ConstantDataVectors with
|
|
// LLVM3.1? What about ConstantAggregateZero values??
|
|
Assert(cv != NULL);
|
|
|
|
Assert(iOffset < (int)cv->getNumOperands());
|
|
elements[iOffset] = cv->getOperand((int32_t)iOffset);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool
|
|
LLVMExtractVectorInts(llvm::Value *v, int64_t ret[], int *nElts) {
|
|
// Make sure we do in fact have a vector of integer values here
|
|
LLVM_TYPE_CONST llvm::VectorType *vt =
|
|
llvm::dyn_cast<LLVM_TYPE_CONST llvm::VectorType>(v->getType());
|
|
Assert(vt != NULL);
|
|
Assert(llvm::isa<llvm::IntegerType>(vt->getElementType()));
|
|
|
|
*nElts = (int)vt->getNumElements();
|
|
|
|
if (llvm::isa<llvm::ConstantAggregateZero>(v)) {
|
|
for (int i = 0; i < (int)vt->getNumElements(); ++i)
|
|
ret[i] = 0;
|
|
return true;
|
|
}
|
|
|
|
// Deal with the fact that LLVM3.1 and previous versions have different
|
|
// representations for vectors of constant ints...
|
|
#ifdef LLVM_3_1svn
|
|
llvm::ConstantDataVector *cv = llvm::dyn_cast<llvm::ConstantDataVector>(v);
|
|
if (cv == NULL)
|
|
return false;
|
|
|
|
for (int i = 0; i < (int)cv->getNumElements(); ++i)
|
|
ret[i] = cv->getElementAsInteger(i);
|
|
return true;
|
|
#else
|
|
llvm::ConstantVector *cv = llvm::dyn_cast<llvm::ConstantVector>(v);
|
|
if (cv == NULL)
|
|
return false;
|
|
|
|
llvm::SmallVector<llvm::Constant *, ISPC_MAX_NVEC> elements;
|
|
cv->getVectorElements(elements);
|
|
for (int i = 0; i < (int)vt->getNumElements(); ++i) {
|
|
llvm::ConstantInt *ci = llvm::dyn_cast<llvm::ConstantInt>(elements[i]);
|
|
Assert(ci != NULL);
|
|
ret[i] = ci->getSExtValue();
|
|
}
|
|
return true;
|
|
#endif // LLVM_3_1svn
|
|
}
|
|
|
|
|
|
static bool
|
|
lVectorValuesAllEqual(llvm::Value *v, int vectorLength,
|
|
std::vector<llvm::PHINode *> &seenPhis);
|
|
|
|
|
|
static bool
|
|
lVectorValuesAllEqual(llvm::Value *v, int vectorLength,
|
|
std::vector<llvm::PHINode *> &seenPhis) {
|
|
if (vectorLength == 1)
|
|
return true;
|
|
|
|
if (llvm::isa<llvm::ConstantAggregateZero>(v))
|
|
return true;
|
|
|
|
llvm::ConstantVector *cv = llvm::dyn_cast<llvm::ConstantVector>(v);
|
|
if (cv != NULL)
|
|
return (cv->getSplatValue() != NULL);
|
|
|
|
#ifdef LLVM_3_1svn
|
|
llvm::ConstantDataVector *cdv = llvm::dyn_cast<llvm::ConstantDataVector>(v);
|
|
if (cdv != NULL)
|
|
return (cdv->getSplatValue() != NULL);
|
|
#endif
|
|
|
|
llvm::BinaryOperator *bop = llvm::dyn_cast<llvm::BinaryOperator>(v);
|
|
if (bop != NULL)
|
|
return (LLVMVectorValuesAllEqual(bop->getOperand(0), vectorLength,
|
|
seenPhis) &&
|
|
LLVMVectorValuesAllEqual(bop->getOperand(1), vectorLength,
|
|
seenPhis));
|
|
|
|
llvm::CastInst *cast = llvm::dyn_cast<llvm::CastInst>(v);
|
|
if (cast != NULL)
|
|
return lVectorValuesAllEqual(cast->getOperand(0), vectorLength,
|
|
seenPhis);
|
|
|
|
llvm::InsertElementInst *ie = llvm::dyn_cast<llvm::InsertElementInst>(v);
|
|
if (ie != NULL) {
|
|
llvm::Value *elements[ISPC_MAX_NVEC];
|
|
LLVMFlattenInsertChain(ie, vectorLength, elements);
|
|
|
|
// We will ignore any values of elements[] that are NULL; as they
|
|
// correspond to undefined values--we just want to see if all of
|
|
// the defined values have the same value.
|
|
int lastNonNull = 0;
|
|
while (lastNonNull < vectorLength && elements[lastNonNull] == NULL)
|
|
++lastNonNull;
|
|
|
|
if (lastNonNull == vectorLength)
|
|
// all of them are undef!
|
|
return true;
|
|
|
|
for (int i = lastNonNull; i < vectorLength; ++i) {
|
|
if (elements[i] == NULL)
|
|
continue;
|
|
|
|
std::vector<llvm::PHINode *> seenPhi0;
|
|
std::vector<llvm::PHINode *> seenPhi1;
|
|
if (lValuesAreEqual(elements[lastNonNull], elements[i], seenPhi0,
|
|
seenPhi1) == false)
|
|
return false;
|
|
lastNonNull = i;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
llvm::PHINode *phi = llvm::dyn_cast<llvm::PHINode>(v);
|
|
if (phi) {
|
|
for (unsigned int i = 0; i < seenPhis.size(); ++i)
|
|
if (seenPhis[i] == phi)
|
|
return true;
|
|
|
|
seenPhis.push_back(phi);
|
|
|
|
unsigned int numIncoming = phi->getNumIncomingValues();
|
|
// Check all of the incoming values: if all of them are all equal,
|
|
// then we're good.
|
|
for (unsigned int i = 0; i < numIncoming; ++i) {
|
|
if (!lVectorValuesAllEqual(phi->getIncomingValue(i), vectorLength,
|
|
seenPhis)) {
|
|
seenPhis.pop_back();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
seenPhis.pop_back();
|
|
return true;
|
|
}
|
|
|
|
if (llvm::isa<llvm::UndefValue>(v))
|
|
// ?
|
|
return false;
|
|
|
|
Assert(!llvm::isa<llvm::Constant>(v));
|
|
|
|
if (llvm::isa<llvm::CallInst>(v) || llvm::isa<llvm::LoadInst>(v) ||
|
|
!llvm::isa<llvm::Instruction>(v))
|
|
return false;
|
|
|
|
llvm::ShuffleVectorInst *shuffle = llvm::dyn_cast<llvm::ShuffleVectorInst>(v);
|
|
if (shuffle != NULL) {
|
|
llvm::Value *indices = shuffle->getOperand(2);
|
|
if (lVectorValuesAllEqual(indices, vectorLength, seenPhis))
|
|
// The easy case--just a smear of the same element across the
|
|
// whole vector.
|
|
return true;
|
|
|
|
// TODO: handle more general cases?
|
|
return false;
|
|
}
|
|
|
|
#if 0
|
|
fprintf(stderr, "all equal: ");
|
|
v->dump();
|
|
fprintf(stderr, "\n");
|
|
llvm::Instruction *inst = llvm::dyn_cast<llvm::Instruction>(v);
|
|
if (inst) {
|
|
inst->getParent()->dump();
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "\n");
|
|
}
|
|
#endif
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/** Tests to see if all of the elements of the vector in the 'v' parameter
|
|
are equal. This is a conservative test and may return false for arrays
|
|
where the values are actually all equal.
|
|
*/
|
|
bool
|
|
LLVMVectorValuesAllEqual(llvm::Value *v) {
|
|
LLVM_TYPE_CONST llvm::VectorType *vt =
|
|
llvm::dyn_cast<LLVM_TYPE_CONST llvm::VectorType>(v->getType());
|
|
Assert(vt != NULL);
|
|
int vectorLength = vt->getNumElements();
|
|
|
|
std::vector<llvm::PHINode *> seenPhis;
|
|
bool equal = lVectorValuesAllEqual(v, vectorLength, seenPhis);
|
|
|
|
Debug(SourcePos(), "LLVMVectorValuesAllEqual(%s) -> %s.",
|
|
v->getName().str().c_str(), equal ? "true" : "false");
|
|
if (g->debugPrint)
|
|
LLVMDumpValue(v);
|
|
|
|
return equal;
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
lDumpValue(llvm::Value *v, std::set<llvm::Value *> &done) {
|
|
if (done.find(v) != done.end())
|
|
return;
|
|
|
|
llvm::Instruction *inst = llvm::dyn_cast<llvm::Instruction>(v);
|
|
if (done.size() > 0 && inst == NULL)
|
|
return;
|
|
|
|
fprintf(stderr, " ");
|
|
v->dump();
|
|
done.insert(v);
|
|
|
|
if (inst == NULL)
|
|
return;
|
|
|
|
for (unsigned i = 0; i < inst->getNumOperands(); ++i)
|
|
lDumpValue(inst->getOperand(i), done);
|
|
}
|
|
|
|
|
|
void
|
|
LLVMDumpValue(llvm::Value *v) {
|
|
std::set<llvm::Value *> done;
|
|
lDumpValue(v, done);
|
|
fprintf(stderr, "----\n");
|
|
}
|
|
|
|
|
|
static llvm::Value *
|
|
lExtractFirstVectorElement(llvm::Value *v, llvm::Instruction *insertBefore,
|
|
std::map<llvm::PHINode *, llvm::PHINode *> &phiMap) {
|
|
// If it's not an instruction (i.e. is a constant), then we can just
|
|
// emit an extractelement instruction and let the regular optimizer do
|
|
// the rest.
|
|
if (llvm::isa<llvm::Instruction>(v) == false)
|
|
return llvm::ExtractElementInst::Create(v, LLVMInt32(0), "first_elt",
|
|
insertBefore);
|
|
|
|
LLVM_TYPE_CONST llvm::VectorType *vt =
|
|
llvm::dyn_cast<LLVM_TYPE_CONST llvm::VectorType>(v->getType());
|
|
Assert(vt != NULL);
|
|
|
|
llvm::Twine newName = v->getName() + llvm::Twine(".elt0");
|
|
|
|
// Rewrite regular binary operators and casts to the scalarized
|
|
// equivalent.
|
|
llvm::BinaryOperator *bop = llvm::dyn_cast<llvm::BinaryOperator>(v);
|
|
if (bop != NULL) {
|
|
llvm::Value *v0 = lExtractFirstVectorElement(bop->getOperand(0),
|
|
insertBefore, phiMap);
|
|
llvm::Value *v1 = lExtractFirstVectorElement(bop->getOperand(1),
|
|
insertBefore, phiMap);
|
|
return llvm::BinaryOperator::Create(bop->getOpcode(), v0, v1,
|
|
newName, insertBefore);
|
|
}
|
|
|
|
llvm::CastInst *cast = llvm::dyn_cast<llvm::CastInst>(v);
|
|
if (cast != NULL) {
|
|
llvm::Value *v = lExtractFirstVectorElement(cast->getOperand(0),
|
|
insertBefore, phiMap);
|
|
return llvm::CastInst::Create(cast->getOpcode(), v,
|
|
vt->getElementType(), newName,
|
|
insertBefore);
|
|
}
|
|
|
|
llvm::PHINode *phi = llvm::dyn_cast<llvm::PHINode>(v);
|
|
if (phi != NULL) {
|
|
// For PHI notes, recursively scalarize them.
|
|
if (phiMap.find(phi) != phiMap.end())
|
|
return phiMap[phi];
|
|
|
|
// We need to create the new scalar PHI node immediately, though,
|
|
// and put it in the map<>, so that if we come back to this node
|
|
// via a recursive lExtractFirstVectorElement() call, then we can
|
|
// return the pointer and not get stuck in an infinite loop.
|
|
//
|
|
// The insertion point for the new phi node also has to be the
|
|
// start of the bblock of the original phi node, which isn't
|
|
// necessarily the same bblock as insertBefore is in!
|
|
llvm::Instruction *phiInsertPos = phi->getParent()->begin();
|
|
llvm::PHINode *scalarPhi =
|
|
llvm::PHINode::Create(vt->getElementType(),
|
|
phi->getNumIncomingValues(), newName,
|
|
phiInsertPos);
|
|
phiMap[phi] = scalarPhi;
|
|
|
|
for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
|
|
llvm::Value *v = lExtractFirstVectorElement(phi->getIncomingValue(i),
|
|
insertBefore, phiMap);
|
|
scalarPhi->addIncoming(v, phi->getIncomingBlock(i));
|
|
}
|
|
|
|
return scalarPhi;
|
|
}
|
|
|
|
// If we have a chain of insertelement instructions, then we can just
|
|
// flatten them out and grab the value for the first one.
|
|
llvm::InsertElementInst *ie = llvm::dyn_cast<llvm::InsertElementInst>(v);
|
|
if (ie != NULL) {
|
|
llvm::Value *elements[ISPC_MAX_NVEC];
|
|
LLVMFlattenInsertChain(ie, vt->getNumElements(), elements);
|
|
return elements[0];
|
|
}
|
|
|
|
// Worst case, for everything else, just do a regular extract element
|
|
return llvm::ExtractElementInst::Create(v, LLVMInt32(0), "first_elt",
|
|
insertBefore);
|
|
}
|
|
|
|
|
|
llvm::Value *
|
|
LLVMExtractFirstVectorElement(llvm::Value *v, llvm::Instruction *insertBefore) {
|
|
std::map<llvm::PHINode *, llvm::PHINode *> phiMap;
|
|
llvm::Value *ret = lExtractFirstVectorElement(v, insertBefore, phiMap);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/** Given two vectors of the same type, concatenate them into a vector that
|
|
has twice as many elements, where the first half has the elements from
|
|
the first vector and the second half has the elements from the second
|
|
vector.
|
|
*/
|
|
llvm::Value *
|
|
LLVMConcatVectors(llvm::Value *v1, llvm::Value *v2,
|
|
llvm::Instruction *insertBefore) {
|
|
Assert(v1->getType() == v2->getType());
|
|
|
|
LLVM_TYPE_CONST llvm::VectorType *vt =
|
|
llvm::dyn_cast<LLVM_TYPE_CONST llvm::VectorType>(v1->getType());
|
|
Assert(vt != NULL);
|
|
|
|
int32_t identity[ISPC_MAX_NVEC];
|
|
int resultSize = 2*vt->getNumElements();
|
|
Assert(resultSize <= ISPC_MAX_NVEC);
|
|
for (int i = 0; i < resultSize; ++i)
|
|
identity[i] = i;
|
|
|
|
return LLVMShuffleVectors(v1, v2, identity, resultSize, insertBefore);
|
|
}
|
|
|
|
|
|
/** Shuffle two vectors together with a ShuffleVectorInst, returning a
|
|
vector with shufSize elements, where the shuf[] array offsets are used
|
|
to determine which element from the two given vectors is used for each
|
|
result element. */
|
|
llvm::Value *
|
|
LLVMShuffleVectors(llvm::Value *v1, llvm::Value *v2, int32_t shuf[],
|
|
int shufSize, llvm::Instruction *insertBefore) {
|
|
std::vector<llvm::Constant *> shufVec;
|
|
for (int i = 0; i < shufSize; ++i) {
|
|
if (shuf[i] == -1)
|
|
shufVec.push_back(llvm::UndefValue::get(LLVMTypes::Int32Type));
|
|
else
|
|
shufVec.push_back(LLVMInt32(shuf[i]));
|
|
}
|
|
|
|
#ifndef LLVM_2_9
|
|
llvm::ArrayRef<llvm::Constant *> aref(&shufVec[0], &shufVec[shufSize]);
|
|
llvm::Value *vec = llvm::ConstantVector::get(aref);
|
|
#else // LLVM_2_9
|
|
llvm::Value *vec = llvm::ConstantVector::get(shufVec);
|
|
#endif
|
|
|
|
return new llvm::ShuffleVectorInst(v1, v2, vec, "shuffle", insertBefore);
|
|
}
|