Files
ispc/examples/stencil/stencil.ispc
2012-03-19 11:27:32 -07:00

123 lines
5.1 KiB
Plaintext

/*
Copyright (c) 2010-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
static void
stencil_step(uniform int x0, uniform int x1,
uniform int y0, uniform int y1,
uniform int z0, uniform int z1,
uniform int Nx, uniform int Ny, uniform int Nz,
uniform const float coef[4], uniform const float vsq[],
uniform const float Ain[], uniform float Aout[]) {
const uniform int Nxy = Nx * Ny;
foreach (z = z0 ... z1, y = y0 ... y1, x = x0 ... x1) {
int index = (z * Nxy) + (y * Nx) + x;
#define A_cur(x, y, z) Ain[index + (x) + ((y) * Nx) + ((z) * Nxy)]
#define A_next(x, y, z) Aout[index + (x) + ((y) * Nx) + ((z) * Nxy)]
float div = coef[0] * A_cur(0, 0, 0) +
coef[1] * (A_cur(+1, 0, 0) + A_cur(-1, 0, 0) +
A_cur(0, +1, 0) + A_cur(0, -1, 0) +
A_cur(0, 0, +1) + A_cur(0, 0, -1)) +
coef[2] * (A_cur(+2, 0, 0) + A_cur(-2, 0, 0) +
A_cur(0, +2, 0) + A_cur(0, -2, 0) +
A_cur(0, 0, +2) + A_cur(0, 0, -2)) +
coef[3] * (A_cur(+3, 0, 0) + A_cur(-3, 0, 0) +
A_cur(0, +3, 0) + A_cur(0, -3, 0) +
A_cur(0, 0, +3) + A_cur(0, 0, -3));
A_next(0, 0, 0) = 2 * A_cur(0, 0, 0) - A_next(0, 0, 0) +
vsq[index] * div;
}
}
static task void
stencil_step_task(uniform int x0, uniform int x1,
uniform int y0, uniform int y1,
uniform int z0,
uniform int Nx, uniform int Ny, uniform int Nz,
uniform const float coef[4], uniform const float vsq[],
uniform const float Ain[], uniform float Aout[]) {
stencil_step(x0, x1, y0, y1, z0+taskIndex, z0+taskIndex+1,
Nx, Ny, Nz, coef, vsq, Ain, Aout);
}
export void
loop_stencil_ispc_tasks(uniform int t0, uniform int t1,
uniform int x0, uniform int x1,
uniform int y0, uniform int y1,
uniform int z0, uniform int z1,
uniform int Nx, uniform int Ny, uniform int Nz,
uniform const float coef[4],
uniform const float vsq[],
uniform float Aeven[], uniform float Aodd[])
{
for (uniform int t = t0; t < t1; ++t) {
// Parallelize across cores as well: each task will work on a slice
// of 1 in the z extent of the volume.
if ((t & 1) == 0)
launch[z1-z0] stencil_step_task(x0, x1, y0, y1, z0, Nx, Ny, Nz,
coef, vsq, Aeven, Aodd);
else
launch[z1-z0] stencil_step_task(x0, x1, y0, y1, z0, Nx, Ny, Nz,
coef, vsq, Aodd, Aeven);
// We need to wait for all of the launched tasks to finish before
// starting the next iteration.
sync;
}
}
export void
loop_stencil_ispc(uniform int t0, uniform int t1,
uniform int x0, uniform int x1,
uniform int y0, uniform int y1,
uniform int z0, uniform int z1,
uniform int Nx, uniform int Ny, uniform int Nz,
uniform const float coef[4],
uniform const float vsq[],
uniform float Aeven[], uniform float Aodd[])
{
for (uniform int t = t0; t < t1; ++t) {
if ((t & 1) == 0)
stencil_step(x0, x1, y0, y1, z0, z1, Nx, Ny, Nz, coef, vsq,
Aeven, Aodd);
else
stencil_step(x0, x1, y0, y1, z0, z1, Nx, Ny, Nz, coef, vsq,
Aodd, Aeven);
}
}