399 lines
16 KiB
C++
399 lines
16 KiB
C++
/*
|
|
Copyright (c) 2011-2014, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
* Neither the name of Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef __cilk
|
|
|
|
#include "deferred.h"
|
|
#include "kernels_ispc.h"
|
|
#include <algorithm>
|
|
#include <assert.h>
|
|
|
|
#ifdef _MSC_VER
|
|
#define ISPC_IS_WINDOWS
|
|
#elif defined(__linux__)
|
|
#define ISPC_IS_LINUX
|
|
#elif defined(__APPLE__)
|
|
#define ISPC_IS_APPLE
|
|
#endif
|
|
|
|
#ifdef ISPC_IS_LINUX
|
|
#include <malloc.h>
|
|
#endif // ISPC_IS_LINUX
|
|
|
|
// Currently tile widths must be a multiple of SIMD width (i.e. 8 for ispc sse4x2)!
|
|
#define MIN_TILE_WIDTH 16
|
|
#define MIN_TILE_HEIGHT 16
|
|
|
|
|
|
#define DYNAMIC_TREE_LEVELS 5
|
|
// If this is set to 1 then the result will be identical to the static version
|
|
#define DYNAMIC_MIN_LIGHTS_TO_SUBDIVIDE 1
|
|
|
|
static void *
|
|
lAlignedMalloc(size_t size, int32_t alignment) {
|
|
#ifdef ISPC_IS_WINDOWS
|
|
return _aligned_malloc(size, alignment);
|
|
#endif
|
|
#ifdef ISPC_IS_LINUX
|
|
return memalign(alignment, size);
|
|
#endif
|
|
#ifdef ISPC_IS_APPLE
|
|
void *mem = malloc(size + (alignment-1) + sizeof(void*));
|
|
char *amem = ((char*)mem) + sizeof(void*);
|
|
amem = amem + uint32_t(alignment - (reinterpret_cast<uint64_t>(amem) &
|
|
(alignment - 1)));
|
|
((void**)amem)[-1] = mem;
|
|
return amem;
|
|
#endif
|
|
}
|
|
|
|
|
|
static void
|
|
lAlignedFree(void *ptr) {
|
|
#ifdef ISPC_IS_WINDOWS
|
|
_aligned_free(ptr);
|
|
#endif
|
|
#ifdef ISPC_IS_LINUX
|
|
free(ptr);
|
|
#endif
|
|
#ifdef ISPC_IS_APPLE
|
|
free(((void**)ptr)[-1]);
|
|
#endif
|
|
}
|
|
|
|
|
|
class MinMaxZTreeCilk
|
|
{
|
|
public:
|
|
// Currently (min) tile dimensions must divide gBuffer dimensions evenly
|
|
// Levels must be small enough that neither dimension goes below one tile
|
|
MinMaxZTreeCilk(
|
|
int tileWidth, int tileHeight, int levels,
|
|
int gBufferWidth, int gBufferHeight)
|
|
: mTileWidth(tileWidth), mTileHeight(tileHeight), mLevels(levels)
|
|
{
|
|
mNumTilesX = gBufferWidth / mTileWidth;
|
|
mNumTilesY = gBufferHeight / mTileHeight;
|
|
|
|
// Allocate arrays
|
|
mMinZArrays = (float **)lAlignedMalloc(sizeof(float *) * mLevels, 16);
|
|
mMaxZArrays = (float **)lAlignedMalloc(sizeof(float *) * mLevels, 16);
|
|
for (int i = 0; i < mLevels; ++i) {
|
|
int x = NumTilesX(i);
|
|
int y = NumTilesY(i);
|
|
assert(x > 0);
|
|
assert(y > 0);
|
|
// NOTE: If the following two asserts fire it probably means that
|
|
// the base tile dimensions do not evenly divide the G-buffer dimensions
|
|
assert(x * (mTileWidth << i) >= gBufferWidth);
|
|
assert(y * (mTileHeight << i) >= gBufferHeight);
|
|
mMinZArrays[i] = (float *)lAlignedMalloc(sizeof(float) * x * y, 16);
|
|
mMaxZArrays[i] = (float *)lAlignedMalloc(sizeof(float) * x * y, 16);
|
|
}
|
|
}
|
|
|
|
void Update(float *zBuffer, int gBufferPitchInElements,
|
|
float cameraProj_33, float cameraProj_43,
|
|
float cameraNear, float cameraFar)
|
|
{
|
|
// Compute level 0 in parallel. Outer loops is here since we use Cilk
|
|
_Cilk_for (int tileY = 0; tileY < mNumTilesY; ++tileY) {
|
|
ispc::ComputeZBoundsRow(tileY,
|
|
mTileWidth, mTileHeight, mNumTilesX, mNumTilesY,
|
|
zBuffer, gBufferPitchInElements,
|
|
cameraProj_33, cameraProj_43, cameraNear, cameraFar,
|
|
mMinZArrays[0] + (tileY * mNumTilesX),
|
|
mMaxZArrays[0] + (tileY * mNumTilesX));
|
|
}
|
|
|
|
// Generate other levels
|
|
// NOTE: We currently don't use ispc here since it's sort of an
|
|
// awkward gather-based reduction Using SSE odd pack/unpack
|
|
// instructions might actually work here when we need to optimize
|
|
for (int level = 1; level < mLevels; ++level) {
|
|
int destTilesX = NumTilesX(level);
|
|
int destTilesY = NumTilesY(level);
|
|
int srcLevel = level - 1;
|
|
int srcTilesX = NumTilesX(srcLevel);
|
|
int srcTilesY = NumTilesY(srcLevel);
|
|
_Cilk_for (int y = 0; y < destTilesY; ++y) {
|
|
for (int x = 0; x < destTilesX; ++x) {
|
|
int srcX = x << 1;
|
|
int srcY = y << 1;
|
|
// NOTE: Ugly branches to deal with non-multiple dimensions at some levels
|
|
// TODO: SSE branchless min/max is probably better...
|
|
float minZ = mMinZArrays[srcLevel][(srcY) * srcTilesX + (srcX)];
|
|
float maxZ = mMaxZArrays[srcLevel][(srcY) * srcTilesX + (srcX)];
|
|
if (srcX + 1 < srcTilesX) {
|
|
minZ = std::min(minZ, mMinZArrays[srcLevel][(srcY) * srcTilesX +
|
|
(srcX + 1)]);
|
|
maxZ = std::max(maxZ, mMaxZArrays[srcLevel][(srcY) * srcTilesX +
|
|
(srcX + 1)]);
|
|
if (srcY + 1 < srcTilesY) {
|
|
minZ = std::min(minZ, mMinZArrays[srcLevel][(srcY + 1) * srcTilesX +
|
|
(srcX + 1)]);
|
|
maxZ = std::max(maxZ, mMaxZArrays[srcLevel][(srcY + 1) * srcTilesX +
|
|
(srcX + 1)]);
|
|
}
|
|
}
|
|
if (srcY + 1 < srcTilesY) {
|
|
minZ = std::min(minZ, mMinZArrays[srcLevel][(srcY + 1) * srcTilesX +
|
|
(srcX )]);
|
|
maxZ = std::max(maxZ, mMaxZArrays[srcLevel][(srcY + 1) * srcTilesX +
|
|
(srcX )]);
|
|
}
|
|
mMinZArrays[level][y * destTilesX + x] = minZ;
|
|
mMaxZArrays[level][y * destTilesX + x] = maxZ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
~MinMaxZTreeCilk() {
|
|
for (int i = 0; i < mLevels; ++i) {
|
|
lAlignedFree(mMinZArrays[i]);
|
|
lAlignedFree(mMaxZArrays[i]);
|
|
}
|
|
lAlignedFree(mMinZArrays);
|
|
lAlignedFree(mMaxZArrays);
|
|
}
|
|
|
|
int Levels() const { return mLevels; }
|
|
|
|
// These round UP, so beware that the last tile for a given level may not be completely full
|
|
// TODO: Verify this...
|
|
int NumTilesX(int level = 0) const { return (mNumTilesX + (1 << level) - 1) >> level; }
|
|
int NumTilesY(int level = 0) const { return (mNumTilesY + (1 << level) - 1) >> level; }
|
|
int TileWidth(int level = 0) const { return (mTileWidth << level); }
|
|
int TileHeight(int level = 0) const { return (mTileHeight << level); }
|
|
|
|
float MinZ(int level, int tileX, int tileY) const {
|
|
return mMinZArrays[level][tileY * NumTilesX(level) + tileX];
|
|
}
|
|
float MaxZ(int level, int tileX, int tileY) const {
|
|
return mMaxZArrays[level][tileY * NumTilesX(level) + tileX];
|
|
}
|
|
|
|
private:
|
|
int mTileWidth;
|
|
int mTileHeight;
|
|
int mLevels;
|
|
int mNumTilesX;
|
|
int mNumTilesY;
|
|
|
|
// One array for each "level" in the tree
|
|
float **mMinZArrays;
|
|
float **mMaxZArrays;
|
|
};
|
|
|
|
static MinMaxZTreeCilk *gMinMaxZTreeCilk = 0;
|
|
|
|
void InitDynamicCilk(InputData *input) {
|
|
gMinMaxZTreeCilk =
|
|
new MinMaxZTreeCilk(MIN_TILE_WIDTH, MIN_TILE_HEIGHT, DYNAMIC_TREE_LEVELS,
|
|
input->header.framebufferWidth,
|
|
input->header.framebufferHeight);
|
|
}
|
|
|
|
|
|
static void
|
|
ShadeDynamicTileRecurse(InputData *input, int level, int tileX, int tileY,
|
|
int *lightIndices, int numLights,
|
|
Framebuffer *framebuffer) {
|
|
const MinMaxZTreeCilk *minMaxZTree = gMinMaxZTreeCilk;
|
|
|
|
// If we few enough lights or this is the base case (last level), shade
|
|
// this full tile directly
|
|
if (level == 0 || numLights < DYNAMIC_MIN_LIGHTS_TO_SUBDIVIDE) {
|
|
int width = minMaxZTree->TileWidth(level);
|
|
int height = minMaxZTree->TileHeight(level);
|
|
int startX = tileX * width;
|
|
int startY = tileY * height;
|
|
int endX = std::min(input->header.framebufferWidth, startX + width);
|
|
int endY = std::min(input->header.framebufferHeight, startY + height);
|
|
|
|
// Skip entirely offscreen tiles
|
|
if (endX > startX && endY > startY) {
|
|
ispc::ShadeTile(
|
|
startX, endX, startY, endY,
|
|
input->header.framebufferWidth, input->header.framebufferHeight,
|
|
&input->arrays,
|
|
input->header.cameraProj[0][0], input->header.cameraProj[1][1],
|
|
input->header.cameraProj[2][2], input->header.cameraProj[3][2],
|
|
lightIndices, numLights, VISUALIZE_LIGHT_COUNT,
|
|
framebuffer->r, framebuffer->g, framebuffer->b);
|
|
}
|
|
}
|
|
else {
|
|
// Otherwise, subdivide and 4-way recurse using X and Y splitting planes
|
|
// Move down a level in the tree
|
|
--level;
|
|
tileX <<= 1;
|
|
tileY <<= 1;
|
|
int width = minMaxZTree->TileWidth(level);
|
|
int height = minMaxZTree->TileHeight(level);
|
|
|
|
// Work out splitting coords
|
|
int midX = (tileX + 1) * width;
|
|
int midY = (tileY + 1) * height;
|
|
|
|
// Read subtile min/max data
|
|
// NOTE: We must be sure to handle out-of-bounds access here since
|
|
// sometimes we'll only have 1 or 2 subtiles for non-pow-2
|
|
// framebuffer sizes.
|
|
bool rightTileExists = (tileX + 1 < minMaxZTree->NumTilesX(level));
|
|
bool bottomTileExists = (tileY + 1 < minMaxZTree->NumTilesY(level));
|
|
|
|
// NOTE: Order is 00, 10, 01, 11
|
|
// Set defaults up to cull all lights if the tile doesn't exist (offscreen)
|
|
float minZ[4] = {input->header.cameraFar, input->header.cameraFar,
|
|
input->header.cameraFar, input->header.cameraFar};
|
|
float maxZ[4] = {input->header.cameraNear, input->header.cameraNear,
|
|
input->header.cameraNear, input->header.cameraNear};
|
|
|
|
minZ[0] = minMaxZTree->MinZ(level, tileX, tileY);
|
|
maxZ[0] = minMaxZTree->MaxZ(level, tileX, tileY);
|
|
if (rightTileExists) {
|
|
minZ[1] = minMaxZTree->MinZ(level, tileX + 1, tileY);
|
|
maxZ[1] = minMaxZTree->MaxZ(level, tileX + 1, tileY);
|
|
if (bottomTileExists) {
|
|
minZ[3] = minMaxZTree->MinZ(level, tileX + 1, tileY + 1);
|
|
maxZ[3] = minMaxZTree->MaxZ(level, tileX + 1, tileY + 1);
|
|
}
|
|
}
|
|
if (bottomTileExists) {
|
|
minZ[2] = minMaxZTree->MinZ(level, tileX, tileY + 1);
|
|
maxZ[2] = minMaxZTree->MaxZ(level, tileX, tileY + 1);
|
|
}
|
|
|
|
// Cull lights into subtile lists
|
|
#ifdef ISPC_IS_WINDOWS
|
|
__declspec(align(ALIGNMENT_BYTES))
|
|
#endif
|
|
int subtileLightIndices[4][MAX_LIGHTS]
|
|
#ifndef ISPC_IS_WINDOWS
|
|
__attribute__ ((aligned(ALIGNMENT_BYTES)))
|
|
#endif
|
|
;
|
|
int subtileNumLights[4];
|
|
ispc::SplitTileMinMax(midX, midY, minZ, maxZ,
|
|
input->header.framebufferWidth, input->header.framebufferHeight,
|
|
input->header.cameraProj[0][0], input->header.cameraProj[1][1],
|
|
lightIndices, numLights, input->arrays.lightPositionView_x,
|
|
input->arrays.lightPositionView_y, input->arrays.lightPositionView_z,
|
|
input->arrays.lightAttenuationEnd,
|
|
subtileLightIndices[0], MAX_LIGHTS, subtileNumLights);
|
|
|
|
// Recurse into subtiles
|
|
_Cilk_spawn ShadeDynamicTileRecurse(input, level, tileX , tileY,
|
|
subtileLightIndices[0], subtileNumLights[0],
|
|
framebuffer);
|
|
_Cilk_spawn ShadeDynamicTileRecurse(input, level, tileX + 1, tileY,
|
|
subtileLightIndices[1], subtileNumLights[1],
|
|
framebuffer);
|
|
_Cilk_spawn ShadeDynamicTileRecurse(input, level, tileX , tileY + 1,
|
|
subtileLightIndices[2], subtileNumLights[2],
|
|
framebuffer);
|
|
ShadeDynamicTileRecurse(input, level, tileX + 1, tileY + 1,
|
|
subtileLightIndices[3], subtileNumLights[3],
|
|
framebuffer);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
ShadeDynamicTile(InputData *input, int level, int tileX, int tileY,
|
|
Framebuffer *framebuffer) {
|
|
const MinMaxZTreeCilk *minMaxZTree = gMinMaxZTreeCilk;
|
|
|
|
// Get Z min/max for this tile
|
|
int width = minMaxZTree->TileWidth(level);
|
|
int height = minMaxZTree->TileHeight(level);
|
|
float minZ = minMaxZTree->MinZ(level, tileX, tileY);
|
|
float maxZ = minMaxZTree->MaxZ(level, tileX, tileY);
|
|
|
|
int startX = tileX * width;
|
|
int startY = tileY * height;
|
|
int endX = std::min(input->header.framebufferWidth, startX + width);
|
|
int endY = std::min(input->header.framebufferHeight, startY + height);
|
|
|
|
// This is a root tile, so first do a full 6-plane cull
|
|
#ifdef ISPC_IS_WINDOWS
|
|
__declspec(align(ALIGNMENT_BYTES))
|
|
#endif
|
|
int lightIndices[MAX_LIGHTS]
|
|
#ifndef ISPC_IS_WINDOWS
|
|
__attribute__ ((aligned(ALIGNMENT_BYTES)))
|
|
#endif
|
|
;
|
|
int numLights = ispc::IntersectLightsWithTileMinMax(
|
|
startX, endX, startY, endY, minZ, maxZ,
|
|
input->header.framebufferWidth, input->header.framebufferHeight,
|
|
input->header.cameraProj[0][0], input->header.cameraProj[1][1],
|
|
MAX_LIGHTS, input->arrays.lightPositionView_x,
|
|
input->arrays.lightPositionView_y, input->arrays.lightPositionView_z,
|
|
input->arrays.lightAttenuationEnd, lightIndices);
|
|
|
|
// Now kick off the recursive process for this tile
|
|
ShadeDynamicTileRecurse(input, level, tileX, tileY, lightIndices,
|
|
numLights, framebuffer);
|
|
}
|
|
|
|
|
|
void
|
|
DispatchDynamicCilk(InputData *input, Framebuffer *framebuffer)
|
|
{
|
|
MinMaxZTreeCilk *minMaxZTree = gMinMaxZTreeCilk;
|
|
|
|
// Update min/max Z tree
|
|
minMaxZTree->Update(input->arrays.zBuffer, input->header.framebufferWidth,
|
|
input->header.cameraProj[2][2], input->header.cameraProj[3][2],
|
|
input->header.cameraNear, input->header.cameraFar);
|
|
|
|
// Launch the "root" tiles. Ideally these should at least fill the
|
|
// machine... at the moment we have a static number of "levels" to the
|
|
// mip tree but it might make sense to compute it based on the width of
|
|
// the machine.
|
|
int rootLevel = minMaxZTree->Levels() - 1;
|
|
int rootTilesX = minMaxZTree->NumTilesX(rootLevel);
|
|
int rootTilesY = minMaxZTree->NumTilesY(rootLevel);
|
|
int rootTiles = rootTilesX * rootTilesY;
|
|
_Cilk_for (int g = 0; g < rootTiles; ++g) {
|
|
uint32_t tileY = g / rootTilesX;
|
|
uint32_t tileX = g % rootTilesX;
|
|
ShadeDynamicTile(input, rootLevel, tileX, tileY, framebuffer);
|
|
}
|
|
}
|
|
|
|
#endif // __cilk
|