Files
ispc/builtins-sse4x2.ll
Matt Pharr a552927a6a Cleanup implementation of target builtins code.
- Renamed stdlib-sse.ll to builtins-sse.ll (etc.) in an attempt to better indicate
the fact that the stuff in those files has a role beyond implementing stuff for
the standard library.
- Moved declarations of the various __pseudo_* functions from being done with LLVM
API calls in builtins.cpp to just straight up declarations in LLVM assembly
language in builtins.m4.  (Much less code to do it this way, and more clear what's
going on.)
2011-08-01 05:58:43 +01:00

759 lines
30 KiB
LLVM

;; Copyright (c) 2010-2011, Intel Corporation
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;;
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;;
;; * Neither the name of Intel Corporation nor the names of its
;; contributors may be used to endorse or promote products derived from
;; this software without specific prior written permission.
;;
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;; This file defines the target for "double-pumped" SSE4, i.e. running
;; with 8-wide vectors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; standard 8-wide definitions from m4 macros
stdlib_core(8)
packed_load_and_store(8)
int64minmax(8)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rcp
declare <4 x float> @llvm.x86.sse.rcp.ps(<4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone
define internal <8 x float> @__rcp_varying_float(<8 x float>) nounwind readonly alwaysinline {
; float iv = __rcp_v(v);
; return iv * (2. - v * iv);
unary4to8(call, float, @llvm.x86.sse.rcp.ps, %0)
; do one N-R iteration
%v_iv = fmul <8 x float> %0, %call
%two_minus = fsub <8 x float> <float 2., float 2., float 2., float 2.,
float 2., float 2., float 2., float 2.>, %v_iv
%iv_mul = fmul <8 x float> %call, %two_minus
ret <8 x float> %iv_mul
}
define internal float @__rcp_uniform_float(float) nounwind readonly alwaysinline {
; uniform float iv = extract(__rcp_u(v), 0);
; return iv * (2. - v * iv);
%vecval = insertelement <4 x float> undef, float %0, i32 0
%call = call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %vecval)
%scall = extractelement <4 x float> %call, i32 0
; do one N-R iteration
%v_iv = fmul float %0, %scall
%two_minus = fsub float 2., %v_iv
%iv_mul = fmul float %scall, %two_minus
ret float %iv_mul
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rsqrt
declare <4 x float> @llvm.x86.sse.rsqrt.ps(<4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone
define internal <8 x float> @__rsqrt_varying_float(<8 x float> %v) nounwind readonly alwaysinline {
; float is = __rsqrt_v(v);
unary4to8(is, float, @llvm.x86.sse.rsqrt.ps, %v)
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul <8 x float> %v, %is
%v_is_is = fmul <8 x float> %v_is, %is
%three_sub = fsub <8 x float> <float 3., float 3., float 3., float 3.,
float 3., float 3., float 3., float 3.>, %v_is_is
%is_mul = fmul <8 x float> %is, %three_sub
%half_scale = fmul <8 x float> <float 0.5, float 0.5, float 0.5, float 0.5,
float 0.5, float 0.5, float 0.5, float 0.5>, %is_mul
ret <8 x float> %half_scale
}
define internal float @__rsqrt_uniform_float(float) nounwind readonly alwaysinline {
; uniform float is = extract(__rsqrt_u(v), 0);
%v = insertelement <4 x float> undef, float %0, i32 0
%vis = call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %v)
%is = extractelement <4 x float> %vis, i32 0
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul float %0, %is
%v_is_is = fmul float %v_is, %is
%three_sub = fsub float 3., %v_is_is
%is_mul = fmul float %is, %three_sub
%half_scale = fmul float 0.5, %is_mul
ret float %half_scale
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; sqrt
declare <4 x float> @llvm.x86.sse.sqrt.ps(<4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone
define internal <8 x float> @__sqrt_varying_float(<8 x float>) nounwind readonly alwaysinline {
unary4to8(call, float, @llvm.x86.sse.sqrt.ps, %0)
ret <8 x float> %call
}
define internal float @__sqrt_uniform_float(float) nounwind readonly alwaysinline {
sse_unary_scalar(ret, 4, float, @llvm.x86.sse.sqrt.ss, %0)
ret float %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; fast math
declare void @llvm.x86.sse.stmxcsr(i8 *) nounwind
declare void @llvm.x86.sse.ldmxcsr(i8 *) nounwind
define internal void @__fastmath() nounwind alwaysinline {
%ptr = alloca i32
%ptr8 = bitcast i32 * %ptr to i8 *
call void @llvm.x86.sse.stmxcsr(i8 * %ptr8)
%oldval = load i32 *%ptr
; turn on DAZ (64)/FTZ (32768) -> 32832
%update = or i32 %oldval, 32832
store i32 %update, i32 *%ptr
call void @llvm.x86.sse.ldmxcsr(i8 * %ptr8)
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; svml stuff
declare <4 x float> @__svml_sinf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_cosf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_sincosf4(<4 x float> *, <4 x float>) nounwind readnone
declare <4 x float> @__svml_tanf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_atanf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_atan2f4(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @__svml_expf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_logf4(<4 x float>) nounwind readnone
declare <4 x float> @__svml_powf4(<4 x float>, <4 x float>) nounwind readnone
define internal <8 x float> @__svml_sin(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_sinf4, %0)
ret <8 x float> %ret
}
define internal <8 x float> @__svml_cos(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_cosf4, %0)
ret <8 x float> %ret
}
define internal void @__svml_sincos(<8 x float>, <8 x float> *,
<8 x float> *) nounwind readnone alwaysinline {
; call svml_sincosf4 two times with the two 4-wide sub-vectors
%a = shufflevector <8 x float> %0, <8 x float> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%b = shufflevector <8 x float> %0, <8 x float> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%cospa = alloca <4 x float>
%sa = call <4 x float> @__svml_sincosf4(<4 x float> * %cospa, <4 x float> %a)
%cospb = alloca <4 x float>
%sb = call <4 x float> @__svml_sincosf4(<4 x float> * %cospb, <4 x float> %b)
%sin = shufflevector <4 x float> %sa, <4 x float> %sb,
<8 x i32> <i32 0, i32 1, i32 2, i32 3,
i32 4, i32 5, i32 6, i32 7>
store <8 x float> %sin, <8 x float> * %1
%cosa = load <4 x float> * %cospa
%cosb = load <4 x float> * %cospb
%cos = shufflevector <4 x float> %cosa, <4 x float> %cosb,
<8 x i32> <i32 0, i32 1, i32 2, i32 3,
i32 4, i32 5, i32 6, i32 7>
store <8 x float> %cos, <8 x float> * %2
ret void
}
define internal <8 x float> @__svml_tan(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_tanf4, %0)
ret <8 x float> %ret
}
define internal <8 x float> @__svml_atan(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_atanf4, %0)
ret <8 x float> %ret
}
define internal <8 x float> @__svml_atan2(<8 x float>,
<8 x float>) nounwind readnone alwaysinline {
binary4to8(ret, float, @__svml_atan2f4, %0, %1)
ret <8 x float> %ret
}
define internal <8 x float> @__svml_exp(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_expf4, %0)
ret <8 x float> %ret
}
define internal <8 x float> @__svml_log(<8 x float>) nounwind readnone alwaysinline {
unary4to8(ret, float, @__svml_logf4, %0)
ret <8 x float> %ret
}
define internal <8 x float> @__svml_pow(<8 x float>,
<8 x float>) nounwind readnone alwaysinline {
binary4to8(ret, float, @__svml_powf4, %0, %1)
ret <8 x float> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; float min/max
declare <4 x float> @llvm.x86.sse.max.ps(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.max.ss(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.min.ps(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.min.ss(<4 x float>, <4 x float>) nounwind readnone
define internal <8 x float> @__max_varying_float(<8 x float>, <8 x float>) nounwind readonly alwaysinline {
binary4to8(call, float, @llvm.x86.sse.max.ps, %0, %1)
ret <8 x float> %call
}
define internal float @__max_uniform_float(float, float) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.max.ss, %0, %1)
ret float %ret
}
define internal <8 x float> @__min_varying_float(<8 x float>, <8 x float>) nounwind readonly alwaysinline {
binary4to8(call, float, @llvm.x86.sse.min.ps, %0, %1)
ret <8 x float> %call
}
define internal float @__min_uniform_float(float, float) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.min.ss, %0, %1)
ret float %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; int32 min/max
declare <4 x i32> @llvm.x86.sse41.pminsd(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.x86.sse41.pmaxsd(<4 x i32>, <4 x i32>) nounwind readnone
define internal <8 x i32> @__min_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
binary4to8(call, i32, @llvm.x86.sse41.pminsd, %0, %1)
ret <8 x i32> %call
}
define internal i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminsd, %0, %1)
ret i32 %ret
}
define internal <8 x i32> @__max_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
binary4to8(call, i32, @llvm.x86.sse41.pmaxsd, %0, %1)
ret <8 x i32> %call
}
define internal i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxsd, %0, %1)
ret i32 %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; unsigned int min/max
declare <4 x i32> @llvm.x86.sse41.pminud(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.x86.sse41.pmaxud(<4 x i32>, <4 x i32>) nounwind readnone
define internal <8 x i32> @__min_varying_uint32(<8 x i32>,
<8 x i32>) nounwind readonly alwaysinline {
binary4to8(call, i32, @llvm.x86.sse41.pminud, %0, %1)
ret <8 x i32> %call
}
define internal i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminud, %0, %1)
ret i32 %ret
}
define internal <8 x i32> @__max_varying_uint32(<8 x i32>,
<8 x i32>) nounwind readonly alwaysinline {
binary4to8(call, i32, @llvm.x86.sse41.pmaxud, %0, %1)
ret <8 x i32> %call
}
define internal i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxud, %0, %1)
ret i32 %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops / reductions
declare i32 @llvm.x86.sse.movmsk.ps(<4 x float>) nounwind readnone
define internal i32 @__movmsk(<8 x i32>) nounwind readnone alwaysinline {
; first do two 4-wide movmsk calls
%floatmask = bitcast <8 x i32> %0 to <8 x float>
%m0 = shufflevector <8 x float> %floatmask, <8 x float> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%v0 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m0) nounwind readnone
%m1 = shufflevector <8 x float> %floatmask, <8 x float> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%v1 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m1) nounwind readnone
; and shift the first one over by 4 before ORing it with the value
; of the second one
%v1s = shl i32 %v1, 4
%v = or i32 %v0, %v1s
ret i32 %v
}
define internal float @__reduce_min_float(<8 x float>) nounwind readnone alwaysinline {
reduce8by4(float, @llvm.x86.sse.min.ps, @__min_uniform_float)
}
define internal float @__reduce_max_float(<8 x float>) nounwind readnone alwaysinline {
reduce8by4(float, @llvm.x86.sse.max.ps, @__max_uniform_float)
}
; helper function for reduce_add_int32
define internal <4 x i32> @__vec4_add_int32(<4 x i32> %v0,
<4 x i32> %v1) nounwind readnone alwaysinline {
%v = add <4 x i32> %v0, %v1
ret <4 x i32> %v
}
; helper function for reduce_add_int32
define internal i32 @__add_int32(i32, i32) nounwind readnone alwaysinline {
%v = add i32 %0, %1
ret i32 %v
}
define internal i32 @__reduce_add_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8by4(i32, @__vec4_add_int32, @__add_int32)
}
define internal i32 @__reduce_min_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8by4(i32, @llvm.x86.sse41.pminsd, @__min_uniform_int32)
}
define internal i32 @__reduce_max_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8by4(i32, @llvm.x86.sse41.pmaxsd, @__max_uniform_int32)
}
define internal i32 @__reduce_add_uint32(<8 x i32> %v) nounwind readnone alwaysinline {
%r = call i32 @__reduce_add_int32(<8 x i32> %v)
ret i32 %r
}
define internal i32 @__reduce_min_uint32(<8 x i32>) nounwind readnone alwaysinline {
reduce8by4(i32, @llvm.x86.sse41.pminud, @__min_uniform_uint32)
}
define internal i32 @__reduce_max_uint32(<8 x i32>) nounwind readnone alwaysinline {
reduce8by4(i32, @llvm.x86.sse41.pmaxud, @__max_uniform_uint32)
}
define internal <4 x double> @__add_varying_double(<4 x double>,
<4 x double>) nounwind readnone alwaysinline {
%r = fadd <4 x double> %0, %1
ret <4 x double> %r
}
define internal double @__add_uniform_double(double, double) nounwind readnone alwaysinline {
%r = fadd double %0, %1
ret double %r
}
define internal double @__reduce_add_double(<8 x double>) nounwind readnone {
reduce8by4(double, @__add_varying_double, @__add_uniform_double)
}
define internal double @__reduce_min_double(<8 x double>) nounwind readnone {
reduce8(double, @__min_varying_double, @__min_uniform_double)
}
define internal double @__reduce_max_double(<8 x double>) nounwind readnone {
reduce8(double, @__max_varying_double, @__max_uniform_double)
}
define internal <4 x i64> @__add_varying_int64(<4 x i64>,
<4 x i64>) nounwind readnone alwaysinline {
%r = add <4 x i64> %0, %1
ret <4 x i64> %r
}
define internal i64 @__add_uniform_int64(i64, i64) nounwind readnone alwaysinline {
%r = add i64 %0, %1
ret i64 %r
}
define internal i64 @__reduce_add_int64(<8 x i64>) nounwind readnone {
reduce8by4(i64, @__add_varying_int64, @__add_uniform_int64)
}
define internal i64 @__reduce_min_int64(<8 x i64>) nounwind readnone {
reduce8(i64, @__min_varying_int64, @__min_uniform_int64)
}
define internal i64 @__reduce_max_int64(<8 x i64>) nounwind readnone {
reduce8(i64, @__max_varying_int64, @__max_uniform_int64)
}
define internal i64 @__reduce_min_uint64(<8 x i64>) nounwind readnone {
reduce8(i64, @__min_varying_uint64, @__min_uniform_uint64)
}
define internal i64 @__reduce_max_uint64(<8 x i64>) nounwind readnone {
reduce8(i64, @__max_varying_uint64, @__max_uniform_uint64)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unaligned loads/loads+broadcasts
load_and_broadcast(8, i8, 8)
load_and_broadcast(8, i16, 16)
load_and_broadcast(8, i32, 32)
load_and_broadcast(8, i64, 64)
load_masked(8, i8, 8, 1)
load_masked(8, i16, 16, 2)
load_masked(8, i32, 32, 4)
load_masked(8, i64, 64, 8)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; gather/scatter
gen_gather(8, i8)
gen_gather(8, i16)
gen_gather(8, i32)
gen_gather(8, i64)
gen_scatter(8, i8)
gen_scatter(8, i16)
gen_scatter(8, i32)
gen_scatter(8, i64)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; float rounding
declare <4 x float> @llvm.x86.sse41.round.ps(<4 x float>, i32) nounwind readnone
declare <4 x float> @llvm.x86.sse41.round.ss(<4 x float>, <4 x float>, i32) nounwind readnone
define internal <8 x float> @__round_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
round4to8(%0, 8)
}
define internal float @__round_uniform_float(float) nounwind readonly alwaysinline {
; roundss, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
; the roundss intrinsic is a total mess--docs say:
;
; __m128 _mm_round_ss (__m128 a, __m128 b, const int c)
;
; b is a 128-bit parameter. The lowest 32 bits are the result of the rounding function
; on b0. The higher order 96 bits are copied directly from input parameter a. The
; return value is described by the following equations:
;
; r0 = RND(b0)
; r1 = a1
; r2 = a2
; r3 = a3
;
; It doesn't matter what we pass as a, since we only need the r0 value
; here. So we pass the same register for both.
%xi = insertelement <4 x float> undef, float %0, i32 0
%xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 8)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
define internal <8 x float> @__floor_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round down 0b01 | don't signal precision exceptions 0b1000 = 9
round4to8(%0, 9)
}
define internal float @__floor_uniform_float(float) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <4 x float> undef, float %0, i32 0
; roundps, round down 0b01 | don't signal precision exceptions 0b1000 = 9
%xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 9)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
define internal <8 x float> @__ceil_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10
round4to8(%0, 10)
}
define internal float @__ceil_uniform_float(float) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <4 x float> undef, float %0, i32 0
; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10
%xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 10)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding doubles
declare <2 x double> @llvm.x86.sse41.round.pd(<2 x double>, i32) nounwind readnone
declare <2 x double> @llvm.x86.sse41.round.sd(<2 x double>, <2 x double>, i32) nounwind readnone
define internal <8 x double> @__round_varying_double(<8 x double>) nounwind readonly alwaysinline {
round2to8double(%0, 8)
}
define internal double @__round_uniform_double(double) nounwind readonly alwaysinline {
%xi = insertelement <2 x double> undef, double %0, i32 0
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 8)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
define internal <8 x double> @__floor_varying_double(<8 x double>) nounwind readonly alwaysinline {
; roundpd, round down 0b01 | don't signal precision exceptions 0b1000 = 9
round2to8double(%0, 9)
}
define internal double @__floor_uniform_double(double) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <2 x double> undef, double %0, i32 0
; roundpd, round down 0b01 | don't signal precision exceptions 0b1000 = 9
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 9)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
define internal <8 x double> @__ceil_varying_double(<8 x double>) nounwind readonly alwaysinline {
; roundpd, round up 0b10 | don't signal precision exceptions 0b1000 = 10
round2to8double(%0, 10)
}
define internal double @__ceil_uniform_double(double) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <2 x double> undef, double %0, i32 0
; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 10)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops / reductions
declare i32 @llvm.ctpop.i32(i32) nounwind readnone
define internal i32 @__popcnt_int32(i32) nounwind readonly alwaysinline {
%call = call i32 @llvm.ctpop.i32(i32 %0)
ret i32 %call
}
declare i64 @llvm.ctpop.i64(i64) nounwind readnone
define internal i64 @__popcnt_int64(i64) nounwind readonly alwaysinline {
%call = call i64 @llvm.ctpop.i64(i64 %0)
ret i64 %call
}
declare <4 x float> @llvm.x86.sse3.hadd.ps(<4 x float>, <4 x float>) nounwind readnone
define internal float @__reduce_add_float(<8 x float>) nounwind readonly alwaysinline {
%a = shufflevector <8 x float> %0, <8 x float> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%b = shufflevector <8 x float> %0, <8 x float> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%ab = fadd <4 x float> %a, %b
%hab = call <4 x float> @llvm.x86.sse3.hadd.ps(<4 x float> %ab, <4 x float> %ab)
%a_scalar = extractelement <4 x float> %hab, i32 0
%b_scalar = extractelement <4 x float> %hab, i32 1
%sum = fadd float %a_scalar, %b_scalar
ret float %sum
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; masked store
gen_masked_store(8, i8, 8)
gen_masked_store(8, i16, 16)
gen_masked_store(8, i32, 32)
gen_masked_store(8, i64, 64)
masked_store_blend_8_16_by_8()
declare <4 x float> @llvm.x86.sse41.blendvps(<4 x float>, <4 x float>,
<4 x float>) nounwind readnone
define void @__masked_store_blend_32(<8 x i32>* nocapture, <8 x i32>,
<8 x i32> %mask) nounwind alwaysinline {
; do two 4-wide blends with blendvps
%mask_as_float = bitcast <8 x i32> %mask to <8 x float>
%mask_a = shufflevector <8 x float> %mask_as_float, <8 x float> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%mask_b = shufflevector <8 x float> %mask_as_float, <8 x float> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%oldValue = load <8 x i32>* %0, align 4
%oldAsFloat = bitcast <8 x i32> %oldValue to <8 x float>
%newAsFloat = bitcast <8 x i32> %1 to <8 x float>
%old_a = shufflevector <8 x float> %oldAsFloat, <8 x float> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%old_b = shufflevector <8 x float> %oldAsFloat, <8 x float> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%new_a = shufflevector <8 x float> %newAsFloat, <8 x float> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%new_b = shufflevector <8 x float> %newAsFloat, <8 x float> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%blend_a = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %old_a, <4 x float> %new_a,
<4 x float> %mask_a)
%blend_b = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %old_b, <4 x float> %new_b,
<4 x float> %mask_b)
%blend = shufflevector <4 x float> %blend_a, <4 x float> %blend_b,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%blendAsInt = bitcast <8 x float> %blend to <8 x i32>
store <8 x i32> %blendAsInt, <8 x i32>* %0, align 4
ret void
}
define void @__masked_store_blend_64(<8 x i64>* nocapture %ptr, <8 x i64> %new,
<8 x i32> %mask) nounwind alwaysinline {
; implement this as 4 blends of <4 x i32>s, which are actually bitcast
; <2 x i64>s...
%mask_as_float = bitcast <8 x i32> %mask to <8 x float>
%old = load <8 x i64>* %ptr, align 8
; set up the first two 64-bit values
%old01 = shufflevector <8 x i64> %old, <8 x i64> undef, <2 x i32> <i32 0, i32 1>
%old01f = bitcast <2 x i64> %old01 to <4 x float>
%new01 = shufflevector <8 x i64> %new, <8 x i64> undef, <2 x i32> <i32 0, i32 1>
%new01f = bitcast <2 x i64> %new01 to <4 x float>
; compute mask--note that the values mask0 and mask1 are doubled-up
%mask01 = shufflevector <8 x float> %mask_as_float, <8 x float> undef,
<4 x i32> <i32 0, i32 0, i32 1, i32 1>
; and blend the two of them values
%result01f = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %old01f,
<4 x float> %new01f,
<4 x float> %mask01)
%result01 = bitcast <4 x float> %result01f to <2 x i64>
; and again
%old23 = shufflevector <8 x i64> %old, <8 x i64> undef, <2 x i32> <i32 2, i32 3>
%old23f = bitcast <2 x i64> %old23 to <4 x float>
%new23 = shufflevector <8 x i64> %new, <8 x i64> undef, <2 x i32> <i32 2, i32 3>
%new23f = bitcast <2 x i64> %new23 to <4 x float>
%mask23 = shufflevector <8 x float> %mask_as_float, <8 x float> undef,
<4 x i32> <i32 2, i32 2, i32 3, i32 3>
%result23f = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %old23f,
<4 x float> %new23f,
<4 x float> %mask23)
%result23 = bitcast <4 x float> %result23f to <2 x i64>
%old45 = shufflevector <8 x i64> %old, <8 x i64> undef, <2 x i32> <i32 4, i32 5>
%old45f = bitcast <2 x i64> %old45 to <4 x float>
%new45 = shufflevector <8 x i64> %new, <8 x i64> undef, <2 x i32> <i32 4, i32 5>
%new45f = bitcast <2 x i64> %new45 to <4 x float>
%mask45 = shufflevector <8 x float> %mask_as_float, <8 x float> undef,
<4 x i32> <i32 4, i32 4, i32 5, i32 5>
%result45f = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %old45f,
<4 x float> %new45f,
<4 x float> %mask45)
%result45 = bitcast <4 x float> %result45f to <2 x i64>
%old67 = shufflevector <8 x i64> %old, <8 x i64> undef, <2 x i32> <i32 6, i32 7>
%old67f = bitcast <2 x i64> %old67 to <4 x float>
%new67 = shufflevector <8 x i64> %new, <8 x i64> undef, <2 x i32> <i32 6, i32 7>
%new67f = bitcast <2 x i64> %new67 to <4 x float>
%mask67 = shufflevector <8 x float> %mask_as_float, <8 x float> undef,
<4 x i32> <i32 6, i32 6, i32 7, i32 7>
%result67f = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %old67f,
<4 x float> %new67f,
<4 x float> %mask67)
%result67 = bitcast <4 x float> %result67f to <2 x i64>
%final0123 = shufflevector <2 x i64> %result01, <2 x i64> %result23,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%final4567 = shufflevector <2 x i64> %result45, <2 x i64> %result67,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%final = shufflevector <4 x i64> %final0123, <4 x i64> %final4567,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
store <8 x i64> %final, <8 x i64> * %ptr, align 8
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision sqrt
declare <2 x double> @llvm.x86.sse2.sqrt.pd(<2 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double>) nounwind readnone
define internal <8 x double> @__sqrt_varying_double(<8 x double>) nounwind alwaysinline {
unary2to8(ret, double, @llvm.x86.sse2.sqrt.pd, %0)
ret <8 x double> %ret
}
define internal double @__sqrt_uniform_double(double) nounwind alwaysinline {
sse_unary_scalar(ret, 2, double, @llvm.x86.sse2.sqrt.pd, %0)
ret double %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision float min/max
declare <2 x double> @llvm.x86.sse2.max.pd(<2 x double>, <2 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.max.sd(<2 x double>, <2 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.min.pd(<2 x double>, <2 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.min.sd(<2 x double>, <2 x double>) nounwind readnone
define internal <8 x double> @__min_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
binary2to8(ret, double, @llvm.x86.sse2.min.pd, %0, %1)
ret <8 x double> %ret
}
define internal double @__min_uniform_double(double, double) nounwind readnone alwaysinline {
sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.min.pd, %0, %1)
ret double %ret
}
define internal <8 x double> @__max_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
binary2to8(ret, double, @llvm.x86.sse2.max.pd, %0, %1)
ret <8 x double> %ret
}
define internal double @__max_uniform_double(double, double) nounwind readnone alwaysinline {
sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.max.pd, %0, %1)
ret double %ret
}