Files
ispc/examples_cuda/deferred/main_cu.cpp
2013-11-13 12:54:52 +01:00

515 lines
17 KiB
C++
Executable File

/*
Copyright (c) 2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef _MSC_VER
#define ISPC_IS_WINDOWS
#define NOMINMAX
#elif defined(__linux__)
#define ISPC_IS_LINUX
#elif defined(__APPLE__)
#define ISPC_IS_APPLE
#endif
#include <fcntl.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <stdint.h>
#include <algorithm>
#include <assert.h>
#include <vector>
#ifdef ISPC_IS_WINDOWS
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include "deferred.h"
#include "kernels_ispc.h"
#include "../timing.h"
#include <sys/time.h>
static inline double rtc(void)
{
struct timeval Tvalue;
double etime;
struct timezone dummy;
gettimeofday(&Tvalue,&dummy);
etime = (double) Tvalue.tv_sec +
1.e-6*((double) Tvalue.tv_usec);
return etime;
}
/******************************/
#include <cassert>
#include <iostream>
#include <cuda.h>
#include "drvapi_error_string.h"
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
// These are the inline versions for all of the SDK helper functions
void __checkCudaErrors(CUresult err, const char *file, const int line) {
if(CUDA_SUCCESS != err) {
std::cerr << "checkCudeErrors() Driver API error = " << err << "\""
<< getCudaDrvErrorString(err) << "\" from file <" << file
<< ", line " << line << "\n";
exit(-1);
}
}
/**********************/
/* Basic CUDriver API */
CUcontext context;
void createContext(const int deviceId = 0)
{
CUdevice device;
int devCount;
checkCudaErrors(cuInit(0));
checkCudaErrors(cuDeviceGetCount(&devCount));
assert(devCount > 0);
checkCudaErrors(cuDeviceGet(&device, deviceId < devCount ? deviceId : 0));
char name[128];
checkCudaErrors(cuDeviceGetName(name, 128, device));
std::cout << "Using CUDA Device [0]: " << name << "\n";
int devMajor, devMinor;
checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
std::cout << "Device Compute Capability: "
<< devMajor << "." << devMinor << "\n";
if (devMajor < 2) {
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
exit(1);
}
// Create driver context
checkCudaErrors(cuCtxCreate(&context, 0, device));
}
void destroyContext()
{
checkCudaErrors(cuCtxDestroy(context));
}
CUmodule loadModule(const char * module)
{
const double t0 = rtc();
CUmodule cudaModule;
// in this branch we use compilation with parameters
#if 0
unsigned int jitNumOptions = 1;
CUjit_option *jitOptions = new CUjit_option[jitNumOptions];
void **jitOptVals = new void*[jitNumOptions];
// set up pointer to set the Maximum # of registers for a particular kernel
jitOptions[0] = CU_JIT_MAX_REGISTERS;
int jitRegCount = 64;
jitOptVals[0] = (void *)(size_t)jitRegCount;
#if 0
{
jitNumOptions = 3;
// set up size of compilation log buffer
jitOptions[0] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
int jitLogBufferSize = 1024;
jitOptVals[0] = (void *)(size_t)jitLogBufferSize;
// set up pointer to the compilation log buffer
jitOptions[1] = CU_JIT_INFO_LOG_BUFFER;
char *jitLogBuffer = new char[jitLogBufferSize];
jitOptVals[1] = jitLogBuffer;
// set up pointer to set the Maximum # of registers for a particular kernel
jitOptions[2] = CU_JIT_MAX_REGISTERS;
int jitRegCount = 32;
jitOptVals[2] = (void *)(size_t)jitRegCount;
}
#endif
checkCudaErrors(cuModuleLoadDataEx(&cudaModule, module,jitNumOptions, jitOptions, (void **)jitOptVals));
#else
CUlinkState CUState;
CUlinkState *lState = &CUState;
const int nOptions = 8;
CUjit_option options[nOptions];
void* optionVals[nOptions];
float walltime;
const unsigned int logSize = 32768;
char error_log[logSize],
info_log[logSize];
void *cuOut;
size_t outSize;
int myErr = 0;
// Setup linker options
// Return walltime from JIT compilation
options[0] = CU_JIT_WALL_TIME;
optionVals[0] = (void*) &walltime;
// Pass a buffer for info messages
options[1] = CU_JIT_INFO_LOG_BUFFER;
optionVals[1] = (void*) info_log;
// Pass the size of the info buffer
options[2] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
optionVals[2] = (void*) logSize;
// Pass a buffer for error message
options[3] = CU_JIT_ERROR_LOG_BUFFER;
optionVals[3] = (void*) error_log;
// Pass the size of the error buffer
options[4] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES;
optionVals[4] = (void*) logSize;
// Make the linker verbose
options[5] = CU_JIT_LOG_VERBOSE;
optionVals[5] = (void*) 1;
// Max # of registers/pthread
options[6] = CU_JIT_MAX_REGISTERS;
int jitRegCount = 48;
optionVals[6] = (void *)(size_t)jitRegCount;
// Caching
options[7] = CU_JIT_CACHE_MODE;
optionVals[7] = (void *)CU_JIT_CACHE_OPTION_CA;
// Create a pending linker invocation
checkCudaErrors(cuLinkCreate(nOptions,options, optionVals, lState));
#if 0
if (sizeof(void *)==4)
{
// Load the PTX from the string myPtx32
printf("Loading myPtx32[] program\n");
// PTX May also be loaded from file, as per below.
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)myPtx32, strlen(myPtx32)+1, 0, 0, 0, 0);
}
else
#endif
{
// Load the PTX from the string myPtx (64-bit)
fprintf(stderr, "Loading ptx..\n");
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)module, strlen(module)+1, 0, 0, 0, 0);
myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_LIBRARY, "libcudadevrt.a", 0,0,0);
// PTX May also be loaded from file, as per below.
// myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_PTX, "myPtx64.ptx",0,0,0);
}
// Complete the linker step
myErr = cuLinkComplete(*lState, &cuOut, &outSize);
if ( myErr != CUDA_SUCCESS )
{
// Errors will be put in error_log, per CU_JIT_ERROR_LOG_BUFFER option above.
fprintf(stderr,"PTX Linker Error:\n%s\n",error_log);
assert(0);
}
// Linker walltime and info_log were requested in options above.
fprintf(stderr, "CUDA Link Completed in %fms [ %g ms]. Linker Output:\n%s\n",walltime,info_log,1e3*(rtc() - t0));
// Load resulting cuBin into module
checkCudaErrors(cuModuleLoadData(&cudaModule, cuOut));
// Destroy the linker invocation
checkCudaErrors(cuLinkDestroy(*lState));
#endif
fprintf(stderr, " loadModule took %g ms \n", 1e3*(rtc() - t0));
return cudaModule;
}
void unloadModule(CUmodule &cudaModule)
{
checkCudaErrors(cuModuleUnload(cudaModule));
}
CUfunction getFunction(CUmodule &cudaModule, const char * function)
{
CUfunction cudaFunction;
checkCudaErrors(cuModuleGetFunction(&cudaFunction, cudaModule, function));
return cudaFunction;
}
CUdeviceptr deviceMalloc(const size_t size)
{
CUdeviceptr d_buf;
checkCudaErrors(cuMemAlloc(&d_buf, size));
return d_buf;
}
void deviceFree(CUdeviceptr d_buf)
{
checkCudaErrors(cuMemFree(d_buf));
}
void memcpyD2H(void * h_buf, CUdeviceptr d_buf, const size_t size)
{
checkCudaErrors(cuMemcpyDtoH(h_buf, d_buf, size));
}
void memcpyH2D(CUdeviceptr d_buf, void * h_buf, const size_t size)
{
checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size));
}
#define deviceLaunch(func,params) \
checkCudaErrors(cuFuncSetCacheConfig((func), CU_FUNC_CACHE_PREFER_L1)); \
checkCudaErrors( \
cuLaunchKernel( \
(func), \
1,1,1, \
32, 1, 1, \
0, NULL, (params), NULL \
));
typedef CUdeviceptr devicePtr;
/**************/
#include <vector>
std::vector<char> readBinary(const char * filename)
{
std::vector<char> buffer;
FILE *fp = fopen(filename, "rb");
if (!fp )
{
fprintf(stderr, "file %s not found\n", filename);
assert(0);
}
#if 0
char c;
while ((c = fgetc(fp)) != EOF)
buffer.push_back(c);
#else
fseek(fp, 0, SEEK_END);
const unsigned long long size = ftell(fp); /*calc the size needed*/
fseek(fp, 0, SEEK_SET);
buffer.resize(size);
if (fp == NULL){ /*ERROR detection if file == empty*/
fprintf(stderr, "Error: There was an Error reading the file %s \n",filename);
exit(1);
}
else if (fread(&buffer[0], sizeof(char), size, fp) != size){ /* if count of read bytes != calculated size of .bin file -> ERROR*/
fprintf(stderr, "Error: There was an Error reading the file %s \n", filename);
exit(1);
}
#endif
fprintf(stderr, " read buffer of size= %d bytes \n", (int)buffer.size());
return buffer;
}
extern "C"
{
double CUDALaunch(
void **handlePtr,
const char * func_name,
void **func_args)
{
const std::vector<char> module_str = readBinary("kernel.ptx");
const char * module = &module_str[0];
CUmodule cudaModule = loadModule(module);
CUfunction cudaFunction = getFunction(cudaModule, func_name);
const double t0 = rtc();
deviceLaunch(cudaFunction, func_args);
checkCudaErrors(cuStreamSynchronize(0));
const double dt = rtc() - t0;
unloadModule(cudaModule);
return dt;
}
}
/******************************/
///////////////////////////////////////////////////////////////////////////
int main(int argc, char** argv) {
if (argc != 2) {
printf("usage: deferred_shading <input_file (e.g. data/pp1280x720.bin)>\n");
return 1;
}
InputData *input = CreateInputDataFromFile(argv[1]);
if (!input) {
printf("Failed to load input file \"%s\"!\n", argv[1]);
return 1;
}
Framebuffer framebuffer(input->header.framebufferWidth,
input->header.framebufferHeight);
// InitDynamicC(input);
#if 0
#ifdef __cilk
InitDynamicCilk(input);
#endif // __cilk
#endif
/*******************/
createContext();
/*******************/
devicePtr d_header = deviceMalloc(sizeof(ispc::InputHeader));
devicePtr d_arrays = deviceMalloc(sizeof(ispc::InputDataArrays));
const int buffsize = input->header.framebufferWidth*input->header.framebufferHeight;
devicePtr d_r = deviceMalloc(buffsize);
devicePtr d_g = deviceMalloc(buffsize);
devicePtr d_b = deviceMalloc(buffsize);
for (int i = 0; i < buffsize; i++)
framebuffer.r[i] = framebuffer.g[i] = framebuffer.b[i] = 0;
ispc::InputDataArrays dh_arrays;
{
devicePtr d_chunk = deviceMalloc(input->header.inputDataChunkSize);
memcpyH2D(d_chunk, input->chunk, input->header.inputDataChunkSize);
dh_arrays.zBuffer = (float*)(d_chunk + input->header.inputDataArrayOffsets[idaZBuffer]);
dh_arrays.normalEncoded_x =
(uint16_t *)(d_chunk+input->header.inputDataArrayOffsets[idaNormalEncoded_x]);
fprintf(stderr, "%p %p \n",
dh_arrays.zBuffer, dh_arrays.normalEncoded_x);
fprintf(stderr, " diff= %d %d \n",
input->header.inputDataArrayOffsets[idaZBuffer],
input->header.inputDataArrayOffsets[idaNormalEncoded_x]);
dh_arrays.normalEncoded_y =
(uint16_t *)(d_chunk+input->header.inputDataArrayOffsets[idaNormalEncoded_y]);
dh_arrays.specularAmount =
(uint16_t *)(d_chunk+input->header.inputDataArrayOffsets[idaSpecularAmount]);
dh_arrays.specularPower =
(uint16_t *)(d_chunk+input->header.inputDataArrayOffsets[idaSpecularPower]);
dh_arrays.albedo_x =
(uint8_t *)(d_chunk+input->header.inputDataArrayOffsets[idaAlbedo_x]);
dh_arrays.albedo_y =
(uint8_t *)(d_chunk+input->header.inputDataArrayOffsets[idaAlbedo_y]);
dh_arrays.albedo_z =
(uint8_t *)(d_chunk+input->header.inputDataArrayOffsets[idaAlbedo_z]);
dh_arrays.lightPositionView_x =
(float *)(d_chunk+input->header.inputDataArrayOffsets[idaLightPositionView_x]);
dh_arrays.lightPositionView_y =
(float *)(d_chunk+input->header.inputDataArrayOffsets[idaLightPositionView_y]);
dh_arrays.lightPositionView_z =
(float *)(d_chunk+input->header.inputDataArrayOffsets[idaLightPositionView_z]);
dh_arrays.lightAttenuationBegin =
(float *)(d_chunk+input->header.inputDataArrayOffsets[idaLightAttenuationBegin]);
dh_arrays.lightColor_x =
(float *)(d_chunk+input->header.inputDataArrayOffsets[idaLightColor_x]);
dh_arrays.lightColor_y =
(float *)(d_chunk+input->header.inputDataArrayOffsets[idaLightColor_y]);
dh_arrays.lightColor_z =
(float *)(d_chunk+input->header.inputDataArrayOffsets[idaLightColor_z]);
dh_arrays.lightAttenuationEnd =
(float *)(d_chunk+input->header.inputDataArrayOffsets[idaLightAttenuationEnd]);
}
memcpyH2D(d_header, &input->header, sizeof(ispc::InputHeader));
memcpyH2D(d_arrays, &dh_arrays, sizeof(ispc::InputDataArrays));
memcpyH2D(d_r, framebuffer.r, buffsize);
memcpyH2D(d_g, framebuffer.g, buffsize);
memcpyH2D(d_b, framebuffer.b, buffsize);
int nframes = 5;
double ispcCycles = 1e30;
for (int i = 0; i < 5; ++i) {
framebuffer.clear();
const double t0 = rtc();
double dt = 0.0;
for (int j = 0; j < nframes; ++j)
{
const char * func_name = "RenderStatic";
int light_count = VISUALIZE_LIGHT_COUNT;
void *func_args[] = {
&d_header,
&d_arrays,
&light_count,
&d_r,
&d_g,
&d_b};
dt += CUDALaunch(NULL, func_name, func_args);
}
//double mcycles = 1000*(rtc() - t0) / nframes;
double mcycles = 1000*dt / nframes;
fprintf(stderr, "dt= %g\n", mcycles);
ispcCycles = std::min(ispcCycles, mcycles);
}
memcpyD2H(framebuffer.r, d_r, buffsize);
memcpyD2H(framebuffer.g, d_g, buffsize);
memcpyD2H(framebuffer.b, d_b, buffsize);
printf("[ispc cuda]:\t\t[%.3f] million cycles to render "
"%d x %d image\n", ispcCycles,
input->header.framebufferWidth, input->header.framebufferHeight);
WriteFrame("deferred-cuda.ppm", input, framebuffer);
/*******************/
destroyContext();
/*******************/
return 0;
#if 0
#ifdef __cilk
double dynamicCilkCycles = 1e30;
for (int i = 0; i < 5; ++i) {
framebuffer.clear();
reset_and_start_timer();
for (int j = 0; j < nframes; ++j)
DispatchDynamicCilk(input, &framebuffer);
double mcycles = get_elapsed_mcycles() / nframes;
dynamicCilkCycles = std::min(dynamicCilkCycles, mcycles);
}
printf("[ispc + Cilk dynamic]:\t\t[%.3f] million cycles to render image\n",
dynamicCilkCycles);
WriteFrame("deferred-ispc-dynamic.ppm", input, framebuffer);
#endif // __cilk
double serialCycles = 1e30;
for (int i = 0; i < 5; ++i) {
framebuffer.clear();
reset_and_start_timer();
for (int j = 0; j < nframes; ++j)
DispatchDynamicC(input, &framebuffer);
double mcycles = get_elapsed_mcycles() / nframes;
serialCycles = std::min(serialCycles, mcycles);
}
printf("[C++ serial dynamic, 1 core]:\t[%.3f] million cycles to render image\n",
serialCycles);
WriteFrame("deferred-serial-dynamic.ppm", input, framebuffer);
#ifdef __cilk
printf("\t\t\t\t(%.2fx speedup from static ISPC, %.2fx from Cilk+ISPC)\n",
serialCycles/ispcCycles, serialCycles/dynamicCilkCycles);
#else
printf("\t\t\t\t(%.2fx speedup from ISPC + tasks)\n", serialCycles/ispcCycles);
#endif // __cilk
#endif
DeleteInputData(input);
return 0;
}