1654 lines
58 KiB
C++
1654 lines
58 KiB
C++
// -*- mode: c++ -*-
|
|
/*
|
|
Copyright (c) 2010-2011, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
* Neither the name of Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/** @file stdlib.ispc
|
|
|
|
@brief Portion of the ispc standard library implementation that's in
|
|
ispc code
|
|
*/
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Low level primitives
|
|
|
|
static inline float floatbits(unsigned int a) {
|
|
return __floatbits_varying_int32(a);
|
|
}
|
|
|
|
static inline uniform float floatbits(uniform unsigned int a) {
|
|
return __floatbits_uniform_int32(a);
|
|
}
|
|
|
|
static inline float floatbits(int a) {
|
|
return __floatbits_varying_int32(a);
|
|
}
|
|
|
|
static inline uniform float floatbits(uniform int a) {
|
|
return __floatbits_uniform_int32(a);
|
|
}
|
|
|
|
static inline double doublebits(unsigned int64 a) {
|
|
return __doublebits_varying_int64(a);
|
|
}
|
|
|
|
static inline uniform double doublebits(uniform unsigned int64 a) {
|
|
return __doublebits_uniform_int64(a);
|
|
}
|
|
|
|
static inline unsigned int intbits(float a) {
|
|
return __intbits_varying_float(a);
|
|
}
|
|
|
|
static inline uniform unsigned int intbits(uniform float a) {
|
|
return __intbits_uniform_float(a);
|
|
}
|
|
|
|
static inline unsigned int64 intbits(double d) {
|
|
return __intbits_varying_double(d);
|
|
}
|
|
|
|
static inline uniform unsigned int64 intbits(uniform double d) {
|
|
return __intbits_uniform_double(d);
|
|
}
|
|
|
|
static inline float broadcast(float v, uniform int i) {
|
|
return __broadcast_float(v, i);
|
|
}
|
|
|
|
static inline int32 broadcast(int32 v, uniform int i) {
|
|
return __broadcast_int32(v, i);
|
|
}
|
|
|
|
static inline double broadcast(double v, uniform int i) {
|
|
return __broadcast_double(v, i);
|
|
}
|
|
|
|
static inline int64 broadcast(int64 v, uniform int i) {
|
|
return __broadcast_int64(v, i);
|
|
}
|
|
|
|
static inline float rotate(float v, uniform int i) {
|
|
return __rotate_float(v, i);
|
|
}
|
|
|
|
static inline int32 rotate(int32 v, uniform int i) {
|
|
return __rotate_int32(v, i);
|
|
}
|
|
|
|
static inline double rotate(double v, uniform int i) {
|
|
return __rotate_double(v, i);
|
|
}
|
|
|
|
static inline int64 rotate(int64 v, uniform int i) {
|
|
return __rotate_int64(v, i);
|
|
}
|
|
|
|
static inline float shuffle(float v, int i) {
|
|
return __shuffle_float(v, i);
|
|
}
|
|
|
|
static inline int32 shuffle(int32 v, int i) {
|
|
return __shuffle_int32(v, i);
|
|
}
|
|
|
|
static inline double shuffle(double v, int i) {
|
|
return __shuffle_double(v, i);
|
|
}
|
|
|
|
static inline int64 shuffle(int64 v, int i) {
|
|
return __shuffle_int64(v, i);
|
|
}
|
|
|
|
// x[i]
|
|
static inline uniform float extract(float x, uniform int i) {
|
|
return __extract(x, i);
|
|
}
|
|
|
|
// x[i] = v
|
|
static inline float insert(float x, uniform int i, uniform float v) {
|
|
return __insert(x, i, v);
|
|
}
|
|
|
|
static inline uniform int extract(int x, uniform int i) {
|
|
return intbits(extract(floatbits(x), i));
|
|
}
|
|
|
|
static inline int insert(int x, uniform int i, uniform int v) {
|
|
return intbits(insert(floatbits(x), i, floatbits(v)));
|
|
}
|
|
|
|
static inline uniform unsigned int extract(unsigned int x, uniform int i) {
|
|
return intbits(extract(floatbits(x), i));
|
|
}
|
|
|
|
static inline unsigned int insert(unsigned int x, uniform int i, uniform unsigned int v) {
|
|
return intbits(insert(floatbits(x), i, floatbits(v)));
|
|
}
|
|
|
|
static inline uniform bool any(bool v) {
|
|
// We only care about whether "any" is true for the active program instances,
|
|
// so we have to make v with the current program mask.
|
|
return __movmsk(v & __mask) != 0;
|
|
}
|
|
|
|
static inline uniform bool all(bool v) {
|
|
// As with any(), we need to explicitly mask v with the current program mask
|
|
// so we're only looking at the current lanes
|
|
bool match = ((v & __mask) == __mask);
|
|
return __movmsk(match) == (1 << programCount) - 1;
|
|
}
|
|
|
|
static inline uniform int popcnt(uniform int v) {
|
|
return __popcnt(v);
|
|
}
|
|
|
|
static inline int popcnt(int v) {
|
|
int r;
|
|
uniform int i;
|
|
for (i = 0; i < programCount; ++i)
|
|
r = insert(r, i, popcnt(extract(v, i)));
|
|
return (r & __mask);
|
|
}
|
|
|
|
static inline uniform int popcnt(bool v) {
|
|
// As with any() and all(), only count across the active lanes
|
|
return __popcnt(__movmsk(v & __mask));
|
|
}
|
|
|
|
static inline uniform int lanemask() {
|
|
return __movmsk(__mask);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Horizontal ops / reductions
|
|
|
|
static inline uniform float reduce_add(float x) {
|
|
// zero the lanes where the mask is off
|
|
return __reduce_add_float(__mask ? x : 0.);
|
|
}
|
|
|
|
|
|
static inline uniform float reduce_min(float v) {
|
|
// For the lanes where the mask is off, replace the given value with
|
|
// infinity, so that it doesn't affect the result.
|
|
int iflt_max = 0x7f800000; // infinity
|
|
// Must use __floatbits_varying_int32, not floatbits(), since with the
|
|
// latter the current mask enters into the returned result...
|
|
return __reduce_min_float(__mask ? v : __floatbits_varying_int32(iflt_max));
|
|
}
|
|
|
|
static inline uniform float reduce_max(float v) {
|
|
// For the lanes where the mask is off, replace the given value with
|
|
// negative infinity, so that it doesn't affect the result.
|
|
const uniform int iflt_neg_max = 0xff800000; // -infinity
|
|
// Must use __floatbits_varying_int32, not floatbits(), since with the
|
|
// latter the current mask enters into the returned result...
|
|
return __reduce_max_float(__mask ? v : __floatbits_varying_int32(iflt_neg_max));
|
|
}
|
|
|
|
static inline uniform int reduce_add(int x) {
|
|
// Zero out the values for lanes that aren't running
|
|
return __reduce_add_int32(x & (int)__mask);
|
|
}
|
|
|
|
static inline uniform int reduce_min(int v) {
|
|
// Set values for non-running lanes to the maximum integer value so
|
|
// they don't affect the result.
|
|
int int_max = 0x7fffffff;
|
|
return __reduce_min_int32(__mask ? v : int_max);
|
|
}
|
|
|
|
static inline uniform int reduce_max(int v) {
|
|
// Set values for non-running lanes to the minimum integer value so
|
|
// they don't affect the result.
|
|
int int_min = 0x80000000;
|
|
return __reduce_max_int32(__mask ? v : int_min);
|
|
}
|
|
|
|
static inline uniform unsigned int reduce_add(unsigned int x) {
|
|
// Set values for non-running lanes to zero so they don't affect the
|
|
// result.
|
|
return __reduce_add_uint32(x & (int)__mask);
|
|
}
|
|
|
|
static inline uniform unsigned int reduce_min(unsigned int v) {
|
|
// Set values for non-running lanes to the maximum unsigned integer
|
|
// value so they don't affect the result.
|
|
unsigned int uint_max = 0xffffffff;
|
|
return __reduce_min_uint32(__mask ? v : uint_max);
|
|
}
|
|
|
|
static inline uniform unsigned int reduce_max(unsigned int v) {
|
|
// Set values for non-running lanes to zero so they don't affect the
|
|
// result.
|
|
return __reduce_max_uint32(__mask ? v : 0);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// packed load, store
|
|
|
|
static inline uniform unsigned int packed_load_active(uniform int a[], uniform int start,
|
|
reference int vals) {
|
|
return __packed_load_active(a, start, vals, __mask);
|
|
}
|
|
|
|
static inline uniform unsigned int packed_store_active(uniform int a[], uniform int start,
|
|
int vals) {
|
|
return __packed_store_active(a, start, vals, __mask);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Load/store from/to 8/16-bit types
|
|
|
|
static inline unsigned int load_from_int8(uniform int a[], uniform int offset) {
|
|
return __load_uint8(a, offset);
|
|
}
|
|
|
|
static inline void store_to_int8(uniform int a[], uniform int offset,
|
|
unsigned int val) {
|
|
__store_uint8(a, offset, val, __mask);
|
|
}
|
|
|
|
static inline unsigned int load_from_int16(uniform int a[], uniform int offset) {
|
|
return __load_uint16(a, offset);
|
|
}
|
|
|
|
static inline void store_to_int16(uniform int a[], uniform int offset,
|
|
unsigned int val) {
|
|
__store_uint16(a, offset, val, __mask);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Math
|
|
|
|
static inline float abs(float a) {
|
|
// Floating-point hack: zeroing the high bit clears the sign
|
|
unsigned int i = intbits(a);
|
|
i &= 0x7fffffff;
|
|
return floatbits(i);
|
|
}
|
|
|
|
static inline uniform float abs(uniform float a) {
|
|
uniform unsigned int i = intbits(a);
|
|
i &= 0x7fffffff;
|
|
return floatbits(i);
|
|
}
|
|
|
|
static inline unsigned int signbits(float x) {
|
|
unsigned int i = intbits(x);
|
|
return (i & 0x80000000u);
|
|
}
|
|
|
|
static inline uniform unsigned int signbits(uniform float x) {
|
|
uniform unsigned int i = intbits(x);
|
|
return (i & 0x80000000u);
|
|
}
|
|
|
|
static inline float round(float x) {
|
|
return __round_varying_float(x);
|
|
}
|
|
|
|
static inline uniform float round(uniform float x) {
|
|
return __round_uniform_float(x);
|
|
}
|
|
|
|
static inline float floor(float x) {
|
|
return __floor_varying_float(x);
|
|
}
|
|
|
|
static inline uniform float floor(uniform float x) {
|
|
return __floor_uniform_float(x);
|
|
}
|
|
|
|
static inline float ceil(float x) {
|
|
return __ceil_varying_float(x);
|
|
}
|
|
|
|
static inline uniform float ceil(uniform float x) {
|
|
return __ceil_uniform_float(x);
|
|
}
|
|
|
|
static inline float rcp(float v) {
|
|
return __rcp_varying_float(v);
|
|
}
|
|
|
|
static inline uniform float rcp(uniform float v) {
|
|
return __rcp_uniform_float(v);
|
|
}
|
|
|
|
static inline float sqrt(float v) {
|
|
return __sqrt_varying_float(v);
|
|
}
|
|
|
|
static inline uniform float sqrt(uniform float v) {
|
|
return __sqrt_uniform_float(v);
|
|
}
|
|
|
|
static inline float min(float a, float b) {
|
|
return __min_varying_float(a, b);
|
|
}
|
|
|
|
static inline uniform float min(uniform float a, uniform float b) {
|
|
return __min_uniform_float(a, b);
|
|
}
|
|
|
|
static inline float max(float a, float b) {
|
|
return __max_varying_float(a, b);
|
|
}
|
|
|
|
static inline uniform float max(uniform float a, uniform float b) {
|
|
return __max_uniform_float(a, b);
|
|
}
|
|
|
|
static inline unsigned int min(unsigned int a, unsigned int b) {
|
|
return __min_varying_uint32(a, b);
|
|
}
|
|
|
|
static inline uniform unsigned int min(uniform unsigned int a, uniform unsigned int b) {
|
|
return __min_uniform_uint32(a, b);
|
|
}
|
|
|
|
static inline unsigned int max(unsigned int a, unsigned int b) {
|
|
return __max_varying_uint32(a, b);
|
|
}
|
|
|
|
static inline uniform unsigned int max(uniform unsigned int a, uniform unsigned int b) {
|
|
return __max_uniform_uint32(a, b);
|
|
}
|
|
|
|
static inline int min(int a, int b) {
|
|
return __min_varying_int32(a, b);
|
|
}
|
|
|
|
static inline uniform int min(uniform int a, uniform int b) {
|
|
return __min_uniform_int32(a, b);
|
|
}
|
|
|
|
static inline int max(int a, int b) {
|
|
return __max_varying_int32(a, b);
|
|
}
|
|
|
|
static inline uniform int max(uniform int a, uniform int b) {
|
|
return __max_uniform_int32(a, b);
|
|
}
|
|
|
|
static inline float clamp(float v, float low, float high) {
|
|
return min(max(v, low), high);
|
|
}
|
|
|
|
static inline uniform float clamp(uniform float v, uniform float low, uniform float high) {
|
|
return min(max(v, low), high);
|
|
}
|
|
|
|
static inline unsigned int clamp(unsigned int v, unsigned int low, unsigned int high) {
|
|
return min(max(v, low), high);
|
|
}
|
|
|
|
static inline uniform unsigned int clamp(uniform unsigned int v, uniform unsigned int low,
|
|
uniform unsigned int high) {
|
|
return min(max(v, low), high);
|
|
}
|
|
|
|
static inline int clamp(int v, int low, int high) {
|
|
return min(max(v, low), high);
|
|
}
|
|
|
|
static inline uniform int clamp(uniform int v, uniform int low, uniform int high) {
|
|
return min(max(v, low), high);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Transcendentals
|
|
|
|
static inline float rsqrt(float v) {
|
|
return __rsqrt_varying_float(v);
|
|
}
|
|
|
|
static inline uniform float rsqrt(uniform float v) {
|
|
return __rsqrt_uniform_float(v);
|
|
}
|
|
|
|
static inline float ldexp(float x, int n) {
|
|
unsigned int ex = 0x7F800000u;
|
|
unsigned int ix = intbits(x);
|
|
ex &= ix; // extract old exponent;
|
|
ix = ix & ~0x7F800000u; // clear exponent
|
|
n = (n << 23) + ex;
|
|
ix |= n; // insert new exponent
|
|
return floatbits(ix);
|
|
}
|
|
|
|
static inline uniform float ldexp(uniform float x, uniform int n) {
|
|
uniform unsigned int ex = 0x7F800000u;
|
|
uniform unsigned int ix = intbits(x);
|
|
ex &= ix; // extract old exponent;
|
|
ix = ix & ~0x7F800000u; // clear exponent
|
|
n = (n << 23) + ex;
|
|
ix |= n; // insert new exponent
|
|
return floatbits(ix);
|
|
}
|
|
|
|
static inline float frexp(float x, reference int pw2) {
|
|
unsigned int ex = 0x7F800000u; // exponent mask
|
|
unsigned int ix = intbits(x);
|
|
ex &= ix;
|
|
ix &= ~0x7F800000u; // clear exponent
|
|
pw2 = (int)(ex >> 23) - 126; // compute exponent
|
|
ix |= 0x3F000000u; // insert exponent +1 in x
|
|
return floatbits(ix);
|
|
}
|
|
|
|
static inline uniform float frexp(uniform float x, reference uniform int pw2) {
|
|
uniform unsigned int ex = 0x7F800000u; // exponent mask
|
|
uniform unsigned int ix = intbits(x);
|
|
ex &= ix;
|
|
ix &= ~0x7F800000u; // clear exponent
|
|
pw2 = (uniform int)(ex >> 23) - 126; // compute exponent
|
|
ix |= 0x3F000000u; // insert exponent +1 in x
|
|
return floatbits(ix);
|
|
}
|
|
|
|
// Most of the transcendental implementations in ispc code here come from
|
|
// Solomon Boulos's "syrah": https://github.com/boulos/syrah/
|
|
|
|
static inline float sin(float x_full) {
|
|
if (__math_lib == __math_lib_svml) {
|
|
return __svml_sin(x_full);
|
|
}
|
|
else if (__math_lib == __math_lib_system) {
|
|
float ret;
|
|
uniform int mask = lanemask();
|
|
for (uniform int i = 0; i < programCount; ++i) {
|
|
if ((mask & (1 << i)) == 0)
|
|
continue;
|
|
uniform float r = __stdlib_sin(extract(x_full, i));
|
|
ret = insert(ret, i, r);
|
|
}
|
|
return ret;
|
|
}
|
|
else if (__math_lib == __math_lib_ispc ||
|
|
__math_lib == __math_lib_ispc_fast) {
|
|
static const float pi_over_two_vec = 1.57079637050628662109375;
|
|
static const float two_over_pi_vec = 0.636619746685028076171875;
|
|
float scaled = x_full * two_over_pi_vec;
|
|
float k_real = floor(scaled);
|
|
int k = (int)k_real;
|
|
|
|
// Reduced range version of x
|
|
float x = x_full - k_real * pi_over_two_vec;
|
|
int k_mod4 = k & 3;
|
|
bool sin_usecos = (k_mod4 == 1 || k_mod4 == 3);
|
|
bool flip_sign = (k_mod4 > 1);
|
|
|
|
// These coefficients are from sollya with fpminimax(sin(x)/x, [|0, 2,
|
|
// 4, 6, 8, 10|], [|single...|], [0;Pi/2]);
|
|
static const float sin_c2 = -0.16666667163372039794921875;
|
|
static const float sin_c4 = 8.333347737789154052734375e-3;
|
|
static const float sin_c6 = -1.9842604524455964565277099609375e-4;
|
|
static const float sin_c8 = 2.760012648650445044040679931640625e-6;
|
|
static const float sin_c10 = -2.50293279435709337121807038784027099609375e-8;
|
|
|
|
static const float cos_c2 = -0.5;
|
|
static const float cos_c4 = 4.166664183139801025390625e-2;
|
|
static const float cos_c6 = -1.388833043165504932403564453125e-3;
|
|
static const float cos_c8 = 2.47562347794882953166961669921875e-5;
|
|
static const float cos_c10 = -2.59630184018533327616751194000244140625e-7;
|
|
|
|
float outside = sin_usecos ? 1 : x;
|
|
float c2 = sin_usecos ? cos_c2 : sin_c2;
|
|
float c4 = sin_usecos ? cos_c4 : sin_c4;
|
|
float c6 = sin_usecos ? cos_c6 : sin_c6;
|
|
float c8 = sin_usecos ? cos_c8 : sin_c8;
|
|
float c10 = sin_usecos ? cos_c10 : sin_c10;
|
|
|
|
float x2 = x * x;
|
|
float formula = x2 * c10 + c8;
|
|
formula = x2 * formula + c6;
|
|
formula = x2 * formula + c4;
|
|
formula = x2 * formula + c2;
|
|
formula = x2 * formula + 1;
|
|
formula *= outside;
|
|
|
|
formula = flip_sign ? -formula : formula;
|
|
return formula;
|
|
}
|
|
}
|
|
|
|
|
|
static inline uniform float sin(uniform float x_full) {
|
|
if (__math_lib == __math_lib_system ||
|
|
__math_lib == __math_lib_svml) {
|
|
return __stdlib_sin(x_full);
|
|
}
|
|
else if (__math_lib == __math_lib_ispc ||
|
|
__math_lib == __math_lib_ispc_fast) {
|
|
static const uniform float pi_over_two_vec = 1.57079637050628662109375;
|
|
static const uniform float two_over_pi_vec = 0.636619746685028076171875;
|
|
uniform float scaled = x_full * two_over_pi_vec;
|
|
uniform float k_real = floor(scaled);
|
|
uniform int k = (int)k_real;
|
|
|
|
// Reduced range version of x
|
|
uniform float x = x_full - k_real * pi_over_two_vec;
|
|
uniform int k_mod4 = k & 3;
|
|
uniform bool sin_usecos = (k_mod4 == 1 || k_mod4 == 3);
|
|
uniform bool flip_sign = (k_mod4 > 1);
|
|
|
|
// These coefficients are from sollya with fpminimax(sin(x)/x, [|0, 2,
|
|
// 4, 6, 8, 10|], [|single...|], [0;Pi/2]);
|
|
static const uniform float sin_c2 = -0.16666667163372039794921875;
|
|
static const uniform float sin_c4 = 8.333347737789154052734375e-3;
|
|
static const uniform float sin_c6 = -1.9842604524455964565277099609375e-4;
|
|
static const uniform float sin_c8 = 2.760012648650445044040679931640625e-6;
|
|
static const uniform float sin_c10 = -2.50293279435709337121807038784027099609375e-8;
|
|
|
|
static const uniform float cos_c2 = -0.5;
|
|
static const uniform float cos_c4 = 4.166664183139801025390625e-2;
|
|
static const uniform float cos_c6 = -1.388833043165504932403564453125e-3;
|
|
static const uniform float cos_c8 = 2.47562347794882953166961669921875e-5;
|
|
static const uniform float cos_c10 = -2.59630184018533327616751194000244140625e-7;
|
|
|
|
uniform float outside, c2, c4, c6, c8, c10;
|
|
if (sin_usecos) {
|
|
outside = 1.;
|
|
c2 = cos_c2;
|
|
c4 = cos_c4;
|
|
c6 = cos_c6;
|
|
c8 = cos_c8;
|
|
c10 = cos_c10;
|
|
}
|
|
else {
|
|
outside = x;
|
|
c2 = sin_c2;
|
|
c4 = sin_c4;
|
|
c6 = sin_c6;
|
|
c8 = sin_c8;
|
|
c10 = sin_c10;
|
|
}
|
|
|
|
uniform float x2 = x * x;
|
|
uniform float formula = x2 * c10 + c8;
|
|
formula = x2 * formula + c6;
|
|
formula = x2 * formula + c4;
|
|
formula = x2 * formula + c2;
|
|
formula = x2 * formula + 1.;
|
|
formula *= outside;
|
|
|
|
formula = flip_sign ? -formula : formula;
|
|
return formula;
|
|
}
|
|
}
|
|
|
|
|
|
static inline float cos(float x_full) {
|
|
if (__math_lib == __math_lib_svml) {
|
|
return __svml_cos(x_full);
|
|
}
|
|
else if (__math_lib == __math_lib_system) {
|
|
float ret;
|
|
uniform int mask = lanemask();
|
|
for (uniform int i = 0; i < programCount; ++i) {
|
|
if ((mask & (1 << i)) == 0)
|
|
continue;
|
|
uniform float r = __stdlib_cos(extract(x_full, i));
|
|
ret = insert(ret, i, r);
|
|
}
|
|
return ret;
|
|
}
|
|
else if (__math_lib == __math_lib_ispc ||
|
|
__math_lib == __math_lib_ispc_fast) {
|
|
static const float pi_over_two_vec = 1.57079637050628662109375;
|
|
static const float two_over_pi_vec = 0.636619746685028076171875;
|
|
float scaled = x_full * two_over_pi_vec;
|
|
float k_real = floor(scaled);
|
|
int k = (int)k_real;
|
|
|
|
// Reduced range version of x
|
|
float x = x_full - k_real * pi_over_two_vec;
|
|
|
|
int k_mod4 = k & 3;
|
|
bool cos_usecos = (k_mod4 == 0 || k_mod4 == 2);
|
|
bool flip_sign = (k_mod4 == 1 || k_mod4 == 2);
|
|
|
|
const float sin_c2 = -0.16666667163372039794921875;
|
|
const float sin_c4 = 8.333347737789154052734375e-3;
|
|
const float sin_c6 = -1.9842604524455964565277099609375e-4;
|
|
const float sin_c8 = 2.760012648650445044040679931640625e-6;
|
|
const float sin_c10 = -2.50293279435709337121807038784027099609375e-8;
|
|
|
|
const float cos_c2 = -0.5;
|
|
const float cos_c4 = 4.166664183139801025390625e-2;
|
|
const float cos_c6 = -1.388833043165504932403564453125e-3;
|
|
const float cos_c8 = 2.47562347794882953166961669921875e-5;
|
|
const float cos_c10 = -2.59630184018533327616751194000244140625e-7;
|
|
|
|
float outside = cos_usecos ? 1. : x;
|
|
float c2 = cos_usecos ? cos_c2 : sin_c2;
|
|
float c4 = cos_usecos ? cos_c4 : sin_c4;
|
|
float c6 = cos_usecos ? cos_c6 : sin_c6;
|
|
float c8 = cos_usecos ? cos_c8 : sin_c8;
|
|
float c10 = cos_usecos ? cos_c10 : sin_c10;
|
|
|
|
float x2 = x * x;
|
|
float formula = x2 * c10 + c8;
|
|
formula = x2 * formula + c6;
|
|
formula = x2 * formula + c4;
|
|
formula = x2 * formula + c2;
|
|
formula = x2 * formula + 1.;
|
|
formula *= outside;
|
|
|
|
formula = flip_sign ? -formula : formula;
|
|
return formula;
|
|
}
|
|
}
|
|
|
|
|
|
static inline uniform float cos(uniform float x_full) {
|
|
if (__math_lib == __math_lib_system ||
|
|
__math_lib == __math_lib_svml) {
|
|
return __stdlib_cos(x_full);
|
|
}
|
|
else if (__math_lib == __math_lib_ispc ||
|
|
__math_lib == __math_lib_ispc_fast) {
|
|
static const uniform float pi_over_two_vec = 1.57079637050628662109375;
|
|
static const uniform float two_over_pi_vec = 0.636619746685028076171875;
|
|
uniform float scaled = x_full * two_over_pi_vec;
|
|
uniform float k_real = floor(scaled);
|
|
uniform int k = (int)k_real;
|
|
|
|
// Reduced range version of x
|
|
uniform float x = x_full - k_real * pi_over_two_vec;
|
|
|
|
uniform int k_mod4 = k & 3;
|
|
uniform bool cos_usecos = (k_mod4 == 0 || k_mod4 == 2);
|
|
uniform bool flip_sign = (k_mod4 == 1 || k_mod4 == 2);
|
|
|
|
const uniform float sin_c2 = -0.16666667163372039794921875;
|
|
const uniform float sin_c4 = 8.333347737789154052734375e-3;
|
|
const uniform float sin_c6 = -1.9842604524455964565277099609375e-4;
|
|
const uniform float sin_c8 = 2.760012648650445044040679931640625e-6;
|
|
const uniform float sin_c10 = -2.50293279435709337121807038784027099609375e-8;
|
|
|
|
const uniform float cos_c2 = -0.5;
|
|
const uniform float cos_c4 = 4.166664183139801025390625e-2;
|
|
const uniform float cos_c6 = -1.388833043165504932403564453125e-3;
|
|
const uniform float cos_c8 = 2.47562347794882953166961669921875e-5;
|
|
const uniform float cos_c10 = -2.59630184018533327616751194000244140625e-7;
|
|
|
|
uniform float outside, c2, c4, c6, c8, c10;
|
|
if (cos_usecos) {
|
|
outside = 1.;
|
|
c2 = cos_c2;
|
|
c4 = cos_c4;
|
|
c6 = cos_c6;
|
|
c8 = cos_c8;
|
|
c10 = cos_c10;
|
|
}
|
|
else {
|
|
outside = x;
|
|
c2 = sin_c2;
|
|
c4 = sin_c4;
|
|
c6 = sin_c6;
|
|
c8 = sin_c8;
|
|
c10 = sin_c10;
|
|
}
|
|
|
|
uniform float x2 = x * x;
|
|
uniform float formula = x2 * c10 + c8;
|
|
formula = x2 * formula + c6;
|
|
formula = x2 * formula + c4;
|
|
formula = x2 * formula + c2;
|
|
formula = x2 * formula + 1.;
|
|
formula *= outside;
|
|
|
|
formula = flip_sign ? -formula : formula;
|
|
return formula;
|
|
}
|
|
}
|
|
|
|
|
|
static inline void sincos(float x_full, reference float sin_result, reference float cos_result) {
|
|
if (__math_lib == __math_lib_svml) {
|
|
__svml_sincos(x_full, sin_result, cos_result);
|
|
}
|
|
else if (__math_lib == __math_lib_system) {
|
|
uniform int mask = lanemask();
|
|
for (uniform int i = 0; i < programCount; ++i) {
|
|
if ((mask & (1 << i)) == 0)
|
|
continue;
|
|
uniform float s, c;
|
|
__stdlib_sincos(extract(x_full, i), s, c);
|
|
sin_result = insert(sin_result, i, s);
|
|
cos_result = insert(cos_result, i, c);
|
|
}
|
|
}
|
|
else if (__math_lib == __math_lib_ispc ||
|
|
__math_lib == __math_lib_ispc_fast) {
|
|
const float pi_over_two_vec = 1.57079637050628662109375;
|
|
const float two_over_pi_vec = 0.636619746685028076171875;
|
|
float scaled = x_full * two_over_pi_vec;
|
|
float k_real = floor(scaled);
|
|
int k = (int)k_real;
|
|
|
|
// Reduced range version of x
|
|
float x = x_full - k_real * pi_over_two_vec;
|
|
int k_mod4 = k & 3;
|
|
bool cos_usecos = (k_mod4 == 0 || k_mod4 == 2);
|
|
bool sin_usecos = (k_mod4 == 1 || k_mod4 == 3);
|
|
bool sin_flipsign = (k_mod4 > 1);
|
|
bool cos_flipsign = (k_mod4 == 1 || k_mod4 == 2);
|
|
|
|
const float one_vec = 1.;
|
|
const float sin_c2 = -0.16666667163372039794921875;
|
|
const float sin_c4 = 8.333347737789154052734375e-3;
|
|
const float sin_c6 = -1.9842604524455964565277099609375e-4;
|
|
const float sin_c8 = 2.760012648650445044040679931640625e-6;
|
|
const float sin_c10 = -2.50293279435709337121807038784027099609375e-8;
|
|
|
|
const float cos_c2 = -0.5;
|
|
const float cos_c4 = 4.166664183139801025390625e-2;
|
|
const float cos_c6 = -1.388833043165504932403564453125e-3;
|
|
const float cos_c8 = 2.47562347794882953166961669921875e-5;
|
|
const float cos_c10 = -2.59630184018533327616751194000244140625e-7;
|
|
|
|
float x2 = x * x;
|
|
|
|
float sin_formula = x2 * sin_c10 + sin_c8;
|
|
float cos_formula = x2 * cos_c10 + cos_c8;
|
|
sin_formula = x2 * sin_formula + sin_c6;
|
|
cos_formula = x2 * cos_formula + cos_c6;
|
|
|
|
sin_formula = x2 * sin_formula + sin_c4;
|
|
cos_formula = x2 * cos_formula + cos_c4;
|
|
|
|
sin_formula = x2 * sin_formula + sin_c2;
|
|
cos_formula = x2 * cos_formula + cos_c2;
|
|
|
|
sin_formula = x2 * sin_formula + one_vec;
|
|
cos_formula = x2 * cos_formula + one_vec;
|
|
|
|
sin_formula *= x;
|
|
|
|
sin_result = sin_usecos ? cos_formula : sin_formula;
|
|
cos_result = cos_usecos ? cos_formula : sin_formula;
|
|
|
|
sin_result = sin_flipsign ? -sin_result : sin_result;
|
|
cos_result = cos_flipsign ? -cos_result : cos_result;
|
|
}
|
|
}
|
|
|
|
|
|
static inline void sincos(uniform float x_full, reference uniform float sin_result,
|
|
reference uniform float cos_result) {
|
|
if (__math_lib == __math_lib_system ||
|
|
__math_lib == __math_lib_svml) {
|
|
__stdlib_sincos(x_full, sin_result, cos_result);
|
|
}
|
|
else if (__math_lib == __math_lib_ispc ||
|
|
__math_lib == __math_lib_ispc_fast) {
|
|
const uniform float pi_over_two_vec = 1.57079637050628662109375;
|
|
const uniform float two_over_pi_vec = 0.636619746685028076171875;
|
|
uniform float scaled = x_full * two_over_pi_vec;
|
|
uniform float k_real = floor(scaled);
|
|
uniform int k = (uniform int)k_real;
|
|
|
|
// Reduced range version of x
|
|
uniform float x = x_full - k_real * pi_over_two_vec;
|
|
uniform int k_mod4 = k & 3;
|
|
uniform bool cos_usecos = (k_mod4 == 0 || k_mod4 == 2);
|
|
uniform bool sin_usecos = (k_mod4 == 1 || k_mod4 == 3);
|
|
uniform bool sin_flipsign = (k_mod4 > 1);
|
|
uniform bool cos_flipsign = (k_mod4 == 1 || k_mod4 == 2);
|
|
|
|
const uniform float one_vec = 1.;
|
|
const uniform float sin_c2 = -0.16666667163372039794921875;
|
|
const uniform float sin_c4 = 8.333347737789154052734375e-3;
|
|
const uniform float sin_c6 = -1.9842604524455964565277099609375e-4;
|
|
const uniform float sin_c8 = 2.760012648650445044040679931640625e-6;
|
|
const uniform float sin_c10 = -2.50293279435709337121807038784027099609375e-8;
|
|
|
|
const uniform float cos_c2 = -0.5;
|
|
const uniform float cos_c4 = 4.166664183139801025390625e-2;
|
|
const uniform float cos_c6 = -1.388833043165504932403564453125e-3;
|
|
const uniform float cos_c8 = 2.47562347794882953166961669921875e-5;
|
|
const uniform float cos_c10 = -2.59630184018533327616751194000244140625e-7;
|
|
|
|
uniform float x2 = x * x;
|
|
|
|
uniform float sin_formula = x2 * sin_c10 + sin_c8;
|
|
uniform float cos_formula = x2 * cos_c10 + cos_c8;
|
|
sin_formula = x2 * sin_formula + sin_c6;
|
|
cos_formula = x2 * cos_formula + cos_c6;
|
|
|
|
sin_formula = x2 * sin_formula + sin_c4;
|
|
cos_formula = x2 * cos_formula + cos_c4;
|
|
|
|
sin_formula = x2 * sin_formula + sin_c2;
|
|
cos_formula = x2 * cos_formula + cos_c2;
|
|
|
|
sin_formula = x2 * sin_formula + one_vec;
|
|
cos_formula = x2 * cos_formula + one_vec;
|
|
|
|
sin_formula *= x;
|
|
|
|
sin_result = sin_usecos ? cos_formula : sin_formula;
|
|
cos_result = cos_usecos ? cos_formula : sin_formula;
|
|
|
|
sin_result = sin_flipsign ? -sin_result : sin_result;
|
|
cos_result = cos_flipsign ? -cos_result : cos_result;
|
|
}
|
|
}
|
|
|
|
|
|
static inline float tan(float x_full) {
|
|
if (__math_lib == __math_lib_svml) {
|
|
return __svml_tan(x_full);
|
|
}
|
|
else if (__math_lib == __math_lib_system) {
|
|
float ret;
|
|
uniform int mask = lanemask();
|
|
for (uniform int i = 0; i < programCount; ++i) {
|
|
if ((mask & (1 << i)) == 0)
|
|
continue;
|
|
uniform float r = __stdlib_tan(extract(x_full, i));
|
|
ret = insert(ret, i, r);
|
|
}
|
|
return ret;
|
|
}
|
|
else if (__math_lib == __math_lib_ispc ||
|
|
__math_lib == __math_lib_ispc_fast) {
|
|
const float pi_over_four_vec = 0.785398185253143310546875;
|
|
const float four_over_pi_vec = 1.27323949337005615234375;
|
|
|
|
bool x_lt_0 = x_full < 0.;
|
|
float y = x_lt_0 ? -x_full : x_full;
|
|
float scaled = y * four_over_pi_vec;
|
|
|
|
float k_real = floor(scaled);
|
|
int k = (int)k_real;
|
|
|
|
float x = y - k_real * pi_over_four_vec;
|
|
|
|
// if k & 1, x -= Pi/4
|
|
bool need_offset = (k & 1) != 0;
|
|
x = need_offset ? x - pi_over_four_vec : x;
|
|
|
|
// if k & 3 == (0 or 3) let z = tan_In...(y) otherwise z = -cot_In0To...
|
|
int k_mod4 = k & 3;
|
|
bool use_cotan = (k_mod4 == 1) || (k_mod4 == 2);
|
|
|
|
const float one_vec = 1.0;
|
|
|
|
const float tan_c2 = 0.33333075046539306640625;
|
|
const float tan_c4 = 0.13339905440807342529296875;
|
|
const float tan_c6 = 5.3348250687122344970703125e-2;
|
|
const float tan_c8 = 2.46033705770969390869140625e-2;
|
|
const float tan_c10 = 2.892402000725269317626953125e-3;
|
|
const float tan_c12 = 9.500005282461643218994140625e-3;
|
|
|
|
const float cot_c2 = -0.3333333432674407958984375;
|
|
const float cot_c4 = -2.222204394638538360595703125e-2;
|
|
const float cot_c6 = -2.11752182804048061370849609375e-3;
|
|
const float cot_c8 = -2.0846328698098659515380859375e-4;
|
|
const float cot_c10 = -2.548247357481159269809722900390625e-5;
|
|
const float cot_c12 = -3.5257363606433500535786151885986328125e-7;
|
|
|
|
float x2 = x * x;
|
|
float z;
|
|
cif (use_cotan) {
|
|
float cot_val = x2 * cot_c12 + cot_c10;
|
|
cot_val = x2 * cot_val + cot_c8;
|
|
cot_val = x2 * cot_val + cot_c6;
|
|
cot_val = x2 * cot_val + cot_c4;
|
|
cot_val = x2 * cot_val + cot_c2;
|
|
cot_val = x2 * cot_val + one_vec;
|
|
// The equation is for x * cot(x) but we need -x * cot(x) for the tan part.
|
|
cot_val /= -x;
|
|
z = cot_val;
|
|
} else {
|
|
float tan_val = x2 * tan_c12 + tan_c10;
|
|
tan_val = x2 * tan_val + tan_c8;
|
|
tan_val = x2 * tan_val + tan_c6;
|
|
tan_val = x2 * tan_val + tan_c4;
|
|
tan_val = x2 * tan_val + tan_c2;
|
|
tan_val = x2 * tan_val + one_vec;
|
|
// Equation was for tan(x)/x
|
|
tan_val *= x;
|
|
z = tan_val;
|
|
}
|
|
return x_lt_0 ? -z : z;
|
|
}
|
|
}
|
|
|
|
|
|
static inline uniform float tan(uniform float x_full) {
|
|
if (__math_lib == __math_lib_system ||
|
|
__math_lib == __math_lib_svml) {
|
|
return __stdlib_tan(x_full);
|
|
}
|
|
else if (__math_lib == __math_lib_ispc ||
|
|
__math_lib == __math_lib_ispc_fast) {
|
|
const uniform float pi_over_four_vec = 0.785398185253143310546875;
|
|
const uniform float four_over_pi_vec = 1.27323949337005615234375;
|
|
|
|
uniform bool x_lt_0 = x_full < 0.;
|
|
uniform float y = x_lt_0 ? -x_full : x_full;
|
|
uniform float scaled = y * four_over_pi_vec;
|
|
|
|
uniform float k_real = floor(scaled);
|
|
uniform int k = (int)k_real;
|
|
|
|
uniform float x = y - k_real * pi_over_four_vec;
|
|
|
|
// if k & 1, x -= Pi/4
|
|
uniform bool need_offset = (k & 1) != 0;
|
|
x = need_offset ? x - pi_over_four_vec : x;
|
|
|
|
// if k & 3 == (0 or 3) let z = tan_In...(y) otherwise z = -cot_In0To...
|
|
uniform int k_mod4 = k & 3;
|
|
uniform bool use_cotan = (k_mod4 == 1) || (k_mod4 == 2);
|
|
|
|
const uniform float one_vec = 1.0;
|
|
|
|
const uniform float tan_c2 = 0.33333075046539306640625;
|
|
const uniform float tan_c4 = 0.13339905440807342529296875;
|
|
const uniform float tan_c6 = 5.3348250687122344970703125e-2;
|
|
const uniform float tan_c8 = 2.46033705770969390869140625e-2;
|
|
const uniform float tan_c10 = 2.892402000725269317626953125e-3;
|
|
const uniform float tan_c12 = 9.500005282461643218994140625e-3;
|
|
|
|
const uniform float cot_c2 = -0.3333333432674407958984375;
|
|
const uniform float cot_c4 = -2.222204394638538360595703125e-2;
|
|
const uniform float cot_c6 = -2.11752182804048061370849609375e-3;
|
|
const uniform float cot_c8 = -2.0846328698098659515380859375e-4;
|
|
const uniform float cot_c10 = -2.548247357481159269809722900390625e-5;
|
|
const uniform float cot_c12 = -3.5257363606433500535786151885986328125e-7;
|
|
|
|
uniform float x2 = x * x;
|
|
uniform float z;
|
|
if (use_cotan) {
|
|
uniform float cot_val = x2 * cot_c12 + cot_c10;
|
|
cot_val = x2 * cot_val + cot_c8;
|
|
cot_val = x2 * cot_val + cot_c6;
|
|
cot_val = x2 * cot_val + cot_c4;
|
|
cot_val = x2 * cot_val + cot_c2;
|
|
cot_val = x2 * cot_val + one_vec;
|
|
// The equation is for x * cot(x) but we need -x * cot(x) for the tan part.
|
|
cot_val /= -x;
|
|
z = cot_val;
|
|
} else {
|
|
uniform float tan_val = x2 * tan_c12 + tan_c10;
|
|
tan_val = x2 * tan_val + tan_c8;
|
|
tan_val = x2 * tan_val + tan_c6;
|
|
tan_val = x2 * tan_val + tan_c4;
|
|
tan_val = x2 * tan_val + tan_c2;
|
|
tan_val = x2 * tan_val + one_vec;
|
|
// Equation was for tan(x)/x
|
|
tan_val *= x;
|
|
z = tan_val;
|
|
}
|
|
return x_lt_0 ? -z : z;
|
|
}
|
|
}
|
|
|
|
|
|
static inline float atan(float x_full) {
|
|
if (__math_lib == __math_lib_svml) {
|
|
return __svml_atan(x_full);
|
|
}
|
|
else if (__math_lib == __math_lib_system) {
|
|
float ret;
|
|
uniform int mask = lanemask();
|
|
for (uniform int i = 0; i < programCount; ++i) {
|
|
if ((mask & (1 << i)) == 0)
|
|
continue;
|
|
uniform float r = __stdlib_atan(extract(x_full, i));
|
|
ret = insert(ret, i, r);
|
|
}
|
|
return ret;
|
|
}
|
|
else if (__math_lib == __math_lib_ispc ||
|
|
__math_lib == __math_lib_ispc_fast) {
|
|
const float pi_over_two_vec = 1.57079637050628662109375;
|
|
// atan(-x) = -atan(x) (so flip from negative to positive first)
|
|
// if x > 1 -> atan(x) = Pi/2 - atan(1/x)
|
|
bool x_neg = x_full < 0;
|
|
float x_flipped = x_neg ? -x_full : x_full;
|
|
|
|
bool x_gt_1 = x_flipped > 1.;
|
|
float x = x_gt_1 ? 1./x_flipped : x_flipped;
|
|
|
|
// These coefficients approximate atan(x)/x
|
|
const float atan_c0 = 0.99999988079071044921875;
|
|
const float atan_c2 = -0.3333191573619842529296875;
|
|
const float atan_c4 = 0.199689209461212158203125;
|
|
const float atan_c6 = -0.14015688002109527587890625;
|
|
const float atan_c8 = 9.905083477497100830078125e-2;
|
|
const float atan_c10 = -5.93664981424808502197265625e-2;
|
|
const float atan_c12 = 2.417283318936824798583984375e-2;
|
|
const float atan_c14 = -4.6721356920897960662841796875e-3;
|
|
|
|
float x2 = x * x;
|
|
float result = x2 * atan_c14 + atan_c12;
|
|
result = x2 * result + atan_c10;
|
|
result = x2 * result + atan_c8;
|
|
result = x2 * result + atan_c6;
|
|
result = x2 * result + atan_c4;
|
|
result = x2 * result + atan_c2;
|
|
result = x2 * result + atan_c0;
|
|
result *= x;
|
|
|
|
result = x_gt_1 ? pi_over_two_vec - result : result;
|
|
result = x_neg ? -result : result;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
|
|
static inline uniform float atan(uniform float x_full) {
|
|
if (__math_lib == __math_lib_system ||
|
|
__math_lib == __math_lib_svml) {
|
|
return __stdlib_atan(x_full);
|
|
}
|
|
else if (__math_lib == __math_lib_ispc ||
|
|
__math_lib == __math_lib_ispc_fast) {
|
|
const uniform float pi_over_two_vec = 1.57079637050628662109375;
|
|
// atan(-x) = -atan(x) (so flip from negative to positive first)
|
|
// if x > 1 -> atan(x) = Pi/2 - atan(1/x)
|
|
uniform bool x_neg = x_full < 0;
|
|
uniform float x_flipped = x_neg ? -x_full : x_full;
|
|
|
|
uniform bool x_gt_1 = x_flipped > 1.;
|
|
uniform float x = x_gt_1 ? 1./x_flipped : x_flipped;
|
|
|
|
// These coefficients approximate atan(x)/x
|
|
const uniform float atan_c0 = 0.99999988079071044921875;
|
|
const uniform float atan_c2 = -0.3333191573619842529296875;
|
|
const uniform float atan_c4 = 0.199689209461212158203125;
|
|
const uniform float atan_c6 = -0.14015688002109527587890625;
|
|
const uniform float atan_c8 = 9.905083477497100830078125e-2;
|
|
const uniform float atan_c10 = -5.93664981424808502197265625e-2;
|
|
const uniform float atan_c12 = 2.417283318936824798583984375e-2;
|
|
const uniform float atan_c14 = -4.6721356920897960662841796875e-3;
|
|
|
|
uniform float x2 = x * x;
|
|
uniform float result = x2 * atan_c14 + atan_c12;
|
|
result = x2 * result + atan_c10;
|
|
result = x2 * result + atan_c8;
|
|
result = x2 * result + atan_c6;
|
|
result = x2 * result + atan_c4;
|
|
result = x2 * result + atan_c2;
|
|
result = x2 * result + atan_c0;
|
|
result *= x;
|
|
|
|
result = x_gt_1 ? pi_over_two_vec - result : result;
|
|
result = x_neg ? -result : result;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
|
|
static inline float atan2(float y, float x) {
|
|
if (__math_lib == __math_lib_svml) {
|
|
return __svml_atan2(y, x);
|
|
}
|
|
else if (__math_lib == __math_lib_system) {
|
|
float ret;
|
|
uniform int mask = lanemask();
|
|
for (uniform int i = 0; i < programCount; ++i) {
|
|
if ((mask & (1 << i)) == 0)
|
|
continue;
|
|
uniform float r = __stdlib_atan2(extract(y, i), extract(x, i));
|
|
ret = insert(ret, i, r);
|
|
}
|
|
return ret;
|
|
}
|
|
else if (__math_lib == __math_lib_ispc ||
|
|
__math_lib == __math_lib_ispc_fast) {
|
|
const float pi_vec = 3.1415926536;
|
|
const float pi_over_two_vec = 1.5707963267;
|
|
// atan2(y, x) =
|
|
//
|
|
// atan2(y > 0, x = +-0) -> Pi/2
|
|
// atan2(y < 0, x = +-0) -> -Pi/2
|
|
// atan2(y = +-0, x < +0) -> +-Pi
|
|
// atan2(y = +-0, x >= +0) -> +-0
|
|
//
|
|
// atan2(y >= 0, x < 0) -> Pi + atan(y/x)
|
|
// atan2(y < 0, x < 0) -> -Pi + atan(y/x)
|
|
// atan2(y, x > 0) -> atan(y/x)
|
|
//
|
|
// and then a bunch of code for dealing with infinities.
|
|
float y_over_x = y/x;
|
|
float atan_arg = atan(y_over_x);
|
|
bool x_lt_0 = x < 0;
|
|
bool y_lt_0 = y < 0;
|
|
float offset = x_lt_0 ? (y_lt_0 ? -pi_vec : pi_vec) : 0;
|
|
return offset + atan_arg;
|
|
}
|
|
}
|
|
|
|
|
|
static inline uniform float atan2(uniform float y, uniform float x) {
|
|
if (__math_lib == __math_lib_system ||
|
|
__math_lib == __math_lib_svml) {
|
|
return __stdlib_atan2(y, x);
|
|
}
|
|
else if (__math_lib == __math_lib_ispc ||
|
|
__math_lib == __math_lib_ispc_fast) {
|
|
const uniform float pi_vec = 3.1415927410125732421875;
|
|
const uniform float pi_over_two_vec = 1.57079637050628662109375;
|
|
|
|
uniform float y_over_x = y/x;
|
|
uniform float atan_arg = atan(y_over_x);
|
|
uniform bool x_lt_0 = x < 0;
|
|
uniform bool y_lt_0 = y < 0;
|
|
uniform float offset = x_lt_0 ? (y_lt_0 ? -pi_vec : pi_vec) : 0;
|
|
return offset + atan_arg;
|
|
}
|
|
}
|
|
|
|
|
|
static inline float exp(float x_full) {
|
|
if (__math_lib == __math_lib_svml) {
|
|
return __svml_exp(x_full);
|
|
}
|
|
else if (__math_lib == __math_lib_system) {
|
|
float ret;
|
|
uniform int mask = lanemask();
|
|
for (uniform int i = 0; i < programCount; ++i) {
|
|
if ((mask & (1 << i)) == 0)
|
|
continue;
|
|
uniform float r = __stdlib_exp(extract(x_full, i));
|
|
ret = insert(ret, i, r);
|
|
}
|
|
return ret;
|
|
}
|
|
else if (__math_lib == __math_lib_ispc_fast) {
|
|
float z = floor(1.44269504088896341f * x_full + 0.5f);
|
|
int n;
|
|
x_full -= z * 0.693359375f;
|
|
x_full -= z * -2.12194440e-4f;
|
|
n = (int)z;
|
|
|
|
z = x_full * x_full;
|
|
z = (((((1.9875691500E-4f * x_full + 1.3981999507E-3f) * x_full +
|
|
8.3334519073E-3f) * x_full + 4.1665795894E-2f) * x_full +
|
|
1.6666665459E-1f) * x_full + 5.0000001201E-1f) * z + x_full + 1.f;
|
|
x_full = ldexp(z, n);
|
|
return x_full;
|
|
}
|
|
else if (__math_lib == __math_lib_ispc) {
|
|
const float ln2_part1 = 0.6931457519;
|
|
const float ln2_part2 = 1.4286067653e-6;
|
|
const float one_over_ln2 = 1.44269502162933349609375;
|
|
|
|
float scaled = x_full * one_over_ln2;
|
|
float k_real = floor(scaled);
|
|
int k = (int)k_real;
|
|
|
|
// Reduced range version of x
|
|
float x = x_full - k_real * ln2_part1;
|
|
x -= k_real * ln2_part2;
|
|
|
|
// These coefficients are for e^x in [0, ln(2)]
|
|
const float one = 1.;
|
|
const float c2 = 0.4999999105930328369140625;
|
|
const float c3 = 0.166668415069580078125;
|
|
const float c4 = 4.16539050638675689697265625e-2;
|
|
const float c5 = 8.378830738365650177001953125e-3;
|
|
const float c6 = 1.304379315115511417388916015625e-3;
|
|
const float c7 = 2.7555381529964506626129150390625e-4;
|
|
|
|
float result = x * c7 + c6;
|
|
result = x * result + c5;
|
|
result = x * result + c4;
|
|
result = x * result + c3;
|
|
result = x * result + c2;
|
|
result = x * result + one;
|
|
result = x * result + one;
|
|
|
|
// Compute 2^k (should differ for float and double, but I'll avoid
|
|
// it for now and just do floats)
|
|
const int fpbias = 127;
|
|
int biased_n = k + fpbias;
|
|
bool overflow = k > fpbias;
|
|
// Minimum exponent is -126, so if k is <= -127 (k + 127 <= 0)
|
|
// we've got underflow. -127 * ln(2) -> -88.02. So the most
|
|
// negative float input that doesn't result in zero is like -88.
|
|
bool underflow = (biased_n <= 0);
|
|
const int InfBits = 0x7f800000;
|
|
biased_n <<= 23;
|
|
// Reinterpret this thing as float
|
|
float two_to_the_n = floatbits(biased_n);
|
|
// Handle both doubles and floats (hopefully eliding the copy for float)
|
|
float elemtype_2n = two_to_the_n;
|
|
result *= elemtype_2n;
|
|
result = overflow ? floatbits(InfBits) : result;
|
|
result = underflow ? 0. : result;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
static inline uniform float exp(uniform float x_full) {
|
|
if (__math_lib == __math_lib_system ||
|
|
__math_lib == __math_lib_svml) {
|
|
return __stdlib_exp(x_full);
|
|
}
|
|
else if (__math_lib == __math_lib_ispc_fast) {
|
|
uniform float z = floor(1.44269504088896341f * x_full + 0.5f);
|
|
uniform int n;
|
|
x_full -= z * 0.693359375f;
|
|
x_full -= z * -2.12194440e-4f;
|
|
n = (int)z;
|
|
|
|
z = x_full * x_full;
|
|
z = (((((1.9875691500E-4f * x_full + 1.3981999507E-3f) * x_full +
|
|
8.3334519073E-3f) * x_full + 4.1665795894E-2f) * x_full +
|
|
1.6666665459E-1f) * x_full + 5.0000001201E-1f) * z + x_full + 1.f;
|
|
x_full = ldexp(z, n);
|
|
return x_full;
|
|
}
|
|
else if (__math_lib == __math_lib_ispc) {
|
|
const uniform float ln2_part1 = 0.6931457519;
|
|
const uniform float ln2_part2 = 1.4286067653e-6;
|
|
const uniform float one_over_ln2 = 1.44269502162933349609375;
|
|
|
|
uniform float scaled = x_full * one_over_ln2;
|
|
uniform float k_real = floor(scaled);
|
|
uniform int k = (uniform int)k_real;
|
|
|
|
// Reduced range version of x
|
|
uniform float x = x_full - k_real * ln2_part1;
|
|
x -= k_real * ln2_part2;
|
|
|
|
// These coefficients are for e^x in [0, ln(2)]
|
|
const uniform float one = 1.;
|
|
const uniform float c2 = 0.4999999105930328369140625;
|
|
const uniform float c3 = 0.166668415069580078125;
|
|
const uniform float c4 = 4.16539050638675689697265625e-2;
|
|
const uniform float c5 = 8.378830738365650177001953125e-3;
|
|
const uniform float c6 = 1.304379315115511417388916015625e-3;
|
|
const uniform float c7 = 2.7555381529964506626129150390625e-4;
|
|
|
|
uniform float result = x * c7 + c6;
|
|
result = x * result + c5;
|
|
result = x * result + c4;
|
|
result = x * result + c3;
|
|
result = x * result + c2;
|
|
result = x * result + one;
|
|
result = x * result + one;
|
|
|
|
// Compute 2^k (should differ for uniform float and double, but I'll avoid
|
|
// it for now and just do uniform floats)
|
|
const uniform int fpbias = 127;
|
|
uniform int biased_n = k + fpbias;
|
|
uniform bool overflow = k > fpbias;
|
|
// Minimum exponent is -126, so if k is <= -127 (k + 127 <= 0)
|
|
// we've got underflow. -127 * ln(2) -> -88.02. So the most
|
|
// negative uniform float input that doesn't result in zero is like -88.
|
|
uniform bool underflow = (biased_n <= 0);
|
|
const uniform int InfBits = 0x7f800000;
|
|
biased_n <<= 23;
|
|
// Reuniform interpret this thing as uniform float
|
|
uniform float two_to_the_n = floatbits(biased_n);
|
|
// Handle both doubles and uniform floats (hopefully eliding the copy for uniform float)
|
|
uniform float elemtype_2n = two_to_the_n;
|
|
result *= elemtype_2n;
|
|
result = overflow ? floatbits(InfBits) : result;
|
|
result = underflow ? 0. : result;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// Range reduction for logarithms takes log(x) -> log(2^n * y) -> n
|
|
// * log(2) + log(y) where y is the reduced range (usually in [1/2,
|
|
// 1)).
|
|
static inline void __range_reduce_log(float input, reference float reduced, reference int exponent) {
|
|
int int_version = intbits(input);
|
|
// single precision = SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM
|
|
// exponent mask = 0111 1111 1000 0000 0000 0000 0000 0000
|
|
// 0x7 0xF 0x8 0x0 0x0 0x0 0x0 0x0
|
|
// non-exponent = 1000 0000 0111 1111 1111 1111 1111 1111
|
|
// = 0x8 0x0 0x7 0xF 0xF 0xF 0xF 0xF
|
|
|
|
//const int exponent_mask(0x7F800000)
|
|
static const int nonexponent_mask = 0x807FFFFF;
|
|
|
|
// We want the reduced version to have an exponent of -1 which is -1 + 127 after biasing or 126
|
|
static const int exponent_neg1 = (126 << 23);
|
|
// NOTE(boulos): We don't need to mask anything out since we know
|
|
// the sign bit has to be 0. If it's 1, we need to return infinity/nan
|
|
// anyway (log(x), x = +-0 -> infinity, x < 0 -> NaN).
|
|
int biased_exponent = int_version >> 23; // This number is [0, 255] but it means [-127, 128]
|
|
|
|
int offset_exponent = biased_exponent + 1; // Treat the number as if it were 2^{e+1} * (1.m)/2
|
|
exponent = offset_exponent - 127; // get the real value
|
|
|
|
// Blend the offset_exponent with the original input (do this in
|
|
// int for now, until I decide if float can have & and ¬)
|
|
int blended = (int_version & nonexponent_mask) | (exponent_neg1);
|
|
reduced = floatbits(blended);
|
|
}
|
|
|
|
|
|
|
|
static inline void __range_reduce_log(uniform float input, reference uniform float reduced,
|
|
reference uniform int exponent) {
|
|
uniform int int_version = intbits(input);
|
|
static const uniform int nonexponent_mask = 0x807FFFFF;
|
|
|
|
static const uniform int exponent_neg1 = (126 << 23);
|
|
uniform int biased_exponent = int_version >> 23;
|
|
uniform int offset_exponent = biased_exponent + 1;
|
|
exponent = offset_exponent - 127; // get the real value
|
|
|
|
uniform int blended = (int_version & nonexponent_mask) | (exponent_neg1);
|
|
reduced = floatbits(blended);
|
|
}
|
|
|
|
|
|
static inline float log(float x_full) {
|
|
if (__math_lib == __math_lib_svml) {
|
|
return __svml_log(x_full);
|
|
}
|
|
else if (__math_lib == __math_lib_system) {
|
|
float ret;
|
|
uniform int mask = lanemask();
|
|
for (uniform int i = 0; i < programCount; ++i) {
|
|
if ((mask & (1 << i)) == 0)
|
|
continue;
|
|
uniform float r = __stdlib_log(extract(x_full, i));
|
|
ret = insert(ret, i, r);
|
|
}
|
|
return ret;
|
|
}
|
|
else if (__math_lib == __math_lib_ispc_fast) {
|
|
int e;
|
|
x_full = frexp(x_full, e);
|
|
|
|
int x_smaller_SQRTHF = (0.707106781186547524f > x_full) ? 0xffffffff : 0;
|
|
e += x_smaller_SQRTHF;
|
|
int ix_add = intbits(x_full);
|
|
ix_add &= x_smaller_SQRTHF;
|
|
x_full += floatbits(ix_add) - 1.f;
|
|
|
|
float z = x_full * x_full;
|
|
float y =
|
|
((((((((7.0376836292E-2f * x_full
|
|
+ -1.1514610310E-1f) * x_full
|
|
+ 1.1676998740E-1f) * x_full
|
|
+ -1.2420140846E-1f) * x_full
|
|
+ 1.4249322787E-1f) * x_full
|
|
+ -1.6668057665E-1f) * x_full
|
|
+ 2.0000714765E-1f) * x_full
|
|
+ -2.4999993993E-1f) * x_full
|
|
+ 3.3333331174E-1f) * x_full * z;
|
|
|
|
float fe = (float)e;
|
|
y += fe * -2.12194440e-4;
|
|
y -= 0.5f * z;
|
|
z = x_full + y;
|
|
return z + 0.693359375 * fe;
|
|
}
|
|
else if (__math_lib == __math_lib_ispc) {
|
|
float reduced;
|
|
int exponent;
|
|
|
|
const int NaN_bits = 0x7fc00000;
|
|
const int Neg_Inf_bits = 0xFF800000;
|
|
const float NaN = floatbits(NaN_bits);
|
|
const float neg_inf = floatbits(Neg_Inf_bits);
|
|
bool use_nan = x_full < 0.;
|
|
bool use_inf = x_full == 0.;
|
|
bool exceptional = use_nan || use_inf;
|
|
const float one = 1.0;
|
|
|
|
float patched = exceptional ? one : x_full;
|
|
__range_reduce_log(patched, reduced, exponent);
|
|
|
|
const float ln2 = 0.693147182464599609375;
|
|
|
|
float x1 = one - reduced;
|
|
const float c1 = 0.50000095367431640625;
|
|
const float c2 = 0.33326041698455810546875;
|
|
const float c3 = 0.2519190013408660888671875;
|
|
const float c4 = 0.17541764676570892333984375;
|
|
const float c5 = 0.3424419462680816650390625;
|
|
const float c6 = -0.599632322788238525390625;
|
|
const float c7 = +1.98442304134368896484375;
|
|
const float c8 = -2.4899270534515380859375;
|
|
const float c9 = +1.7491014003753662109375;
|
|
|
|
float result = x1 * c9 + c8;
|
|
result = x1 * result + c7;
|
|
result = x1 * result + c6;
|
|
result = x1 * result + c5;
|
|
result = x1 * result + c4;
|
|
result = x1 * result + c3;
|
|
result = x1 * result + c2;
|
|
result = x1 * result + c1;
|
|
result = x1 * result + one;
|
|
|
|
// Equation was for -(ln(red)/(1-red))
|
|
result *= -x1;
|
|
result += (float)(exponent) * ln2;
|
|
|
|
return exceptional ? (use_nan ? NaN : neg_inf) : result;
|
|
}
|
|
}
|
|
|
|
static inline uniform float log(uniform float x_full) {
|
|
if (__math_lib == __math_lib_system ||
|
|
__math_lib == __math_lib_svml) {
|
|
return __stdlib_log(x_full);
|
|
}
|
|
else if (__math_lib == __math_lib_ispc_fast) {
|
|
uniform int e;
|
|
x_full = frexp(x_full, e);
|
|
|
|
uniform int x_smaller_SQRTHF = (0.707106781186547524f > x_full) ? 0xffffffff : 0;
|
|
e += x_smaller_SQRTHF;
|
|
uniform int ix_add = intbits(x_full);
|
|
ix_add &= x_smaller_SQRTHF;
|
|
x_full += floatbits(ix_add) - 1.f;
|
|
|
|
uniform float z = x_full * x_full;
|
|
uniform float y =
|
|
((((((((7.0376836292E-2f * x_full
|
|
+ -1.1514610310E-1f) * x_full
|
|
+ 1.1676998740E-1f) * x_full
|
|
+ -1.2420140846E-1f) * x_full
|
|
+ 1.4249322787E-1f) * x_full
|
|
+ -1.6668057665E-1f) * x_full
|
|
+ 2.0000714765E-1f) * x_full
|
|
+ -2.4999993993E-1f) * x_full
|
|
+ 3.3333331174E-1f) * x_full * z;
|
|
|
|
uniform float fe = (uniform float)e;
|
|
y += fe * -2.12194440e-4;
|
|
y -= 0.5f * z;
|
|
z = x_full + y;
|
|
return z + 0.693359375 * fe;
|
|
}
|
|
else if (__math_lib == __math_lib_ispc) {
|
|
uniform float reduced;
|
|
uniform int exponent;
|
|
|
|
const uniform int NaN_bits = 0x7fc00000;
|
|
const uniform int Neg_Inf_bits = 0xFF800000;
|
|
const uniform float NaN = floatbits(NaN_bits);
|
|
const uniform float neg_inf = floatbits(Neg_Inf_bits);
|
|
uniform bool use_nan = x_full < 0.;
|
|
uniform bool use_inf = x_full == 0.;
|
|
uniform bool exceptional = use_nan || use_inf;
|
|
const uniform float one = 1.0;
|
|
|
|
uniform float patched = exceptional ? one : x_full;
|
|
__range_reduce_log(patched, reduced, exponent);
|
|
|
|
const uniform float ln2 = 0.693147182464599609375;
|
|
|
|
uniform float x1 = one - reduced;
|
|
const uniform float c1 = 0.50000095367431640625;
|
|
const uniform float c2 = 0.33326041698455810546875;
|
|
const uniform float c3 = 0.2519190013408660888671875;
|
|
const uniform float c4 = 0.17541764676570892333984375;
|
|
const uniform float c5 = 0.3424419462680816650390625;
|
|
const uniform float c6 = -0.599632322788238525390625;
|
|
const uniform float c7 = +1.98442304134368896484375;
|
|
const uniform float c8 = -2.4899270534515380859375;
|
|
const uniform float c9 = +1.7491014003753662109375;
|
|
|
|
uniform float result = x1 * c9 + c8;
|
|
result = x1 * result + c7;
|
|
result = x1 * result + c6;
|
|
result = x1 * result + c5;
|
|
result = x1 * result + c4;
|
|
result = x1 * result + c3;
|
|
result = x1 * result + c2;
|
|
result = x1 * result + c1;
|
|
result = x1 * result + one;
|
|
|
|
// Equation was for -(ln(red)/(1-red))
|
|
result *= -x1;
|
|
result += (uniform float)(exponent) * ln2;
|
|
|
|
return exceptional ? (use_nan ? NaN : neg_inf) : result;
|
|
}
|
|
}
|
|
|
|
static inline float pow(float a, float b) {
|
|
if (__math_lib == __math_lib_svml) {
|
|
return __svml_pow(a, b);
|
|
}
|
|
else if (__math_lib == __math_lib_system) {
|
|
float ret;
|
|
uniform int mask = lanemask();
|
|
for (uniform int i = 0; i < programCount; ++i) {
|
|
if ((mask & (1 << i)) == 0)
|
|
continue;
|
|
uniform float r = __stdlib_pow(extract(a, i), extract(b, i));
|
|
ret = insert(ret, i, r);
|
|
}
|
|
return ret;
|
|
}
|
|
else if (__math_lib == __math_lib_ispc ||
|
|
__math_lib == __math_lib_ispc_fast) {
|
|
return exp(b * log(a));
|
|
}
|
|
}
|
|
|
|
static inline uniform float pow(uniform float a, uniform float b) {
|
|
if (__math_lib == __math_lib_system ||
|
|
__math_lib == __math_lib_svml) {
|
|
return __stdlib_pow(a, b);
|
|
}
|
|
else if (__math_lib == __math_lib_ispc ||
|
|
__math_lib == __math_lib_ispc_fast) {
|
|
return exp(b * log(a));
|
|
}
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// RNG stuff
|
|
|
|
struct RNGState {
|
|
unsigned int z1, z2, z3, z4;
|
|
};
|
|
|
|
static inline unsigned int random(reference uniform RNGState state)
|
|
{
|
|
unsigned int b;
|
|
|
|
b = ((state.z1 << 6) ^ state.z1) >> 13;
|
|
state.z1 = ((state.z1 & 4294967294U) << 18) ^ b;
|
|
b = ((state.z2 << 2) ^ state.z2) >> 27;
|
|
state.z2 = ((state.z2 & 4294967288U) << 2) ^ b;
|
|
b = ((state.z3 << 13) ^ state.z3) >> 21;
|
|
state.z3 = ((state.z3 & 4294967280U) << 7) ^ b;
|
|
b = ((state.z4 << 3) ^ state.z4) >> 12;
|
|
state.z4 = ((state.z4 & 4294967168U) << 13) ^ b;
|
|
return (state.z1 ^ state.z2 ^ state.z3 ^ state.z4);
|
|
}
|
|
|
|
static inline float frandom(reference uniform RNGState state)
|
|
{
|
|
return ((int)(random(state) & ((1<<24)-1))) / (float)(1 << 24);
|
|
}
|
|
|
|
static inline uniform unsigned int __seed4(reference uniform RNGState state,
|
|
uniform int start,
|
|
uniform unsigned int seed) {
|
|
uniform unsigned int c1 = 0xf0f0f0f0;
|
|
uniform unsigned int c2 = 0x0f0f0f0f;
|
|
|
|
state.z1 = insert(state.z1, start + 0, seed);
|
|
state.z1 = insert(state.z1, start + 1, seed ^ c1);
|
|
state.z1 = insert(state.z1, start + 2, (seed << 3) ^ c1);
|
|
state.z1 = insert(state.z1, start + 3, (seed << 2) ^ c2);
|
|
|
|
seed += 131;
|
|
state.z2 = insert(state.z2, start + 0, seed);
|
|
state.z2 = insert(state.z2, start + 1, seed ^ c1);
|
|
state.z2 = insert(state.z2, start + 2, (seed << 3) ^ c1);
|
|
state.z2 = insert(state.z2, start + 3, (seed << 2) ^ c2);
|
|
|
|
seed ^= extract(state.z2, 2);
|
|
state.z3 = insert(state.z3, start + 0, seed);
|
|
state.z3 = insert(state.z3, start + 1, seed ^ c1);
|
|
state.z3 = insert(state.z3, start + 2, (seed << 3) ^ c1);
|
|
state.z3 = insert(state.z3, start + 3, (seed << 2) ^ c2);
|
|
|
|
seed <<= 4;
|
|
seed += 3;
|
|
seed ^= extract(state.z1, 3);
|
|
state.z4 = insert(state.z4, start + 0, seed);
|
|
state.z4 = insert(state.z4, start + 1, seed ^ c1);
|
|
state.z4 = insert(state.z4, start + 2, (seed << 3) ^ c1);
|
|
state.z4 = insert(state.z4, start + 3, (seed << 2) ^ c2);
|
|
|
|
return seed;
|
|
}
|
|
|
|
static inline void seed_rng(reference uniform RNGState state, uniform unsigned int seed) {
|
|
seed = __seed4(state, 0, seed);
|
|
if (programCount == 8)
|
|
__seed4(state, 4, seed ^ 0xbeeff00d);
|
|
}
|
|
|
|
static inline void fastmath() {
|
|
__fastmath();
|
|
}
|