171 lines
6.8 KiB
C++
171 lines
6.8 KiB
C++
/*
|
|
Copyright (c) 2010-2011, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
* Neither the name of Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#define NOISE_PERM_SIZE 256
|
|
|
|
static int NoisePerm[2 * NOISE_PERM_SIZE] = {
|
|
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140,
|
|
36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120,
|
|
234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33,
|
|
88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71,
|
|
134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133,
|
|
230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161,
|
|
1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130,
|
|
116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250,
|
|
124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227,
|
|
47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44,
|
|
154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19,
|
|
98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251,
|
|
34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249,
|
|
14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115,
|
|
121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72,
|
|
243, 141, 128, 195, 78, 66, 215, 61, 156, 180, 151, 160, 137, 91, 90, 15,
|
|
131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99,
|
|
37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252,
|
|
219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125,
|
|
136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158,
|
|
231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245,
|
|
40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187,
|
|
208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109,
|
|
198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118,
|
|
126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42,
|
|
223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155,
|
|
167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232,
|
|
178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144,
|
|
12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214,
|
|
31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150,
|
|
254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78,
|
|
66, 215, 61, 156, 180
|
|
};
|
|
|
|
|
|
inline float Clamp(float v, float low, float high) {
|
|
return v < low ? low : ((v > high) ? high : v);
|
|
}
|
|
|
|
|
|
inline float SmoothStep(float low, float high, float value) {
|
|
float v = Clamp((value - low) / (high - low), 0.f, 1.f);
|
|
return v * v * (-2.f * v + 3.f);
|
|
}
|
|
|
|
|
|
inline int Floor2Int(float val) {
|
|
return (int)floorf(val);
|
|
}
|
|
|
|
|
|
inline float Grad(int x, int y, int z, float dx, float dy, float dz) {
|
|
int h = NoisePerm[NoisePerm[NoisePerm[x]+y]+z];
|
|
h &= 15;
|
|
float u = h<8 || h==12 || h==13 ? dx : dy;
|
|
float v = h<4 || h==12 || h==13 ? dy : dz;
|
|
return ((h&1) ? -u : u) + ((h&2) ? -v : v);
|
|
}
|
|
|
|
|
|
inline float NoiseWeight(float t) {
|
|
float t3 = t*t*t;
|
|
float t4 = t3*t;
|
|
return 6.f*t4*t - 15.f*t4 + 10.f*t3;
|
|
}
|
|
|
|
|
|
inline float Lerp(float t, float low, float high) {
|
|
return (1. - t) * low + t * high;
|
|
}
|
|
|
|
|
|
static float Noise(float x, float y, float z) {
|
|
// Compute noise cell coordinates and offsets
|
|
int ix = Floor2Int(x), iy = Floor2Int(y), iz = Floor2Int(z);
|
|
float dx = x - ix, dy = y - iy, dz = z - iz;
|
|
|
|
// Compute gradient weights
|
|
ix &= (NOISE_PERM_SIZE-1);
|
|
iy &= (NOISE_PERM_SIZE-1);
|
|
iz &= (NOISE_PERM_SIZE-1);
|
|
float w000 = Grad(ix, iy, iz, dx, dy, dz);
|
|
float w100 = Grad(ix+1, iy, iz, dx-1, dy, dz);
|
|
float w010 = Grad(ix, iy+1, iz, dx, dy-1, dz);
|
|
float w110 = Grad(ix+1, iy+1, iz, dx-1, dy-1, dz);
|
|
float w001 = Grad(ix, iy, iz+1, dx, dy, dz-1);
|
|
float w101 = Grad(ix+1, iy, iz+1, dx-1, dy, dz-1);
|
|
float w011 = Grad(ix, iy+1, iz+1, dx, dy-1, dz-1);
|
|
float w111 = Grad(ix+1, iy+1, iz+1, dx-1, dy-1, dz-1);
|
|
|
|
// Compute trilinear interpolation of weights
|
|
float wx = NoiseWeight(dx), wy = NoiseWeight(dy), wz = NoiseWeight(dz);
|
|
float x00 = Lerp(wx, w000, w100);
|
|
float x10 = Lerp(wx, w010, w110);
|
|
float x01 = Lerp(wx, w001, w101);
|
|
float x11 = Lerp(wx, w011, w111);
|
|
float y0 = Lerp(wy, x00, x10);
|
|
float y1 = Lerp(wy, x01, x11);
|
|
return Lerp(wz, y0, y1);
|
|
}
|
|
|
|
|
|
static float Turbulence(float x, float y, float z, int octaves) {
|
|
float omega = 0.6;
|
|
|
|
float sum = 0., lambda = 1., o = 1.;
|
|
for (int i = 0; i < octaves; ++i) {
|
|
sum += fabsf(o * Noise(lambda * x, lambda * y, lambda * z));
|
|
lambda *= 1.99f;
|
|
o *= omega;
|
|
}
|
|
return sum * 0.5;
|
|
}
|
|
|
|
|
|
void noise_serial(float x0, float y0, float x1, float y1,
|
|
int width, int height, float output[])
|
|
{
|
|
float dx = (x1 - x0) / width;
|
|
float dy = (y1 - y0) / height;
|
|
|
|
for (int j = 0; j < height; j++) {
|
|
for (int i = 0; i < width; ++i) {
|
|
float x = x0 + i * dx;
|
|
float y = y0 + j * dy;
|
|
|
|
int index = (j * width + i);
|
|
output[index] = Turbulence(x, y, 0.6, 8);
|
|
}
|
|
}
|
|
}
|
|
|