We now maintain a the distinction between the value of the mask passed into a function and the "internal" mask within the function that only accounts for varying control flow within the function. The full mask (the AND of the function mask and the internal mask) must be used for assignments to static and global variables, and reference function parameters. Further, it is the appropriate mask to use for making decisions about varying control flow. However, we can use the internal mask for assignments to variables declared in the current function (including the return value and non-reference parameters to the function). Doing so allows us to catch a few more cases where the internal mask is all on, even if the mask coming into the function wasn't all on, and thence use moves rather than blends for those assignments. (Which in turn can allow additional optimizations to happen.) Fixes issue #23.
350 lines
11 KiB
C++
350 lines
11 KiB
C++
/*
|
|
Copyright (c) 2010-2011, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
* Neither the name of Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/** @file sym.cpp
|
|
@brief file with definitions for symbol and symbol table classes.
|
|
*/
|
|
|
|
#include "sym.h"
|
|
#include "type.h"
|
|
#include "util.h"
|
|
#include <stdio.h>
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Symbol
|
|
|
|
Symbol::Symbol(const std::string &n, SourcePos p, const Type *t,
|
|
StorageClass sc)
|
|
: pos(p), name(n) {
|
|
storagePtr = NULL;
|
|
function = exportedFunction = NULL;
|
|
type = t;
|
|
constValue = NULL;
|
|
storageClass = sc;
|
|
varyingCFDepth = 0;
|
|
parentFunction = NULL;
|
|
}
|
|
|
|
|
|
std::string
|
|
Symbol::MangledName() const {
|
|
return name + type->Mangle();
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// SymbolTable
|
|
|
|
SymbolTable::SymbolTable() {
|
|
PushScope();
|
|
}
|
|
|
|
|
|
SymbolTable::~SymbolTable() {
|
|
// Otherwise we have mismatched push/pop scopes
|
|
assert(variables.size() == 1 && types.size() == 1);
|
|
PopScope();
|
|
}
|
|
|
|
void
|
|
SymbolTable::PushScope() {
|
|
variables.push_back(new std::vector<Symbol *>);
|
|
types.push_back(new TypeMapType);
|
|
}
|
|
|
|
|
|
void
|
|
SymbolTable::PopScope() {
|
|
// FIXME: delete Symbols in variables vector<>...
|
|
assert(variables.size() > 1);
|
|
delete variables.back();
|
|
variables.pop_back();
|
|
assert(types.size() > 1);
|
|
delete types.back();
|
|
types.pop_back();
|
|
}
|
|
|
|
|
|
bool
|
|
SymbolTable::AddVariable(Symbol *symbol) {
|
|
assert(symbol != NULL);
|
|
|
|
// Check to see if a symbol of the same name has already been declared.
|
|
for (int i = (int)variables.size() - 1; i >= 0; --i) {
|
|
std::vector<Symbol *> &sv = *(variables[i]);
|
|
for (int j = (int)sv.size() - 1; j >= 0; --j) {
|
|
if (sv[j]->name == symbol->name) {
|
|
if (i == (int)variables.size()-1) {
|
|
// If a symbol of the same name was declared in the
|
|
// same scope, it's an error.
|
|
Error(symbol->pos, "Ignoring redeclaration of symbol \"%s\".",
|
|
symbol->name.c_str());
|
|
return false;
|
|
}
|
|
else {
|
|
// Otherwise it's just shadowing something else, which
|
|
// is legal but dangerous..
|
|
Warning(symbol->pos,
|
|
"Symbol \"%s\" shadows symbol declared in outer scope.",
|
|
symbol->name.c_str());
|
|
variables.back()->push_back(symbol);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// No matches, so go ahead and add it...
|
|
variables.back()->push_back(symbol);
|
|
return true;
|
|
}
|
|
|
|
|
|
Symbol *
|
|
SymbolTable::LookupVariable(const char *name) {
|
|
// Note that we iterate through the variables vectors backwards, sinec
|
|
// we want to search from the innermost scope to the outermost, so that
|
|
// we get the right symbol if we have multiple variables in different
|
|
// scopes that shadow each other.
|
|
std::vector<std::vector<Symbol *> *>::reverse_iterator liter = variables.rbegin();
|
|
while (liter != variables.rend()) {
|
|
std::vector<Symbol *> &sv = *(*liter);
|
|
for (int i = (int)sv.size() - 1; i >= 0; --i)
|
|
if (sv[i]->name == name)
|
|
return sv[i];
|
|
++liter;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
bool
|
|
SymbolTable::AddFunction(Symbol *symbol) {
|
|
const FunctionType *ft = dynamic_cast<const FunctionType *>(symbol->type);
|
|
assert(ft != NULL);
|
|
if (LookupFunction(symbol->name.c_str(), ft) != NULL)
|
|
// A function of the same name and type has already been added to
|
|
// the symbol table
|
|
return false;
|
|
|
|
functions[symbol->name].push_back(symbol);
|
|
return true;
|
|
}
|
|
|
|
|
|
std::vector<Symbol *> *
|
|
SymbolTable::LookupFunction(const char *name) {
|
|
if (functions.find(name) != functions.end())
|
|
return &functions[name];
|
|
return NULL;
|
|
}
|
|
|
|
|
|
Symbol *
|
|
SymbolTable::LookupFunction(const char *name, const FunctionType *type) {
|
|
if (functions.find(name) == functions.end())
|
|
return NULL;
|
|
|
|
std::vector<Symbol *> &funcs = functions[name];
|
|
for (unsigned int i = 0; i < funcs.size(); ++i)
|
|
if (Type::Equal(funcs[i]->type, type))
|
|
return funcs[i];
|
|
return NULL;
|
|
}
|
|
|
|
|
|
bool
|
|
SymbolTable::AddType(const char *name, const Type *type, SourcePos pos) {
|
|
// Like AddVariable(), we go backwards through the type maps, working
|
|
// from innermost scope to outermost.
|
|
for (int i = types.size()-1; i >= 0; --i) {
|
|
TypeMapType &sm = *(types[i]);
|
|
if (sm.find(name) != sm.end()) {
|
|
if (i == (int)types.size() - 1) {
|
|
Error(pos, "Ignoring redefinition of type \"%s\".", name);
|
|
return false;
|
|
}
|
|
else {
|
|
Warning(pos, "Type \"%s\" shadows type declared in outer scope.", name);
|
|
TypeMapType &sm = *(types.back());
|
|
sm[name] = type;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
TypeMapType &sm = *(types.back());
|
|
sm[name] = type;
|
|
return true;
|
|
}
|
|
|
|
|
|
const Type *
|
|
SymbolTable::LookupType(const char *name) const {
|
|
// Again, search through the type maps backward to get scoping right.
|
|
for (int i = types.size()-1; i >= 0; --i) {
|
|
TypeMapType &sm = *(types[i]);
|
|
if (sm.find(name) != sm.end())
|
|
return sm[name];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
std::vector<std::string>
|
|
SymbolTable::ClosestVariableOrFunctionMatch(const char *str) const {
|
|
// This is a little wasteful, but we'll look through all of the
|
|
// variable and function symbols and compute the edit distance from the
|
|
// given string to them. If the edit distance is under maxDelta, then
|
|
// it goes in the entry of the matches[] array corresponding to its
|
|
// edit distance.
|
|
const int maxDelta = 2;
|
|
std::vector<std::string> matches[maxDelta+1];
|
|
|
|
for (int i = 0; i < (int)variables.size(); ++i) {
|
|
std::vector<Symbol *> &sv = *(variables[i]);
|
|
for (int j = 0; j < (int)sv.size(); ++j) {
|
|
int dist = StringEditDistance(str, sv[j]->name, maxDelta+1);
|
|
if (dist <= maxDelta)
|
|
matches[dist].push_back(sv[j]->name);
|
|
}
|
|
}
|
|
|
|
std::map<std::string, std::vector<Symbol *> >::const_iterator iter;
|
|
for (iter = functions.begin(); iter != functions.end(); ++iter) {
|
|
int dist = StringEditDistance(str, iter->first, maxDelta+1);
|
|
if (dist <= maxDelta)
|
|
matches[dist].push_back(iter->first);
|
|
}
|
|
|
|
// Now, return the first entry of matches[] that is non-empty, if any.
|
|
for (int i = 0; i <= maxDelta; ++i) {
|
|
if (matches[i].size())
|
|
return matches[i];
|
|
}
|
|
|
|
// Otherwise, no joy.
|
|
return std::vector<std::string>();
|
|
}
|
|
|
|
|
|
std::vector<std::string>
|
|
SymbolTable::ClosestTypeMatch(const char *str) const {
|
|
return closestTypeMatch(str, true);
|
|
}
|
|
|
|
|
|
std::vector<std::string>
|
|
SymbolTable::ClosestEnumTypeMatch(const char *str) const {
|
|
return closestTypeMatch(str, false);
|
|
}
|
|
|
|
|
|
std::vector<std::string>
|
|
SymbolTable::closestTypeMatch(const char *str, bool structsVsEnums) const {
|
|
// This follows the same approach as ClosestVariableOrFunctionMatch()
|
|
// above; compute all edit distances, keep the ones shorter than
|
|
// maxDelta, return the first non-empty vector of one or more sets of
|
|
// alternatives with minimal edit distance.
|
|
const int maxDelta = 2;
|
|
std::vector<std::string> matches[maxDelta+1];
|
|
|
|
for (unsigned int i = 0; i < types.size(); ++i) {
|
|
TypeMapType::const_iterator iter;
|
|
for (iter = types[i]->begin(); iter != types[i]->end(); ++iter) {
|
|
// Skip over either StructTypes or EnumTypes, depending on the
|
|
// value of the structsVsEnums parameter
|
|
bool isEnum = (dynamic_cast<const EnumType *>(iter->second) != NULL);
|
|
if (isEnum && structsVsEnums)
|
|
continue;
|
|
else if (!isEnum && !structsVsEnums)
|
|
continue;
|
|
|
|
int dist = StringEditDistance(str, iter->first, maxDelta+1);
|
|
if (dist <= maxDelta)
|
|
matches[dist].push_back(iter->first);
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i <= maxDelta; ++i) {
|
|
if (matches[i].size())
|
|
return matches[i];
|
|
}
|
|
return std::vector<std::string>();
|
|
}
|
|
|
|
|
|
void
|
|
SymbolTable::Print() {
|
|
int depth = 0;
|
|
fprintf(stderr, "Variables:\n----------------\n");
|
|
std::vector<std::vector<Symbol *> *>::iterator liter = variables.begin();
|
|
while (liter != variables.end()) {
|
|
fprintf(stderr, "%*c", depth, ' ');
|
|
std::vector<Symbol *>::iterator siter = (*liter)->begin();
|
|
while (siter != (*liter)->end()) {
|
|
fprintf(stderr, "%s [%s]", (*siter)->name.c_str(),
|
|
(*siter)->type->GetString().c_str());
|
|
++siter;
|
|
}
|
|
++liter;
|
|
fprintf(stderr, "\n");
|
|
depth += 4;
|
|
}
|
|
|
|
fprintf(stderr, "Functions:\n----------------\n");
|
|
std::map<std::string, std::vector<Symbol *> >::iterator fiter;
|
|
fiter = functions.begin();
|
|
while (fiter != functions.end()) {
|
|
fprintf(stderr, "%s\n", fiter->first.c_str());
|
|
std::vector<Symbol *> &syms = fiter->second;
|
|
for (unsigned int i = 0; i < syms.size(); ++i)
|
|
fprintf(stderr, " %s\n", syms[i]->type->GetString().c_str());
|
|
++fiter;
|
|
}
|
|
|
|
depth = 0;
|
|
fprintf(stderr, "Named types:\n---------------\n");
|
|
for (unsigned int i = 0; i < types.size(); ++i) {
|
|
TypeMapType &sm = *types[i];
|
|
TypeMapType::iterator siter = sm.begin();
|
|
while (siter != sm.end()) {
|
|
fprintf(stderr, "%*c", depth, ' ');
|
|
fprintf(stderr, "%s -> %s\n", siter->first.c_str(),
|
|
siter->second->GetString().c_str());
|
|
++siter;
|
|
}
|
|
depth += 4;
|
|
}
|
|
}
|