Files
ispc/ispc.h
Matt Pharr 975db80ef6 Add support for pointers to the language.
Pointers can be either uniform or varying, and behave correspondingly.
e.g.: "uniform float * varying" is a varying pointer to uniform float
data in memory, and "float * uniform" is a uniform pointer to varying
data in memory.  Like other types, pointers are varying by default.

Pointer-based expressions, & and *, sizeof, ->, pointer arithmetic,
and the array/pointer duality all bahave as in C.  Array arguments
to functions are converted to pointers, also like C.

There is a built-in NULL for a null pointer value; conversion from
compile-time constant 0 values to NULL still needs to be implemented.

Other changes:
- Syntax for references has been updated to be C++ style; a useful
  warning is now issued if the "reference" keyword is used.
- It is now illegal to pass a varying lvalue as a reference parameter
  to a function; references are essentially uniform pointers.
  This case had previously been handled via special case call by value
  return code.  That path has been removed, now that varying pointers
  are available to handle this use case (and much more).
- Some stdlib routines have been updated to take pointers as
  arguments where appropriate (e.g. prefetch and the atomics).
  A number of others still need attention.
- All of the examples have been updated
- Many new tests

TODO: documentation
2011-11-27 13:09:59 -08:00

413 lines
14 KiB
C++

/*
Copyright (c) 2010-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file ispc.h
@brief Main ispc.header file
*/
#ifndef ISPC_H
#define ISPC_H
#if defined(_WIN32) || defined(_WIN64)
#define ISPC_IS_WINDOWS
#elif defined(__linux__)
#define ISPC_IS_LINUX
#elif defined(__APPLE__)
#define ISPC_IS_APPLE
#endif
#include <assert.h>
#include <stdint.h>
#include <vector>
#include <string>
/** @def ISPC_MAX_NVEC maximum vector size of any of the compliation
targets.
*/
#define ISPC_MAX_NVEC 16
// Forward declarations of a number of widely-used LLVM types
namespace llvm {
class BasicBlock;
class Constant;
class ConstantValue;
class DIBuilder;
class DIDescriptor;
class DIFile;
class DIType;
class Function;
class FunctionType;
class LLVMContext;
class Module;
class Target;
class TargetMachine;
class Type;
class Value;
}
// llvm::Type *s are no longer const in llvm 3.0
#if defined(LLVM_3_0) || defined(LLVM_3_0svn) || defined(LLVM_3_1svn)
#define LLVM_TYPE_CONST
#else
#define LLVM_TYPE_CONST const
#endif
class ArrayType;
class AtomicType;
class FunctionEmitContext;
class Expr;
class ExprList;
class Function;
class FunctionType;
class Module;
class Stmt;
class Symbol;
class SymbolTable;
class Type;
struct VariableDeclaration;
/** @brief Representation of a range of positions in a source file.
This class represents a range of characters in a source file
(e.g. those that span a token's definition), from starting line and
column to ending line and column. (These values are tracked by the
lexing code). Both lines and columns are counted starting from one.
*/
struct SourcePos {
SourcePos(const char *n = NULL, int fl = 0, int fc = 0,
int ll = 0, int lc = 0);
const char *name;
int first_line;
int first_column;
int last_line;
int last_column;
/** Prints the filename and line/column range to standard output. */
void Print() const;
/** Returns a LLVM DIFile object that represents the SourcePos's file */
llvm::DIFile GetDIFile() const;
bool operator==(const SourcePos &p2) const;
};
/** Returns a SourcePos that encompasses the extent of both of the given
extents. */
SourcePos Union(const SourcePos &p1, const SourcePos &p2);
/** @brief Structure that defines a compilation target
This structure defines a compilation target for the ispc compiler.
*/
struct Target {
/** Initializes the given Target pointer for a target of the given
name, if the name is a known target. Returns true if the
target was initialized and false if the name is unknown. */
static bool GetTarget(const char *arch, const char *cpu, const char *isa,
bool pic, Target *);
/** Returns a comma-delimited string giving the names of the currently
supported target ISAs. */
static const char *SupportedTargetISAs();
/** Returns a comma-delimited string giving the names of the currently
supported target CPUs. */
static const char *SupportedTargetCPUs();
/** Returns a comma-delimited string giving the names of the currently
supported target architectures. */
static const char *SupportedTargetArchs();
/** Returns a triple string specifying the target architecture, vendor,
and environment. */
std::string GetTripleString() const;
/** Returns the LLVM TargetMachine object corresponding to this
target. */
llvm::TargetMachine *GetTargetMachine() const;
/** Returns a string like "avx" encoding the target. */
const char *GetISAString() const;
/** Returns the size of the given type */
llvm::Value *SizeOf(LLVM_TYPE_CONST llvm::Type *type);
/** Given a structure type and an element number in the structure,
returns a value corresponding to the number of bytes from the start
of the structure where the element is located. */
llvm::Value *StructOffset(LLVM_TYPE_CONST llvm::Type *type,
int element);
/** llvm Target object representing this target. */
const llvm::Target *target;
/** Enumerator giving the instruction sets that the compiler can
target. These should be ordered from "worse" to "better" in that
if a processor supports multiple target ISAs, then the most
flexible/performant of them will apear last in the enumerant. Note
also that __best_available_isa() needs to be updated if ISAs are
added or the enumerant values are reordered. */
enum ISA { SSE2, SSE4, AVX, NUM_ISAS };
/** Instruction set being compiled to. */
ISA isa;
/** Target system architecture. (e.g. "x86-64", "x86"). */
std::string arch;
/** Is the target architecture 32 or 64 bit */
bool is32Bit;
/** Target CPU. (e.g. "corei7", "corei7-avx", ..) */
std::string cpu;
/** Target-specific attributes to pass along to the LLVM backend */
std::string attributes;
/** Native vector width of the vector instruction set. Note that this
value is directly derived from the ISA Being used (e.g. it's 4 for
SSE, 8 for AVX, etc.) */
int nativeVectorWidth;
/** Actual vector width currently being compiled to. This may be an
integer multiple of the native vector width, for example if we're
"doubling up" and compiling 8-wide on a 4-wide SSE system. */
int vectorWidth;
/** Indicates whether position independent code should be generated. */
bool generatePIC;
};
/** @brief Structure that collects optimization options
This structure collects all of the options related to optimization of
generated code.
*/
struct Opt {
Opt();
/** Optimization level. Currently, the only valid values are 0,
indicating essentially no optimization, and 1, indicating as much
optimization as possible. */
int level;
/** Indicates whether "fast and loose" numerically unsafe optimizations
should be performed. This is false by default. */
bool fastMath;
/** Indicates whether an vector load should be issued for masked loads
on platforms that don't have a native masked vector load. (This may
lead to accessing memory up to programCount-1 elements past the end of
arrays, so is unsafe in general.) */
bool fastMaskedVload;
/** Indicates when loops should be unrolled (when doing so seems like
it will make sense. */
bool unrollLoops;
/** Indicates if addressing math will be done with 32-bit math, even on
64-bit systems. (This is generally noticably more efficient,
though at the cost of addressing >2GB).
*/
bool force32BitAddressing;
/** Indicates whether assert() statements should be ignored (for
performance in the generated code). */
bool disableAsserts;
/** If enabled, the various __pseudo* memory ops (gather/scatter,
masked load/store) are left in their __pseudo* form, for better
understanding of the structure of generated code when reading
it. */
bool disableHandlePseudoMemoryOps;
/** On targets that don't have a masked store instruction but do have a
blending instruction, by default, we simulate masked stores by
loading the old value, blending, and storing the result. This can
potentially be unsafe in multi-threaded code, in that it writes to
locations that aren't supposed to be written to. Setting this
value to true disables this work-around, and instead implements
masked stores by 'scalarizing' them, so that we iterate over the
ISIMD lanes and do a scalar write for the ones that are running. */
bool disableBlendedMaskedStores;
/** Disables the 'coherent control flow' constructs in the
language. (e.g. this causes "cif" statements to be demoted to "if"
statements.) This is likely only useful for measuring the impact
of coherent control flow. */
bool disableCoherentControlFlow;
/** Disables uniform control flow optimizations (e.g. this changes an
"if" statement with a uniform condition to have a varying
condition). This is likely only useful for measuring the impact of
uniform control flow. */
bool disableUniformControlFlow;
/** Disables the backend optimizations related to gather/scatter
(e.g. transforming gather from sequential locations to an unaligned
load, etc.) This is likely only useful for measuring the impact of
these optimizations. */
bool disableGatherScatterOptimizations;
/** Disables the optimization that demotes masked stores to regular
stores when the store is happening at the same control flow level
where the variable was declared. This is likely only useful for
measuring the impact of this optimization. */
bool disableMaskedStoreToStore;
/** Disables the optimization that detects when the execution mask is
all on and emits code for gathers and scatters that doesn't loop
over the SIMD lanes but just does the scalar loads and stores
directly. */
bool disableGatherScatterFlattening;
/** Disables the optimizations that detect when arrays are being
indexed with 'uniform' values and issue scalar loads/stores rather
than gathers/scatters. This is likely only useful for measuring
the impact of this optimization. */
bool disableUniformMemoryOptimizations;
/** Disables optimizations for masked stores: masked stores with the
mask all on are transformed to regular stores, and masked stores
with the mask are all off are removed (which in turn can allow
eliminating additional dead code related to computing the value
stored). This is likely only useful for measuring the impact of
this optimization. */
bool disableMaskedStoreOptimizations;
};
/** @brief This structure collects together a number of global variables.
This structure collects a number of global variables that mostly
represent parameter settings for this compilation run. In particular,
none of these values should change after compilation befins; their
values are all set during command-line argument processing or very
early during the compiler's execution, before any files are parsed.
*/
struct Globals {
Globals();
/** Optimization option settings */
Opt opt;
/** Compilation target information */
Target target;
/** There are a number of math libraries that can be used for
transcendentals and the like during program compilation. */
enum MathLib { Math_ISPC, Math_ISPCFast, Math_SVML, Math_System };
MathLib mathLib;
/** Records whether the ispc standard library should be made available
to the program during compilations. (Default is true.) */
bool includeStdlib;
/** Indicates whether the C pre-processor should be run over the
program source before compiling it. (Default is true.) */
bool runCPP;
/** When \c true, voluminous debugging output will be printed during
ispc's execution. */
bool debugPrint;
/** Indicates whether all warning messages should be surpressed. */
bool disableWarnings;
/** Indicates whether line wrapping of error messages to the terminal
width should be disabled. */
bool disableLineWrap;
/** Indicates whether additional warnings should be issued about
possible performance pitfalls. */
bool emitPerfWarnings;
/** Indicates whether calls should be emitted in the program to an
externally-defined program instrumentation function. (See the
"Instrumenting your ispc programs" section in the user's
manual.) */
bool emitInstrumentation;
/** Indicates whether ispc should generate debugging symbols for the
program in its output. */
bool generateDebuggingSymbols;
/** If true, function names are mangled by appending the target ISA and
vector width to them. */
bool mangleFunctionsWithTarget;
/** Global LLVMContext object */
llvm::LLVMContext *ctx;
/** Current working directory when the ispc compiler starts
execution. */
char currentDirectory[1024];
/** Arguments to pass along to the C pre-processor, if it is run on the
program before compilation. */
std::vector<std::string> cppArgs;
};
enum {
COST_ASSIGN = 1,
COST_COHERENT_BREAK_CONTINE = 4,
COST_COMPLEX_ARITH_OP = 4,
COST_DEREF = 4,
COST_FUNCALL = 4,
COST_FUNPTR_UNIFORM = 12,
COST_FUNPTR_VARYING = 24,
COST_GATHER = 8,
COST_LOAD = 2,
COST_REGULAR_BREAK_CONTINUE = 2,
COST_RETURN = 4,
COST_SELECT = 4,
COST_SIMPLE_ARITH_LOGIC_OP = 1,
COST_SYNC = 32,
COST_TASK_LAUNCH = 32,
COST_TYPECAST_COMPLEX = 4,
COST_TYPECAST_SIMPLE = 1,
COST_UNIFORM_IF = 2,
COST_VARYING_IF = 3,
COST_UNIFORM_LOOP = 4,
COST_VARYING_LOOP = 6,
COST_ASSERT = 8,
CHECK_MASK_AT_FUNCTION_START_COST = 16,
PREDICATE_SAFE_IF_STATEMENT_COST = 6,
};
extern Globals *g;
extern Module *m;
#endif // ISPC_H