Files
ispc/decl.cpp
Matt Pharr 975db80ef6 Add support for pointers to the language.
Pointers can be either uniform or varying, and behave correspondingly.
e.g.: "uniform float * varying" is a varying pointer to uniform float
data in memory, and "float * uniform" is a uniform pointer to varying
data in memory.  Like other types, pointers are varying by default.

Pointer-based expressions, & and *, sizeof, ->, pointer arithmetic,
and the array/pointer duality all bahave as in C.  Array arguments
to functions are converted to pointers, also like C.

There is a built-in NULL for a null pointer value; conversion from
compile-time constant 0 values to NULL still needs to be implemented.

Other changes:
- Syntax for references has been updated to be C++ style; a useful
  warning is now issued if the "reference" keyword is used.
- It is now illegal to pass a varying lvalue as a reference parameter
  to a function; references are essentially uniform pointers.
  This case had previously been handled via special case call by value
  return code.  That path has been removed, now that varying pointers
  are available to handle this use case (and much more).
- Some stdlib routines have been updated to take pointers as
  arguments where appropriate (e.g. prefetch and the atomics).
  A number of others still need attention.
- All of the examples have been updated
- Many new tests

TODO: documentation
2011-11-27 13:09:59 -08:00

531 lines
18 KiB
C++

/*
Copyright (c) 2010-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file decl.cpp
@brief Implementations of classes related to turning declarations into
symbols and types.
*/
#include "decl.h"
#include "util.h"
#include "module.h"
#include "sym.h"
#include "type.h"
#include "stmt.h"
#include "expr.h"
#include <stdio.h>
#include <llvm/Module.h>
/** Given a Type and a set of type qualifiers, apply the type qualifiers to
the type, returning the type that is the result.
*/
static const Type *
lApplyTypeQualifiers(int typeQualifiers, const Type *type, SourcePos pos) {
if (type == NULL)
return NULL;
if ((typeQualifiers & TYPEQUAL_UNSIGNED) != 0) {
const Type *unsignedType = type->GetAsUnsignedType();
if (unsignedType != NULL)
type = unsignedType;
else
Error(pos, "\"unsigned\" qualifier is illegal with \"%s\" type.",
type->GetString().c_str());
}
if ((typeQualifiers & TYPEQUAL_CONST) != 0)
type = type->GetAsConstType();
if ((typeQualifiers & TYPEQUAL_UNIFORM) != 0)
type = type->GetAsUniformType();
else if ((typeQualifiers & TYPEQUAL_VARYING) != 0)
type = type->GetAsVaryingType();
else {
// otherwise, structs are uniform by default and everything
// else is varying by default
if (dynamic_cast<const StructType *>(type->GetBaseType()) != NULL)
type = type->GetAsUniformType();
else
type = type->GetAsVaryingType();
}
return type;
}
///////////////////////////////////////////////////////////////////////////
// DeclSpecs
DeclSpecs::DeclSpecs(const Type *t, StorageClass sc, int tq) {
baseType = t;
storageClass = sc;
typeQualifiers = tq;
soaWidth = 0;
vectorSize = 0;
}
const Type *
DeclSpecs::GetBaseType(SourcePos pos) const {
const Type *bt = baseType;
if (vectorSize > 0) {
const AtomicType *atomicType = dynamic_cast<const AtomicType *>(bt);
if (atomicType == NULL) {
Error(pos, "Only atomic types (int, float, ...) are legal for vector "
"types.");
return NULL;
}
bt = new VectorType(atomicType, vectorSize);
}
return lApplyTypeQualifiers(typeQualifiers, bt, pos);
}
void
DeclSpecs::Print() const {
if (storageClass == SC_EXTERN) printf("extern ");
if (storageClass == SC_EXTERN_C) printf("extern \"C\" ");
if (storageClass == SC_EXPORT) printf("export ");
if (storageClass == SC_STATIC) printf("static ");
if (storageClass == SC_TYPEDEF) printf("typedef ");
if (soaWidth > 0) printf("soa<%d> ", soaWidth);
if (typeQualifiers & TYPEQUAL_INLINE) printf("inline ");
if (typeQualifiers & TYPEQUAL_CONST) printf("const ");
if (typeQualifiers & TYPEQUAL_UNIFORM) printf("uniform ");
if (typeQualifiers & TYPEQUAL_VARYING) printf("varying ");
if (typeQualifiers & TYPEQUAL_TASK) printf("task ");
if (typeQualifiers & TYPEQUAL_UNSIGNED) printf("unsigned ");
printf("%s", baseType->GetString().c_str());
if (vectorSize > 0) printf("<%d>", vectorSize);
}
///////////////////////////////////////////////////////////////////////////
// Declarator
Declarator::Declarator(DeclaratorKind dk, SourcePos p)
: pos(p), kind(dk) {
child = NULL;
typeQualifiers = 0;
arraySize = -1;
sym = NULL;
initExpr = NULL;
}
void
Declarator::InitFromDeclSpecs(DeclSpecs *ds) {
const Type *t = GetType(ds);
Symbol *sym = GetSymbol();
if (sym != NULL) {
sym->type = t;
sym->storageClass = ds->storageClass;
}
}
Symbol *
Declarator::GetSymbol() const {
// The symbol lives at the last child in the chain, so walk down there
// and return the one there.
const Declarator *d = this;
while (d->child != NULL)
d = d->child;
return d->sym;
}
void
Declarator::Print() const {
Symbol *sym = GetSymbol();
if (sym != NULL)
printf("%s", sym->name.c_str());
else
printf("(null symbol)");
if (initExpr != NULL) {
printf(" = (");
initExpr->Print();
printf(")");
}
pos.Print();
}
Symbol *
Declarator::GetFunctionInfo(DeclSpecs *ds, std::vector<Symbol *> *funArgs) {
const FunctionType *type =
dynamic_cast<const FunctionType *>(GetType(ds));
if (type == NULL)
return NULL;
Symbol *declSym = GetSymbol();
assert(declSym != NULL);
// Get the symbol for the function from the symbol table. (It should
// already have been added to the symbol table by AddGlobal() by the
// time we get here.)
Symbol *funSym = m->symbolTable->LookupFunction(declSym->name.c_str(), type);
if (funSym != NULL)
// May be NULL due to error earlier in compilation
funSym->pos = pos;
// Walk down to the declarator for the function. (We have to get past
// the stuff that specifies the function's return type before we get to
// the function's declarator.)
Declarator *d = this;
while (d != NULL && d->kind != DK_FUNCTION)
d = d->child;
assert(d != NULL);
for (unsigned int i = 0; i < d->functionParams.size(); ++i) {
Declaration *pdecl = d->functionParams[i];
assert(pdecl->declarators.size() == 1);
funArgs->push_back(pdecl->declarators[0]->GetSymbol());
}
return funSym;
}
const Type *
Declarator::GetType(const Type *base, DeclSpecs *ds) const {
bool hasUniformQual = ((typeQualifiers & TYPEQUAL_UNIFORM) != 0);
bool hasVaryingQual = ((typeQualifiers & TYPEQUAL_VARYING) != 0);
bool isTask = ((typeQualifiers & TYPEQUAL_TASK) != 0);
bool isConst = ((typeQualifiers & TYPEQUAL_CONST) != 0);
if (hasUniformQual && hasVaryingQual) {
Error(pos, "Can't provide both \"uniform\" and \"varying\" qualifiers.");
return NULL;
}
if (kind != DK_FUNCTION && isTask)
Error(pos, "\"task\" qualifier illegal in variable declaration.");
const Type *type = base;
switch (kind) {
case DK_BASE:
// All of the type qualifiers should be in the DeclSpecs for the
// base declarator
assert(typeQualifiers == 0);
assert(child == NULL);
return type;
case DK_POINTER:
type = new PointerType(type, hasUniformQual, isConst);
if (child != NULL)
return child->GetType(type, ds);
else
return type;
break;
case DK_REFERENCE:
if (hasUniformQual)
Error(pos, "\"uniform\" qualifier is illegal to apply to references.");
if (hasVaryingQual)
Error(pos, "\"varying\" qualifier is illegal to apply to references.");
if (isConst)
Error(pos, "\"const\" qualifier is to illegal apply to references.");
// The parser should disallow this already, but double check.
if (dynamic_cast<const ReferenceType *>(type) != NULL) {
Error(pos, "References to references are illegal.");
return NULL;
}
type = new ReferenceType(type);
if (child != NULL)
return child->GetType(type, ds);
else
return type;
break;
case DK_ARRAY:
type = new ArrayType(type, arraySize);
if (child)
return child->GetType(type, ds);
else
return type;
break;
case DK_FUNCTION: {
std::vector<const Type *> args;
std::vector<std::string> argNames;
std::vector<ConstExpr *> argDefaults;
std::vector<SourcePos> argPos;
// Loop over the function arguments and store the names, types,
// default values (if any), and source file positions each one in
// the corresponding vector.
for (unsigned int i = 0; i < functionParams.size(); ++i) {
Declaration *d = functionParams[i];
char buf[32];
Symbol *sym;
if (d->declarators.size() == 0) {
// function declaration like foo(float), w/o a name for
// the parameter
sprintf(buf, "__anon_parameter_%d", i);
sym = new Symbol(buf, pos);
sym->type = d->declSpecs->GetBaseType(pos);
}
else {
sym = d->declarators[0]->GetSymbol();
if (sym == NULL) {
// Handle more complex anonymous declarations like
// float (float **).
sprintf(buf, "__anon_parameter_%d", i);
sym = new Symbol(buf, pos);
sym->type = d->declarators[0]->GetType(d->declSpecs);
}
}
const ArrayType *at = dynamic_cast<const ArrayType *>(sym->type);
if (at != NULL) {
// As in C, arrays are passed to functions as pointers to
// their element type. We'll just immediately make this
// change now. (One shortcoming of losing the fact that
// the it was originally an array is that any warnings or
// errors later issued that print the function type will
// report this differently than it was originally declared
// in the function, but it's not clear that this is a
// significant problem.)
sym->type = PointerType::GetUniform(at->GetElementType());
// Make sure there are no unsized arrays (other than the
// first dimension) in function parameter lists.
at = dynamic_cast<const ArrayType *>(at->GetElementType());
while (at != NULL) {
if (at->GetElementCount() == 0)
Error(sym->pos, "Arrays with unsized dimensions in "
"dimensions after the first one are illegal in "
"function parameter lists.");
at = dynamic_cast<const ArrayType *>(at->GetElementType());
}
}
args.push_back(sym->type);
argNames.push_back(sym->name);
argPos.push_back(sym->pos);
ConstExpr *init = NULL;
if (d->declarators.size()) {
// Try to find an initializer expression; if there is one,
// it lives down to the base declarator.
Declarator *decl = d->declarators[0];
while (decl->child != NULL) {
assert(decl->initExpr == NULL);
decl = decl->child;
}
if (decl->initExpr != NULL &&
(decl->initExpr = decl->initExpr->TypeCheck()) != NULL &&
(decl->initExpr = decl->initExpr->Optimize()) != NULL &&
(init = dynamic_cast<ConstExpr *>(decl->initExpr)) == NULL) {
Error(decl->initExpr->pos, "Default value for parameter "
"\"%s\" must be a compile-time constant.",
sym->name.c_str());
}
}
argDefaults.push_back(init);
}
const Type *returnType = type;
if (returnType == NULL) {
Error(pos, "No return type provided in function declaration.");
return NULL;
}
bool isExported = ds && (ds->storageClass == SC_EXPORT);
bool isExternC = ds && (ds->storageClass == SC_EXTERN_C);
bool isTask = ds && ((ds->typeQualifiers & TYPEQUAL_TASK) != 0);
if (isExported && isTask) {
Error(pos, "Function can't have both \"task\" and \"export\" "
"qualifiers");
return NULL;
}
if (isExternC && isTask) {
Error(pos, "Function can't have both \"extern \"C\"\" and \"task\" "
"qualifiers");
return NULL;
}
if (isExternC && isExported) {
Error(pos, "Function can't have both \"extern \"C\"\" and \"export\" "
"qualifiers");
return NULL;
}
Type *functionType =
new FunctionType(returnType, args, pos, argNames, argDefaults,
argPos, isTask, isExported, isExternC);
return child->GetType(functionType, ds);
}
default:
FATAL("Unexpected decl kind");
return NULL;
}
#if 0
// Make sure we actually have an array of structs ..
const StructType *childStructType =
dynamic_cast<const StructType *>(childType);
if (childStructType == NULL) {
Error(pos, "Illegal to provide soa<%d> qualifier with non-struct "
"type \"%s\".", soaWidth, childType->GetString().c_str());
return new ArrayType(childType, arraySize == -1 ? 0 : arraySize);
}
else if ((soaWidth & (soaWidth - 1)) != 0) {
Error(pos, "soa<%d> width illegal. Value must be power of two.",
soaWidth);
return NULL;
}
else if (arraySize != -1 && (arraySize % soaWidth) != 0) {
Error(pos, "soa<%d> width must evenly divide array size %d.",
soaWidth, arraySize);
return NULL;
}
return new SOAArrayType(childStructType, arraySize == -1 ? 0 : arraySize,
soaWidth);
#endif
}
const Type *
Declarator::GetType(DeclSpecs *ds) const {
const Type *baseType = ds->GetBaseType(pos);
const Type *type = GetType(baseType, ds);
return type;
}
///////////////////////////////////////////////////////////////////////////
// Declaration
Declaration::Declaration(DeclSpecs *ds, std::vector<Declarator *> *dlist) {
declSpecs = ds;
if (dlist != NULL)
declarators = *dlist;
for (unsigned int i = 0; i < declarators.size(); ++i)
if (declarators[i] != NULL)
declarators[i]->InitFromDeclSpecs(declSpecs);
}
Declaration::Declaration(DeclSpecs *ds, Declarator *d) {
declSpecs = ds;
if (d != NULL) {
d->InitFromDeclSpecs(ds);
declarators.push_back(d);
}
}
std::vector<VariableDeclaration>
Declaration::GetVariableDeclarations() const {
assert(declSpecs->storageClass != SC_TYPEDEF);
std::vector<VariableDeclaration> vars;
for (unsigned int i = 0; i < declarators.size(); ++i) {
if (declarators[i] == NULL)
continue;
Declarator *decl = declarators[i];
if (decl == NULL || decl->kind == DK_FUNCTION)
// Ignore earlier errors or external function declarations
// inside other functions.
continue;
Symbol *sym = decl->GetSymbol();
m->symbolTable->AddVariable(sym);
vars.push_back(VariableDeclaration(sym, decl->initExpr));
}
return vars;
}
void
Declaration::Print() const {
printf("Declaration: specs [");
declSpecs->Print();
printf("], declarators [");
for (unsigned int i = 0 ; i < declarators.size(); ++i) {
declarators[i]->Print();
printf("%s", (i == declarators.size() - 1) ? "]" : ", ");
}
}
///////////////////////////////////////////////////////////////////////////
void
GetStructTypesNamesPositions(const std::vector<StructDeclaration *> &sd,
std::vector<const Type *> *elementTypes,
std::vector<std::string> *elementNames,
std::vector<SourcePos> *elementPositions) {
for (unsigned int i = 0; i < sd.size(); ++i) {
const Type *type = sd[i]->type;
// FIXME: making this fake little DeclSpecs here is really
// disgusting
DeclSpecs ds(type);
if (type->IsUniformType())
ds.typeQualifiers |= TYPEQUAL_UNIFORM;
else
ds.typeQualifiers |= TYPEQUAL_VARYING;
for (unsigned int j = 0; j < sd[i]->declarators->size(); ++j) {
Declarator *d = (*sd[i]->declarators)[j];
d->InitFromDeclSpecs(&ds);
Symbol *sym = d->GetSymbol();
const ArrayType *arrayType =
dynamic_cast<const ArrayType *>(sym->type);
if (arrayType != NULL && arrayType->GetElementCount() == 0) {
Error(d->pos, "Unsized arrays aren't allowed in struct "
"definitions.");
elementTypes->push_back(NULL);
}
else
elementTypes->push_back(sym->type);
elementNames->push_back(sym->name);
elementPositions->push_back(sym->pos);
}
}
}