538 lines
16 KiB
C++
538 lines
16 KiB
C++
/*
|
|
Copyright (c) 2011, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
* Neither the name of Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef _MSC_VER
|
|
#define _CRT_SECURE_NO_WARNINGS
|
|
#define NOMINMAX
|
|
#pragma warning (disable: 4244)
|
|
#pragma warning (disable: 4305)
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <algorithm>
|
|
#include "../timing.h"
|
|
#include "volume_ispc.h"
|
|
using namespace ispc;
|
|
|
|
#include <sys/time.h>
|
|
static inline double rtc(void)
|
|
{
|
|
struct timeval Tvalue;
|
|
double etime;
|
|
struct timezone dummy;
|
|
|
|
gettimeofday(&Tvalue,&dummy);
|
|
etime = (double) Tvalue.tv_sec +
|
|
1.e-6*((double) Tvalue.tv_usec);
|
|
return etime;
|
|
}
|
|
|
|
#include <cassert>
|
|
#include <iostream>
|
|
#include <cuda.h>
|
|
#include "drvapi_error_string.h"
|
|
|
|
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
|
|
// These are the inline versions for all of the SDK helper functions
|
|
void __checkCudaErrors(CUresult err, const char *file, const int line) {
|
|
if(CUDA_SUCCESS != err) {
|
|
std::cerr << "checkCudeErrors() Driver API error = " << err << "\""
|
|
<< getCudaDrvErrorString(err) << "\" from file <" << file
|
|
<< ", line " << line << "\n";
|
|
exit(-1);
|
|
}
|
|
}
|
|
|
|
/**********************/
|
|
/* Basic CUDriver API */
|
|
CUcontext context;
|
|
|
|
void createContext(const int deviceId = 0)
|
|
{
|
|
CUdevice device;
|
|
int devCount;
|
|
checkCudaErrors(cuInit(0));
|
|
checkCudaErrors(cuDeviceGetCount(&devCount));
|
|
assert(devCount > 0);
|
|
checkCudaErrors(cuDeviceGet(&device, deviceId < devCount ? deviceId : 0));
|
|
|
|
char name[128];
|
|
checkCudaErrors(cuDeviceGetName(name, 128, device));
|
|
std::cout << "Using CUDA Device [0]: " << name << "\n";
|
|
|
|
int devMajor, devMinor;
|
|
checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
|
|
std::cout << "Device Compute Capability: "
|
|
<< devMajor << "." << devMinor << "\n";
|
|
if (devMajor < 2) {
|
|
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
|
|
exit(1);
|
|
}
|
|
|
|
// Create driver context
|
|
checkCudaErrors(cuCtxCreate(&context, 0, device));
|
|
}
|
|
void destroyContext()
|
|
{
|
|
checkCudaErrors(cuCtxDestroy(context));
|
|
}
|
|
|
|
CUmodule loadModule(const char * module)
|
|
{
|
|
const double t0 = rtc();
|
|
CUmodule cudaModule;
|
|
// in this branch we use compilation with parameters
|
|
|
|
CUlinkState CUState;
|
|
CUlinkState *lState = &CUState;
|
|
const int nOptions = 7;
|
|
CUjit_option options[nOptions];
|
|
void* optionVals[nOptions];
|
|
float walltime;
|
|
const unsigned int logSize = 32768;
|
|
char error_log[logSize],
|
|
info_log[logSize];
|
|
void *cuOut;
|
|
size_t outSize;
|
|
int myErr = 0;
|
|
|
|
// Setup linker options
|
|
// Return walltime from JIT compilation
|
|
options[0] = CU_JIT_WALL_TIME;
|
|
optionVals[0] = (void*) &walltime;
|
|
// Pass a buffer for info messages
|
|
options[1] = CU_JIT_INFO_LOG_BUFFER;
|
|
optionVals[1] = (void*) info_log;
|
|
// Pass the size of the info buffer
|
|
options[2] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
|
|
optionVals[2] = (void*) logSize;
|
|
// Pass a buffer for error message
|
|
options[3] = CU_JIT_ERROR_LOG_BUFFER;
|
|
optionVals[3] = (void*) error_log;
|
|
// Pass the size of the error buffer
|
|
options[4] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES;
|
|
optionVals[4] = (void*) logSize;
|
|
// Make the linker verbose
|
|
options[5] = CU_JIT_LOG_VERBOSE;
|
|
optionVals[5] = (void*) 1;
|
|
// Max # of registers/pthread
|
|
options[6] = CU_JIT_MAX_REGISTERS;
|
|
int jitRegCount = 64;
|
|
optionVals[6] = (void *)(size_t)jitRegCount;
|
|
|
|
// Create a pending linker invocation
|
|
checkCudaErrors(cuLinkCreate(nOptions,options, optionVals, lState));
|
|
|
|
#if 0
|
|
if (sizeof(void *)==4)
|
|
{
|
|
// Load the PTX from the string myPtx32
|
|
printf("Loading myPtx32[] program\n");
|
|
// PTX May also be loaded from file, as per below.
|
|
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)myPtx32, strlen(myPtx32)+1, 0, 0, 0, 0);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
// Load the PTX from the string myPtx (64-bit)
|
|
fprintf(stderr, "Loading ptx..\n");
|
|
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)module, strlen(module)+1, 0, 0, 0, 0);
|
|
myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_LIBRARY, "libcudadevrt.a", 0,0,0);
|
|
// PTX May also be loaded from file, as per below.
|
|
// myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_PTX, "myPtx64.ptx",0,0,0);
|
|
}
|
|
|
|
// Complete the linker step
|
|
myErr = cuLinkComplete(*lState, &cuOut, &outSize);
|
|
|
|
if ( myErr != CUDA_SUCCESS )
|
|
{
|
|
// Errors will be put in error_log, per CU_JIT_ERROR_LOG_BUFFER option above.
|
|
fprintf(stderr,"PTX Linker Error:\n%s\n",error_log);
|
|
assert(0);
|
|
}
|
|
|
|
// Linker walltime and info_log were requested in options above.
|
|
fprintf(stderr, "CUDA Link Completed in %fms [ %g ms]. Linker Output:\n%s\n",walltime,info_log,1e3*(rtc() - t0));
|
|
|
|
// Load resulting cuBin into module
|
|
checkCudaErrors(cuModuleLoadData(&cudaModule, cuOut));
|
|
|
|
// Destroy the linker invocation
|
|
checkCudaErrors(cuLinkDestroy(*lState));
|
|
fprintf(stderr, " loadModule took %g ms \n", 1e3*(rtc() - t0));
|
|
return cudaModule;
|
|
}
|
|
void unloadModule(CUmodule &cudaModule)
|
|
{
|
|
checkCudaErrors(cuModuleUnload(cudaModule));
|
|
}
|
|
|
|
CUfunction getFunction(CUmodule &cudaModule, const char * function)
|
|
{
|
|
CUfunction cudaFunction;
|
|
checkCudaErrors(cuModuleGetFunction(&cudaFunction, cudaModule, function));
|
|
return cudaFunction;
|
|
}
|
|
|
|
CUdeviceptr deviceMalloc(const size_t size)
|
|
{
|
|
CUdeviceptr d_buf;
|
|
checkCudaErrors(cuMemAlloc(&d_buf, size));
|
|
return d_buf;
|
|
}
|
|
void deviceFree(CUdeviceptr d_buf)
|
|
{
|
|
checkCudaErrors(cuMemFree(d_buf));
|
|
}
|
|
void memcpyD2H(void * h_buf, CUdeviceptr d_buf, const size_t size)
|
|
{
|
|
checkCudaErrors(cuMemcpyDtoH(h_buf, d_buf, size));
|
|
}
|
|
void memcpyH2D(CUdeviceptr d_buf, void * h_buf, const size_t size)
|
|
{
|
|
checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size));
|
|
}
|
|
#define deviceLaunch(func,params) \
|
|
checkCudaErrors(cuFuncSetCacheConfig((func), CU_FUNC_CACHE_PREFER_L1)); \
|
|
checkCudaErrors( \
|
|
cuLaunchKernel( \
|
|
(func), \
|
|
1,1,1, \
|
|
32, 1, 1, \
|
|
0, NULL, (params), NULL \
|
|
));
|
|
|
|
|
|
typedef CUdeviceptr devicePtr;
|
|
|
|
|
|
/**************/
|
|
#include <vector>
|
|
std::vector<char> readBinary(const char * filename)
|
|
{
|
|
std::vector<char> buffer;
|
|
FILE *fp = fopen(filename, "rb");
|
|
if (!fp )
|
|
{
|
|
fprintf(stderr, "file %s not found\n", filename);
|
|
assert(0);
|
|
}
|
|
#if 0
|
|
char c;
|
|
while ((c = fgetc(fp)) != EOF)
|
|
buffer.push_back(c);
|
|
#else
|
|
fseek(fp, 0, SEEK_END);
|
|
const unsigned long long size = ftell(fp); /*calc the size needed*/
|
|
fseek(fp, 0, SEEK_SET);
|
|
buffer.resize(size);
|
|
|
|
if (fp == NULL){ /*ERROR detection if file == empty*/
|
|
fprintf(stderr, "Error: There was an Error reading the file %s \n",filename);
|
|
exit(1);
|
|
}
|
|
else if (fread(&buffer[0], sizeof(char), size, fp) != size){ /* if count of read bytes != calculated size of .bin file -> ERROR*/
|
|
fprintf(stderr, "Error: There was an Error reading the file %s \n", filename);
|
|
exit(1);
|
|
}
|
|
#endif
|
|
fprintf(stderr, " read buffer of size= %d bytes \n", (int)buffer.size());
|
|
return buffer;
|
|
}
|
|
|
|
extern "C"
|
|
{
|
|
|
|
double CUDALaunch(
|
|
void **handlePtr,
|
|
const char * func_name,
|
|
void **func_args)
|
|
{
|
|
const std::vector<char> module_str = readBinary("__kernels.ptx");
|
|
const char * module = &module_str[0];
|
|
CUmodule cudaModule = loadModule(module);
|
|
CUfunction cudaFunction = getFunction(cudaModule, func_name);
|
|
const double t0 = rtc();
|
|
deviceLaunch(cudaFunction, func_args);
|
|
checkCudaErrors(cuStreamSynchronize(0));
|
|
const double dt = rtc() - t0;
|
|
unloadModule(cudaModule);
|
|
return dt;
|
|
}
|
|
}
|
|
|
|
extern void volume_serial(float density[], int nVoxels[3],
|
|
const float raster2camera[4][4],
|
|
const float camera2world[4][4],
|
|
int width, int height, float image[]);
|
|
|
|
/* Write a PPM image file with the image */
|
|
static void
|
|
writePPM(float *buf, int width, int height, const char *fn) {
|
|
FILE *fp = fopen(fn, "wb");
|
|
fprintf(fp, "P6\n");
|
|
fprintf(fp, "%d %d\n", width, height);
|
|
fprintf(fp, "255\n");
|
|
for (int i = 0; i < width*height; ++i) {
|
|
float v = buf[i] * 255.f;
|
|
if (v < 0.f) v = 0.f;
|
|
else if (v > 255.f) v = 255.f;
|
|
unsigned char c = (unsigned char)v;
|
|
for (int j = 0; j < 3; ++j)
|
|
fputc(c, fp);
|
|
}
|
|
fclose(fp);
|
|
printf("Wrote image file %s\n", fn);
|
|
}
|
|
|
|
|
|
/* Load image and viewing parameters from a camera data file.
|
|
FIXME: we should add support to be able to specify viewing parameters
|
|
in the program here directly. */
|
|
static void
|
|
loadCamera(const char *fn, int *width, int *height, float raster2camera[4][4],
|
|
float camera2world[4][4]) {
|
|
FILE *f = fopen(fn, "r");
|
|
if (!f) {
|
|
perror(fn);
|
|
exit(1);
|
|
}
|
|
if (fscanf(f, "%d %d", width, height) != 2) {
|
|
fprintf(stderr, "Unexpected end of file in camera file\n");
|
|
exit(1);
|
|
}
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
for (int j = 0; j < 4; ++j) {
|
|
if (fscanf(f, "%f", &raster2camera[i][j]) != 1) {
|
|
fprintf(stderr, "Unexpected end of file in camera file\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
for (int i = 0; i < 4; ++i) {
|
|
for (int j = 0; j < 4; ++j) {
|
|
if (fscanf(f, "%f", &camera2world[i][j]) != 1) {
|
|
fprintf(stderr, "Unexpected end of file in camera file\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
fclose(f);
|
|
}
|
|
|
|
|
|
/* Load a volume density file. Expects the number of x, y, and z samples
|
|
as the first three values (as integer strings), then x*y*z
|
|
floating-point values (also as strings) to give the densities. */
|
|
static float *
|
|
loadVolume(const char *fn, int n[3]) {
|
|
FILE *f = fopen(fn, "r");
|
|
if (!f) {
|
|
perror(fn);
|
|
exit(1);
|
|
}
|
|
|
|
if (fscanf(f, "%d %d %d", &n[0], &n[1], &n[2]) != 3) {
|
|
fprintf(stderr, "Couldn't find resolution at start of density file\n");
|
|
exit(1);
|
|
}
|
|
|
|
int count = n[0] * n[1] * n[2];
|
|
float *v = new float[count];
|
|
for (int i = 0; i < count; ++i) {
|
|
if (fscanf(f, "%f", &v[i]) != 1) {
|
|
fprintf(stderr, "Unexpected end of file at %d'th density value\n", i);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
|
|
int main(int argc, char *argv[]) {
|
|
if (argc != 3) {
|
|
fprintf(stderr, "usage: volume <camera.dat> <volume_density.vol>\n");
|
|
return 1;
|
|
}
|
|
|
|
//
|
|
// Load viewing data and the volume density data
|
|
//
|
|
int width, height;
|
|
float raster2camera[4][4], camera2world[4][4];
|
|
loadCamera(argv[1], &width, &height, raster2camera, camera2world);
|
|
float *image = new float[width*height];
|
|
|
|
int n[3];
|
|
float *density = loadVolume(argv[2], n);
|
|
|
|
/*******************/
|
|
createContext();
|
|
/*******************/
|
|
|
|
devicePtr d_raster2camera = deviceMalloc(4*4*sizeof(float));
|
|
devicePtr d_camera2world = deviceMalloc(4*4*sizeof(float));
|
|
devicePtr d_n = deviceMalloc(3*sizeof(int));
|
|
devicePtr d_density = deviceMalloc(n[0]*n[1]*n[2]*sizeof(float));
|
|
devicePtr d_image = deviceMalloc(width*height*sizeof(float));
|
|
|
|
|
|
|
|
//
|
|
// Compute the image using the ispc implementation; report the minimum
|
|
// time of three runs.
|
|
//
|
|
double minISPC = 1e30;
|
|
#if 0
|
|
for (int i = 0; i < 3; ++i) {
|
|
reset_and_start_timer();
|
|
volume_ispc(density, n, raster2camera, camera2world,
|
|
width, height, image);
|
|
double dt = get_elapsed_mcycles();
|
|
minISPC = std::min(minISPC, dt);
|
|
}
|
|
|
|
for (int i = 0; i < width*height; i += 4)
|
|
{
|
|
if (image[i] != 0.0f)
|
|
{
|
|
fprintf(stderr, " i= %d image= %g %g %g %g \n", i,
|
|
image[i+0],
|
|
image[i+1],
|
|
image[i+2],
|
|
image[i+3]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
printf("[volume ispc 1 core]:\t\t[%.3f] million cycles\n", minISPC);
|
|
writePPM(image, width, height, "volume-ispc-1core.ppm");
|
|
#endif
|
|
|
|
|
|
// Clear out the buffer
|
|
for (int i = 0; i < width * height; ++i)
|
|
image[i] = 0.;
|
|
|
|
memcpyH2D(d_raster2camera, raster2camera, 4*4*sizeof(float));
|
|
memcpyH2D(d_camera2world, camera2world, 4*4*sizeof(float));
|
|
memcpyH2D(d_n, n, 3*sizeof(int));
|
|
memcpyH2D(d_density, density, n[0]*n[1]*n[2]*sizeof(float));
|
|
memcpyH2D(d_image, image, width*height*sizeof(float));
|
|
|
|
//
|
|
// Compute the image using the ispc implementation that also uses
|
|
// tasks; report the minimum time of three runs.
|
|
//
|
|
double minISPCtasks = 1e30;
|
|
for (int i = 0; i < 3; ++i) {
|
|
#if 0
|
|
reset_and_start_timer();
|
|
const double t0 = rtc();
|
|
volume_ispc_tasks(
|
|
(float*)d_density,
|
|
(int*)d_n,
|
|
(float(*)[4])d_raster2camera,
|
|
(float(*)[4])d_camera2world,
|
|
width, height,
|
|
(float*)d_image);
|
|
double dt = rtc() - t0; //get_elapsed_mcycles();
|
|
#else
|
|
const char * func_name = "volume_ispc_tasks";
|
|
void *func_args[] = {
|
|
&d_density,
|
|
&d_n,
|
|
&d_raster2camera, &d_camera2world,
|
|
&width, &height,
|
|
&d_image};
|
|
const double dt = 1e3*CUDALaunch(NULL, func_name, func_args);
|
|
#endif
|
|
minISPCtasks = std::min(minISPCtasks, dt);
|
|
}
|
|
|
|
memcpyD2H(image, d_image, width*height*sizeof(float));
|
|
for (int i = 0; i < width*height; i += 4)
|
|
{
|
|
if (image[i] != 0.0f)
|
|
{
|
|
fprintf(stderr, " i= %d image= %g %g %g %g \n", i,
|
|
image[i+0],
|
|
image[i+1],
|
|
image[i+2],
|
|
image[i+3]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
printf("[volume ispc + tasks]:\t\t[%.3f] million cycles\n", minISPCtasks);
|
|
writePPM(image, width, height, "volume-cuda.ppm");
|
|
return 0;
|
|
|
|
#if 0
|
|
// Clear out the buffer
|
|
for (int i = 0; i < width * height; ++i)
|
|
image[i] = 0.;
|
|
|
|
//
|
|
// And run the serial implementation 3 times, again reporting the
|
|
// minimum time.
|
|
//
|
|
double minSerial = 1e30;
|
|
for (int i = 0; i < 3; ++i) {
|
|
reset_and_start_timer();
|
|
volume_serial(density, n, raster2camera, camera2world,
|
|
width, height, image);
|
|
double dt = get_elapsed_mcycles();
|
|
minSerial = std::min(minSerial, dt);
|
|
}
|
|
|
|
printf("[volume serial]:\t\t[%.3f] million cycles\n", minSerial);
|
|
writePPM(image, width, height, "volume-serial.ppm");
|
|
|
|
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n",
|
|
minSerial/minISPC, minSerial / minISPCtasks);
|
|
#else
|
|
printf("\t\t\t\t %.2fx speedup from ISPC + tasks)\n",
|
|
minISPC / minISPCtasks);
|
|
#endif
|
|
|
|
/*******************/
|
|
destroyContext();
|
|
/*******************/
|
|
|
|
return 0;
|
|
}
|