Files
ispc/stdlib.m4
Matt Pharr 5a53a43ed0 Finish support for 64-bit types in stdlib. Fixes issue #14.
Add much more suppport for doubles and in64 types in the standard library, basically supporting everything for them that are supported for floats and int32s.  (The notable exceptions being the approximate rcp() and rsqrt() functions, which don't really have sensible analogs for doubles (or at least not built-in instructions).)
2011-07-07 13:25:55 +01:00

1329 lines
48 KiB
Plaintext

;; Copyright (c) 2010-2011, Intel Corporation
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;;
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;;
;; * Neither the name of Intel Corporation nor the names of its
;; contributors may be used to endorse or promote products derived from
;; this software without specific prior written permission.
;;
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;; This file provides a variety of macros used to generate LLVM bitcode
;; parametrized in various ways. Implementations of the standard library
;; builtins for various targets can use macros from this file to simplify
;; generating code for their implementations of those builtins.
declare i1 @__is_compile_time_constant_uniform_int32(i32)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Helper macro for calling various SSE instructions for scalar values
;; but where the instruction takes a vector parameter.
;; $1 : name of variable to put the final value in
;; $2 : vector width of the target
;; $3 : scalar type of the operand
;; $4 : SSE intrinsic name
;; $5 : variable name that has the scalar value
;; For example, the following call causes the variable %ret to have
;; the result of a call to sqrtss with the scalar value in %0
;; sse_unary_scalar(ret, 4, float, @llvm.x86.sse.sqrt.ss, %0)
define(`sse_unary_scalar', `
%$1_vec = insertelement <$2 x $3> undef, $3 $5, i32 0
%$1_val = call <$2 x $3> $4(<$2 x $3> %$1_vec)
%$1 = extractelement <$2 x $3> %$1_val, i32 0
')
;; Similar to `sse_unary_scalar', this helper macro is for calling binary
;; SSE instructions with scalar values,
;; $1: name of variable to put the result in
;; $2: vector width of the target
;; $3: scalar type of the operand
;; $4 : SSE intrinsic name
;; $5 : variable name that has the first scalar operand
;; $6 : variable name that has the second scalar operand
define(`sse_binary_scalar', `
%$1_veca = insertelement <$2 x $3> undef, $3 $5, i32 0
%$1_vecb = insertelement <$2 x $3> undef, $3 $6, i32 0
%$1_val = call <$2 x $3> $4(<$2 x $3> %$1_veca, <$2 x $3> %$1_vecb)
%$1 = extractelement <$2 x $3> %$1_val, i32 0
')
;; Do a reduction over a 4-wide vector
;; $1: type of final scalar result
;; $2: 4-wide function that takes 2 4-wide operands and returns the
;; element-wise reduction
;; $3: scalar function that takes two scalar operands and returns
;; the final reduction
define(`reduce4', `
%v1 = shufflevector <4 x $1> %0, <4 x $1> undef,
<4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%m1 = call <4 x $1> $2(<4 x $1> %v1, <4 x $1> %0)
%m1a = extractelement <4 x $1> %m1, i32 0
%m1b = extractelement <4 x $1> %m1, i32 1
%m = call $1 $3($1 %m1a, $1 %m1b)
ret $1 %m
'
)
;; Similar to `reduce4', do a reduction over an 8-wide vector
;; $1: type of final scalar result
;; $2: 8-wide function that takes 2 8-wide operands and returns the
;; element-wise reduction
;; $3: scalar function that takes two scalar operands and returns
;; the final reduction
define(`reduce8', `
%v1 = shufflevector <8 x $1> %0, <8 x $1> undef,
<8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 undef, i32 undef>
%m1 = call <8 x $1> $2(<8 x $1> %v1, <8 x $1> %0)
%v2 = shufflevector <8 x $1> %m1, <8 x $1> undef,
<8 x i32> <i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%m2 = call <8 x $1> $2(<8 x $1> %v2, <8 x $1> %m1)
%m2a = extractelement <8 x $1> %m2, i32 0
%m2b = extractelement <8 x $1> %m2, i32 1
%m = call $1 $3($1 %m2a, $1 %m2b)
ret $1 %m
'
)
;; Do an reduction over an 8-wide vector, using a vector reduction function
;; that only takes 4-wide vectors
;; $1: type of final scalar result
;; $2: 4-wide function that takes 2 4-wide operands and returns the
;; element-wise reduction
;; $3: scalar function that takes two scalar operands and returns
;; the final reduction
define(`reduce8by4', `
%v1 = shufflevector <8 x $1> %0, <8 x $1> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%v2 = shufflevector <8 x $1> %0, <8 x $1> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%m1 = call <4 x $1> $2(<4 x $1> %v1, <4 x $1> %v2)
%v3 = shufflevector <4 x $1> %m1, <4 x $1> undef,
<4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%m2 = call <4 x $1> $2(<4 x $1> %v3, <4 x $1> %m1)
%m2a = extractelement <4 x $1> %m2, i32 0
%m2b = extractelement <4 x $1> %m2, i32 1
%m = call $1 $3($1 %m2a, $1 %m2b)
ret $1 %m
'
)
;; Apply a unary function to the 4-vector in %0, return the vector result.
;; $1: scalar type of result
;; $2: name of scalar function to call
define(`unary1to4', `
%v_0 = extractelement <4 x $1> %0, i32 0
%r_0 = call $1 $2($1 %v_0)
%ret_0 = insertelement <4 x $1> undef, $1 %r_0, i32 0
%v_1 = extractelement <4 x $1> %0, i32 1
%r_1 = call $1 $2($1 %v_1)
%ret_1 = insertelement <4 x $1> %ret_0, $1 %r_1, i32 1
%v_2 = extractelement <4 x $1> %0, i32 2
%r_2 = call $1 $2($1 %v_2)
%ret_2 = insertelement <4 x $1> %ret_1, $1 %r_2, i32 2
%v_3 = extractelement <4 x $1> %0, i32 3
%r_3 = call $1 $2($1 %v_3)
%ret_3 = insertelement <4 x $1> %ret_2, $1 %r_3, i32 3
ret <4 x $1> %ret_3
')
;; Given a unary function that takes a 2-wide vector and a 4-wide vector
;; that we'd like to apply it to, extract 2 2-wide vectors from the 4-wide
;; vector, apply it, and return the corresponding 4-wide vector result
;; $1: name of variable into which the final result should go
;; $2: scalar type of the vector elements
;; $3: 2-wide unary vector function to apply
;; $4: 4-wide operand value
define(`unary2to4', `
%$1_0 = shufflevector <4 x $2> $4, <4 x $2> undef, <2 x i32> <i32 0, i32 1>
%v$1_0 = call <2 x $2> $3(<2 x $2> %$1_0)
%$1_1 = shufflevector <4 x $2> $4, <4 x $2> undef, <2 x i32> <i32 2, i32 3>
%v$1_1 = call <2 x $2> $3(<2 x $2> %$1_1)
%$1 = shufflevector <2 x $2> %v$1_0, <2 x $2> %v$1_1,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
'
)
;; Similar to `unary2to4', this applies a 2-wide binary function to two 4-wide
;; vector operands
;; $1: name of variable into which the final result should go
;; $2: scalar type of the vector elements
;; $3: 2-wide binary vector function to apply
;; $4: First 4-wide operand value
;; $5: Second 4-wide operand value
define(`binary2to4', `
%$1_0a = shufflevector <4 x $2> $4, <4 x $2> undef, <2 x i32> <i32 0, i32 1>
%$1_0b = shufflevector <4 x $2> $5, <4 x $2> undef, <2 x i32> <i32 0, i32 1>
%v$1_0 = call <2 x $2> $3(<2 x $2> %$1_0a, <2 x $2> %$1_0b)
%$1_1a = shufflevector <4 x $2> $4, <4 x $2> undef, <2 x i32> <i32 2, i32 3>
%$1_1b = shufflevector <4 x $2> $5, <4 x $2> undef, <2 x i32> <i32 2, i32 3>
%v$1_1 = call <2 x $2> $3(<2 x $2> %$1_1a, <2 x $2> %$1_1b)
%$1 = shufflevector <2 x $2> %v$1_0, <2 x $2> %v$1_1,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
'
)
;; Similar to `unary2to4', this maps a 4-wide unary function to an 8-wide
;; vector operand
;; $1: name of variable into which the final result should go
;; $2: scalar type of the vector elements
;; $3: 4-wide unary vector function to apply
;; $4: 8-wide operand value
define(`unary4to8', `
%$1_0 = shufflevector <8 x $2> $4, <8 x $2> undef, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
%v$1_0 = call <4 x $2> $3(<4 x $2> %$1_0)
%$1_1 = shufflevector <8 x $2> $4, <8 x $2> undef, <4 x i32> <i32 4, i32 5, i32 6, i32 7>
%v$1_1 = call <4 x $2> $3(<4 x $2> %$1_1)
%$1 = shufflevector <4 x $2> %v$1_0, <4 x $2> %v$1_1,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
'
)
;; And along the lines of `binary2to4', this maps a 4-wide binary function to
;; two 8-wide vector operands
;; $1: name of variable into which the final result should go
;; $2: scalar type of the vector elements
;; $3: 4-wide unary vector function to apply
;; $4: First 8-wide operand value
;; $5: Second 8-wide operand value
define(`binary4to8', `
%$1_0a = shufflevector <8 x $2> $4, <8 x $2> undef, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
%$1_0b = shufflevector <8 x $2> $5, <8 x $2> undef, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
%v$1_0 = call <4 x $2> $3(<4 x $2> %$1_0a, <4 x $2> %$1_0b)
%$1_1a = shufflevector <8 x $2> $4, <8 x $2> undef, <4 x i32> <i32 4, i32 5, i32 6, i32 7>
%$1_1b = shufflevector <8 x $2> $5, <8 x $2> undef, <4 x i32> <i32 4, i32 5, i32 6, i32 7>
%v$1_1 = call <4 x $2> $3(<4 x $2> %$1_1a, <4 x $2> %$1_1b)
%$1 = shufflevector <4 x $2> %v$1_0, <4 x $2> %v$1_1,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
'
)
;; Maps a 2-wide unary function to an 8-wide vector operand, returning an
;; 8-wide vector result
;; $1: name of variable into which the final result should go
;; $2: scalar type of the vector elements
;; $3: 2-wide unary vector function to apply
;; $4: 8-wide operand value
define(`unary2to8', `
%$1_0 = shufflevector <8 x $2> $4, <8 x $2> undef, <2 x i32> <i32 0, i32 1>
%v$1_0 = call <2 x $2> $3(<2 x $2> %$1_0)
%$1_1 = shufflevector <8 x $2> $4, <8 x $2> undef, <2 x i32> <i32 2, i32 3>
%v$1_1 = call <2 x $2> $3(<2 x $2> %$1_1)
%$1_2 = shufflevector <8 x $2> $4, <8 x $2> undef, <2 x i32> <i32 4, i32 5>
%v$1_2 = call <2 x $2> $3(<2 x $2> %$1_2)
%$1_3 = shufflevector <8 x $2> $4, <8 x $2> undef, <2 x i32> <i32 6, i32 7>
%v$1_3 = call <2 x $2> $3(<2 x $2> %$1_3)
%$1a = shufflevector <2 x $2> %v$1_0, <2 x $2> %v$1_1,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%$1b = shufflevector <2 x $2> %v$1_2, <2 x $2> %v$1_3,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%$1 = shufflevector <4 x $2> %$1a, <4 x $2> %$1b,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
'
)
;; Maps an 2-wide binary function to two 8-wide vector operands
;; $1: name of variable into which the final result should go
;; $2: scalar type of the vector elements
;; $3: 2-wide unary vector function to apply
;; $4: First 8-wide operand value
;; $5: Second 8-wide operand value
define(`binary2to8', `
%$1_0a = shufflevector <8 x $2> $4, <8 x $2> undef, <2 x i32> <i32 0, i32 1>
%$1_0b = shufflevector <8 x $2> $5, <8 x $2> undef, <2 x i32> <i32 0, i32 1>
%v$1_0 = call <2 x $2> $3(<2 x $2> %$1_0a, <2 x $2> %$1_0b)
%$1_1a = shufflevector <8 x $2> $4, <8 x $2> undef, <2 x i32> <i32 2, i32 3>
%$1_1b = shufflevector <8 x $2> $5, <8 x $2> undef, <2 x i32> <i32 2, i32 3>
%v$1_1 = call <2 x $2> $3(<2 x $2> %$1_1a, <2 x $2> %$1_1b)
%$1_2a = shufflevector <8 x $2> $4, <8 x $2> undef, <2 x i32> <i32 4, i32 5>
%$1_2b = shufflevector <8 x $2> $5, <8 x $2> undef, <2 x i32> <i32 4, i32 5>
%v$1_2 = call <2 x $2> $3(<2 x $2> %$1_2a, <2 x $2> %$1_2b)
%$1_3a = shufflevector <8 x $2> $4, <8 x $2> undef, <2 x i32> <i32 6, i32 7>
%$1_3b = shufflevector <8 x $2> $5, <8 x $2> undef, <2 x i32> <i32 6, i32 7>
%v$1_3 = call <2 x $2> $3(<2 x $2> %$1_3a, <2 x $2> %$1_3b)
%$1a = shufflevector <2 x $2> %v$1_0, <2 x $2> %v$1_1,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%$1b = shufflevector <2 x $2> %v$1_2, <2 x $2> %v$1_3,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%$1 = shufflevector <4 x $2> %$1a, <4 x $2> %$1b,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
'
)
;; The unary SSE round intrinsic takes a second argument that encodes the
;; rounding mode. This macro makes it easier to apply the 4-wide roundps
;; to 8-wide vector operands
;; $1: value to be rounded
;; $2: integer encoding of rounding mode
;; FIXME: this just has a ret statement at the end to return the result,
;; which is inconsistent with the macros above
define(`round4to8', `
%v0 = shufflevector <8 x float> $1, <8 x float> undef, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
%v1 = shufflevector <8 x float> $1, <8 x float> undef, <4 x i32> <i32 4, i32 5, i32 6, i32 7>
%r0 = call <4 x float> @llvm.x86.sse41.round.ps(<4 x float> %v0, i32 $2)
%r1 = call <4 x float> @llvm.x86.sse41.round.ps(<4 x float> %v1, i32 $2)
%ret = shufflevector <4 x float> %r0, <4 x float> %r1,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
ret <8 x float> %ret
'
)
define(`round4to8double', `
%v0 = shufflevector <8 x double> $1, <8 x double> undef, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
%v1 = shufflevector <8 x double> $1, <8 x double> undef, <4 x i32> <i32 4, i32 5, i32 6, i32 7>
%r0 = call <4 x double> @llvm.x86.avx.round.pd.256(<4 x double> %v0, i32 $2)
%r1 = call <4 x double> @llvm.x86.avx.round.pd.256(<4 x double> %v1, i32 $2)
%ret = shufflevector <4 x double> %r0, <4 x double> %r1,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
ret <8 x double> %ret
'
)
; and similarly for doubles...
define(`round2to4double', `
%v0 = shufflevector <4 x double> $1, <4 x double> undef, <2 x i32> <i32 0, i32 1>
%v1 = shufflevector <4 x double> $1, <4 x double> undef, <2 x i32> <i32 2, i32 3>
%r0 = call <2 x double> @llvm.x86.sse41.round.pd(<2 x double> %v0, i32 $2)
%r1 = call <2 x double> @llvm.x86.sse41.round.pd(<2 x double> %v1, i32 $2)
%ret = shufflevector <2 x double> %r0, <2 x double> %r1,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
ret <4 x double> %ret
'
)
define(`round2to8double', `
%v0 = shufflevector <8 x double> $1, <8 x double> undef, <2 x i32> <i32 0, i32 1>
%v1 = shufflevector <8 x double> $1, <8 x double> undef, <2 x i32> <i32 2, i32 3>
%v2 = shufflevector <8 x double> $1, <8 x double> undef, <2 x i32> <i32 4, i32 5>
%v3 = shufflevector <8 x double> $1, <8 x double> undef, <2 x i32> <i32 6, i32 7>
%r0 = call <2 x double> @llvm.x86.sse41.round.pd(<2 x double> %v0, i32 $2)
%r1 = call <2 x double> @llvm.x86.sse41.round.pd(<2 x double> %v1, i32 $2)
%r2 = call <2 x double> @llvm.x86.sse41.round.pd(<2 x double> %v2, i32 $2)
%r3 = call <2 x double> @llvm.x86.sse41.round.pd(<2 x double> %v3, i32 $2)
%ret0 = shufflevector <2 x double> %r0, <2 x double> %r1,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%ret1 = shufflevector <2 x double> %r2, <2 x double> %r3,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%ret = shufflevector <4 x double> %ret0, <4 x double> %ret1,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
ret <8 x double> %ret
'
)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; forloop macro
divert(`-1')
# forloop(var, from, to, stmt) - improved version:
# works even if VAR is not a strict macro name
# performs sanity check that FROM is larger than TO
# allows complex numerical expressions in TO and FROM
define(`forloop', `ifelse(eval(`($3) >= ($2)'), `1',
`pushdef(`$1', eval(`$2'))_$0(`$1',
eval(`$3'), `$4')popdef(`$1')')')
define(`_forloop',
`$3`'ifelse(indir(`$1'), `$2', `',
`define(`$1', incr(indir(`$1')))$0($@)')')
divert`'dnl
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; stdlib_core
;;
;; This macro defines a bunch of helper routines that only depend on the
;; target's vector width, which it takes as its first parameter.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
define(`shuffles', `
define internal <$1 x $2> @__broadcast_$3(<$1 x $2>, i32) nounwind readnone alwaysinline {
%v = extractelement <$1 x $2> %0, i32 %1
%r_0 = insertelement <$1 x $2> undef, $2 %v, i32 0
forloop(i, 1, eval($1-1), ` %r_`'i = insertelement <$1 x $2> %r_`'eval(i-1), $2 %v, i32 i
')
ret <$1 x $2> %r_`'eval($1-1)
}
define internal <$1 x $2> @__rotate_$3(<$1 x $2>, i32) nounwind readnone alwaysinline {
%isc = call i1 @__is_compile_time_constant_uniform_int32(i32 %1)
br i1 %isc, label %is_const, label %not_const
is_const:
; though verbose, this turms into tight code if %1 is a constant
forloop(i, 0, eval($1-1), `
%delta_`'i = add i32 %1, i
%delta_clamped_`'i = and i32 %delta_`'i, eval($1-1)
%v_`'i = extractelement <$1 x $2> %0, i32 %delta_clamped_`'i')
%ret_0 = insertelement <$1 x $2> undef, $2 %v_0, i32 0
forloop(i, 1, eval($1-1), ` %ret_`'i = insertelement <$1 x $2> %ret_`'eval(i-1), $2 %v_`'i, i32 i
')
ret <$1 x $2> %ret_`'eval($1-1)
not_const:
; store two instances of the vector into memory
%ptr = alloca <$1 x $2>, i32 2
%ptr0 = getelementptr <$1 x $2> * %ptr, i32 0
store <$1 x $2> %0, <$1 x $2> * %ptr0
%ptr1 = getelementptr <$1 x $2> * %ptr, i32 1
store <$1 x $2> %0, <$1 x $2> * %ptr1
; compute offset in [0,vectorwidth-1], then index into the doubled-up vector
%offset = and i32 %1, eval($1-1)
%ptr_as_elt_array = bitcast <$1 x $2> * %ptr to [eval(2*$1) x $2] *
%load_ptr = getelementptr [eval(2*$1) x $2] * %ptr_as_elt_array, i32 0, i32 %offset
%load_ptr_vec = bitcast $2 * %load_ptr to <$1 x $2> *
%result = load <$1 x $2> * %load_ptr_vec, align $4
ret <$1 x $2> %result
}
define internal <$1 x $2> @__shuffle_$3(<$1 x $2>, <$1 x i32>) nounwind readnone alwaysinline {
forloop(i, 0, eval($1-1), `
%index_`'i = extractelement <$1 x i32> %1, i32 i')
forloop(i, 0, eval($1-1), `
%v_`'i = extractelement <$1 x $2> %0, i32 %index_`'i')
%ret_0 = insertelement <$1 x $2> undef, $2 %v_0, i32 0
forloop(i, 1, eval($1-1), ` %ret_`'i = insertelement <$1 x $2> %ret_`'eval(i-1), $2 %v_`'i, i32 i
')
ret <$1 x $2> %ret_`'eval($1-1)
}
define internal <$1 x $2> @__shuffle2_$3(<$1 x $2>, <$1 x $2>, <$1 x i32>) nounwind readnone alwaysinline {
%v2 = shufflevector <$1 x $2> %0, <$1 x $2> %1, <eval(2*$1) x i32> <
forloop(i, 0, eval(2*$1-2), `i32 i, ') i32 eval(2*$1-1)
>
forloop(i, 0, eval($1-1), `
%index_`'i = extractelement <$1 x i32> %2, i32 i')
%isc = call i1 @__is_compile_time_constant_varying_int32(<$1 x i32> %2)
br i1 %isc, label %is_const, label %not_const
is_const:
; extract from the requested lanes and insert into the result; LLVM turns
; this into good code in the end
forloop(i, 0, eval($1-1), `
%v_`'i = extractelement <eval(2*$1) x $2> %v2, i32 %index_`'i')
%ret_0 = insertelement <$1 x $2> undef, $2 %v_0, i32 0
forloop(i, 1, eval($1-1), ` %ret_`'i = insertelement <$1 x $2> %ret_`'eval(i-1), $2 %v_`'i, i32 i
')
ret <$1 x $2> %ret_`'eval($1-1)
not_const:
; otherwise store the two vectors onto the stack and then use the given
; permutation vector to get indices into that array...
%ptr = alloca <eval(2*$1) x $2>
store <eval(2*$1) x $2> %v2, <eval(2*$1) x $2> * %ptr
%baseptr = bitcast <eval(2*$1) x $2> * %ptr to $2 *
%ptr_0 = getelementptr $2 * %baseptr, i32 %index_0
%val_0 = load $2 * %ptr_0
%result_0 = insertelement <$1 x $2> undef, $2 %val_0, i32 0
forloop(i, 1, eval($1-1), `
%ptr_`'i = getelementptr $2 * %baseptr, i32 %index_`'i
%val_`'i = load $2 * %ptr_`'i
%result_`'i = insertelement <$1 x $2> %result_`'eval(i-1), $2 %val_`'i, i32 i
')
ret <$1 x $2> %result_`'eval($1-1)
}
')
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; global_atomic
;; Defines the implementation of a function that handles the mapping from
;; an ispc atomic function to the underlying LLVM intrinsics. Specifically,
;; the function handles loooping over the active lanes, calling the underlying
;; scalar atomic intrinsic for each one, and assembling the vector result.
;;
;; Takes four parameters:
;; $1: vector width of the target
;; $2: operation being performed (w.r.t. LLVM atomic intrinsic names)
;; (add, sub...)
;; $3: return type of the LLVM atomic (e.g. i32)
;; $4: return type of the LLVM atomic type, in ispc naming paralance (e.g. int32)
define(`global_atomic', `
declare $3 @llvm.atomic.load.$2.$3.p0$3($3 * %ptr, $3 %delta)
define internal <$1 x $3> @__atomic_$2_$4_global($3 * %ptr, <$1 x $3> %val,
<$1 x i32> %mask) nounwind alwaysinline {
%rptr = alloca <$1 x $3>
%rptr32 = bitcast <$1 x $3> * %rptr to $3 *
per_lane($1, <$1 x i32> %mask, `
%v_LANE_ID = extractelement <$1 x $3> %val, i32 LANE
%r_LANE_ID = call $3 @llvm.atomic.load.$2.$3.p0$3($3 * %ptr, $3 %v_LANE_ID)
%rp_LANE_ID = getelementptr $3 * %rptr32, i32 LANE
store $3 %r_LANE_ID, $3 * %rp_LANE_ID')
%r = load <$1 x $3> * %rptr
ret <$1 x $3> %r
}
')
;; Macro to declare the function that implements the swap atomic.
;; Takes three parameters:
;; $1: vector width of the target
;; $2: llvm type of the vector elements (e.g. i32)
;; $3: ispc type of the elements (e.g. int32)
define(`global_swap', `
declare $2 @llvm.atomic.swap.$2.p0$2($2 * %ptr, $2 %val)
define internal <$1 x $2> @__atomic_swap_$3_global($2* %ptr, <$1 x $2> %val,
<$1 x i32> %mask) nounwind alwaysinline {
%rptr = alloca <$1 x $2>
%rptr32 = bitcast <$1 x $2> * %rptr to $2 *
per_lane($1, <$1 x i32> %mask, `
%val_LANE_ID = extractelement <$1 x $2> %val, i32 LANE
%r_LANE_ID = call $2 @llvm.atomic.swap.$2.p0$2($2 * %ptr, $2 %val_LANE_ID)
%rp_LANE_ID = getelementptr $2 * %rptr32, i32 LANE
store $2 %r_LANE_ID, $2 * %rp_LANE_ID')
%r = load <$1 x $2> * %rptr
ret <$1 x $2> %r
}
')
;; Similarly, macro to declare the function that implements the compare/exchange
;; atomic. Takes three parameters:
;; $1: vector width of the target
;; $2: llvm type of the vector elements (e.g. i32)
;; $3: ispc type of the elements (e.g. int32)
define(`global_atomic_exchange', `
declare $2 @llvm.atomic.cmp.swap.$2.p0$2($2 * %ptr, $2 %cmp, $2 %val)
define internal <$1 x $2> @__atomic_compare_exchange_$3_global($2* %ptr, <$1 x $2> %cmp,
<$1 x $2> %val, <$1 x i32> %mask) nounwind alwaysinline {
%rptr = alloca <$1 x $2>
%rptr32 = bitcast <$1 x $2> * %rptr to $2 *
per_lane($1, <$1 x i32> %mask, `
%cmp_LANE_ID = extractelement <$1 x $2> %cmp, i32 LANE
%val_LANE_ID = extractelement <$1 x $2> %val, i32 LANE
%r_LANE_ID = call $2 @llvm.atomic.cmp.swap.$2.p0$2($2 * %ptr, $2 %cmp_LANE_ID,
$2 %val_LANE_ID)
%rp_LANE_ID = getelementptr $2 * %rptr32, i32 LANE
store $2 %r_LANE_ID, $2 * %rp_LANE_ID')
%r = load <$1 x $2> * %rptr
ret <$1 x $2> %r
}
')
define(`stdlib_core', `
declare i1 @__is_compile_time_constant_mask(<$1 x i32> %mask)
declare i1 @__is_compile_time_constant_varying_int32(<$1 x i32>)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; vector ops
define internal i32 @__extract_int32(<$1 x i32>, i32) nounwind readnone alwaysinline {
%extract = extractelement <$1 x i32> %0, i32 %1
ret i32 %extract
}
define internal <$1 x i32> @__insert_int32(<$1 x i32>, i32,
i32) nounwind readnone alwaysinline {
%insert = insertelement <$1 x i32> %0, i32 %2, i32 %1
ret <$1 x i32> %insert
}
define internal i64 @__extract_int64(<$1 x i64>, i32) nounwind readnone alwaysinline {
%extract = extractelement <$1 x i64> %0, i32 %1
ret i64 %extract
}
define internal <$1 x i64> @__insert_int64(<$1 x i64>, i32,
i64) nounwind readnone alwaysinline {
%insert = insertelement <$1 x i64> %0, i64 %2, i32 %1
ret <$1 x i64> %insert
}
shuffles($1, float, float, 4)
shuffles($1, i32, int32, 4)
shuffles($1, double, double, 8)
shuffles($1, i64, int64, 8)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; various bitcasts from one type to another
define internal <$1 x i32> @__intbits_varying_float(<$1 x float>) nounwind readnone alwaysinline {
%float_to_int_bitcast = bitcast <$1 x float> %0 to <$1 x i32>
ret <$1 x i32> %float_to_int_bitcast
}
define internal i32 @__intbits_uniform_float(float) nounwind readnone alwaysinline {
%float_to_int_bitcast = bitcast float %0 to i32
ret i32 %float_to_int_bitcast
}
define internal <$1 x i64> @__intbits_varying_double(<$1 x double>) nounwind readnone alwaysinline {
%double_to_int_bitcast = bitcast <$1 x double> %0 to <$1 x i64>
ret <$1 x i64> %double_to_int_bitcast
}
define internal i64 @__intbits_uniform_double(double) nounwind readnone alwaysinline {
%double_to_int_bitcast = bitcast double %0 to i64
ret i64 %double_to_int_bitcast
}
define internal <$1 x float> @__floatbits_varying_int32(<$1 x i32>) nounwind readnone alwaysinline {
%int_to_float_bitcast = bitcast <$1 x i32> %0 to <$1 x float>
ret <$1 x float> %int_to_float_bitcast
}
define internal float @__floatbits_uniform_int32(i32) nounwind readnone alwaysinline {
%int_to_float_bitcast = bitcast i32 %0 to float
ret float %int_to_float_bitcast
}
define internal <$1 x double> @__doublebits_varying_int64(<$1 x i64>) nounwind readnone alwaysinline {
%int_to_double_bitcast = bitcast <$1 x i64> %0 to <$1 x double>
ret <$1 x double> %int_to_double_bitcast
}
define internal double @__doublebits_uniform_int64(i64) nounwind readnone alwaysinline {
%int_to_double_bitcast = bitcast i64 %0 to double
ret double %int_to_double_bitcast
}
define internal <$1 x float> @__undef_varying() nounwind readnone alwaysinline {
ret <$1 x float> undef
}
define internal float @__undef_uniform() nounwind readnone alwaysinline {
ret float undef
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; stdlib transcendentals
;;
;; These functions provide entrypoints that call out to the libm
;; implementations of the transcendental functions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
declare float @sinf(float) nounwind readnone
declare float @cosf(float) nounwind readnone
declare void @sincosf(float, float *, float *) nounwind readnone
declare float @tanf(float) nounwind readnone
declare float @atanf(float) nounwind readnone
declare float @atan2f(float, float) nounwind readnone
declare float @expf(float) nounwind readnone
declare float @logf(float) nounwind readnone
declare float @powf(float, float) nounwind readnone
define internal float @__stdlib_sinf(float) nounwind readnone alwaysinline {
%r = call float @sinf(float %0)
ret float %r
}
define internal float @__stdlib_cosf(float) nounwind readnone alwaysinline {
%r = call float @cosf(float %0)
ret float %r
}
define internal void @__stdlib_sincosf(float, float *, float *) nounwind readnone alwaysinline {
call void @sincosf(float %0, float *%1, float *%2)
ret void
}
define internal float @__stdlib_tanf(float) nounwind readnone alwaysinline {
%r = call float @tanf(float %0)
ret float %r
}
define internal float @__stdlib_atanf(float) nounwind readnone alwaysinline {
%r = call float @atanf(float %0)
ret float %r
}
define internal float @__stdlib_atan2f(float, float) nounwind readnone alwaysinline {
%r = call float @atan2f(float %0, float %1)
ret float %r
}
define internal float @__stdlib_logf(float) nounwind readnone alwaysinline {
%r = call float @logf(float %0)
ret float %r
}
define internal float @__stdlib_expf(float) nounwind readnone alwaysinline {
%r = call float @expf(float %0)
ret float %r
}
define internal float @__stdlib_powf(float, float) nounwind readnone alwaysinline {
%r = call float @powf(float %0, float %1)
ret float %r
}
declare double @sin(double) nounwind readnone
declare double @cos(double) nounwind readnone
declare void @sincos(double, double *, double *) nounwind readnone
declare double @tan(double) nounwind readnone
declare double @atan(double) nounwind readnone
declare double @atan2(double, double) nounwind readnone
declare double @exp(double) nounwind readnone
declare double @log(double) nounwind readnone
declare double @pow(double, double) nounwind readnone
define internal double @__stdlib_sin(double) nounwind readnone alwaysinline {
%r = call double @sin(double %0)
ret double %r
}
define internal double @__stdlib_cos(double) nounwind readnone alwaysinline {
%r = call double @cos(double %0)
ret double %r
}
define internal void @__stdlib_sincos(double, double *, double *) nounwind readnone alwaysinline {
call void @sincos(double %0, double *%1, double *%2)
ret void
}
define internal double @__stdlib_tan(double) nounwind readnone alwaysinline {
%r = call double @tan(double %0)
ret double %r
}
define internal double @__stdlib_atan(double) nounwind readnone alwaysinline {
%r = call double @atan(double %0)
ret double %r
}
define internal double @__stdlib_atan2(double, double) nounwind readnone alwaysinline {
%r = call double @atan2(double %0, double %1)
ret double %r
}
define internal double @__stdlib_log(double) nounwind readnone alwaysinline {
%r = call double @log(double %0)
ret double %r
}
define internal double @__stdlib_exp(double) nounwind readnone alwaysinline {
%r = call double @exp(double %0)
ret double %r
}
define internal double @__stdlib_pow(double, double) nounwind readnone alwaysinline {
%r = call double @pow(double %0, double %1)
ret double %r
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; atomics and memory barriers
declare void @llvm.memory.barrier(i1 %loadload, i1 %loadstore, i1 %storeload,
i1 %storestore, i1 %device)
define internal void @__memory_barrier() nounwind readnone alwaysinline {
;; see http://llvm.org/bugs/show_bug.cgi?id=2829. It seems like we
;; only get an MFENCE on x86 if "device" is true, but IMHO we should
;; in the case where the first 4 args are true but it is false.
;; So we just always set that to true...
call void @llvm.memory.barrier(i1 true, i1 true, i1 true, i1 true, i1 true)
ret void
}
global_atomic($1, add, i32, int32)
global_atomic($1, sub, i32, int32)
global_atomic($1, and, i32, int32)
global_atomic($1, or, i32, int32)
global_atomic($1, xor, i32, int32)
global_atomic($1, min, i32, int32)
global_atomic($1, max, i32, int32)
global_atomic($1, umin, i32, uint32)
global_atomic($1, umax, i32, uint32)
global_atomic($1, add, i64, int64)
global_atomic($1, sub, i64, int64)
global_atomic($1, and, i64, int64)
global_atomic($1, or, i64, int64)
global_atomic($1, xor, i64, int64)
global_atomic($1, min, i64, int64)
global_atomic($1, max, i64, int64)
global_atomic($1, umin, i64, uint64)
global_atomic($1, umax, i64, uint64)
global_swap($1, i32, int32)
global_swap($1, i64, int64)
global_atomic_exchange($1, i32, int32)
global_atomic_exchange($1, i64, int64)
')
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 64-bit integer min and max functions
;; utility function used by int64minmax below. This shouldn't be called by
;; target .ll files directly.
;; $1: target vector width
;; $2: {min,max} (used in constructing function names)
;; $3: {int64,uint64} (used in constructing function names)
;; $4: {slt,sgt} comparison operator to used
define(`i64minmax', `
define internal i64 @__$2_uniform_$3(i64, i64) nounwind alwaysinline readnone {
%c = icmp $4 i64 %0, %1
%r = select i1 %c, i64 %0, i64 %1
ret i64 %r
}
define internal <$1 x i64> @__$2_varying_$3(<$1 x i64>, <$1 x i64>) nounwind alwaysinline readnone {
%rptr = alloca <$1 x i64>
%r64ptr = bitcast <$1 x i64> * %rptr to i64 *
forloop(i, 0, eval($1-1), `
%v0_`'i = extractelement <$1 x i64> %0, i32 i
%v1_`'i = extractelement <$1 x i64> %1, i32 i
%c_`'i = icmp $4 i64 %v0_`'i, %v1_`'i
%v_`'i = select i1 %c_`'i, i64 %v0_`'i, i64 %v1_`'i
%ptr_`'i = getelementptr i64 * %r64ptr, i32 i
store i64 %v_`'i, i64 * %ptr_`'i
')
%ret = load <$1 x i64> * %rptr
ret <$1 x i64> %ret
}
')
;; this is the function that target .ll files should call; it just takes the target
;; vector width as a parameter
define(`int64minmax', `
i64minmax($1,min,int64,slt)
i64minmax($1,max,int64,sgt)
i64minmax($1,min,uint64,ult)
i64minmax($1,max,uint64,ugt)
')
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Definitions of 8 and 16-bit load and store functions
;;
;; The `int8_16' macro defines functions related to loading and storing 8 and
;; 16-bit values in memory, converting to and from i32. (This is a workaround
;; to be able to use in-memory values of types in ispc programs, since the
;; compiler doesn't yet support 8 and 16-bit datatypes...
;;
;; Arguments to pass to `int8_16':
;; $1: vector width of the target
define(`int8_16', `
define internal <$1 x i32> @__load_uint8([0 x i32] *, i32 %offset,
<$1 x i32> %mask) nounwind alwaysinline {
%mm = call i32 @__movmsk(<$1 x i32> %mask)
%any = icmp ne i32 %mm, 0
br i1 %any, label %doload, label %skip
doload:
%ptr8 = bitcast [0 x i32] *%0 to i8 *
%ptr = getelementptr i8 * %ptr8, i32 %offset
%ptr64 = bitcast i8 * %ptr to i`'eval(8*$1) *
%val = load i`'eval(8*$1) * %ptr64, align 1
%vval = bitcast i`'eval(8*$1) %val to <$1 x i8>
; unsigned, so zero-extend to i32...
%ret = zext <$1 x i8> %vval to <$1 x i32>
ret <$1 x i32> %ret
skip:
ret <$1 x i32> undef
}
define internal <$1 x i32> @__load_int8([0 x i32] *, i32 %offset,
<$1 x i32> %mask) nounwind alwaysinline {
%mm = call i32 @__movmsk(<$1 x i32> %mask)
%any = icmp ne i32 %mm, 0
br i1 %any, label %doload, label %skip
doload:
%ptr8 = bitcast [0 x i32] *%0 to i8 *
%ptr = getelementptr i8 * %ptr8, i32 %offset
%ptr64 = bitcast i8 * %ptr to i`'eval(8*$1) *
%val = load i`'eval(8*$1) * %ptr64, align 1
%vval = bitcast i`'eval(8*$1) %val to <$1 x i8>
; signed, so sign-extend to i32...
%ret = sext <$1 x i8> %vval to <$1 x i32>
ret <$1 x i32> %ret
skip:
ret <$1 x i32> undef
}
define internal <$1 x i32> @__load_uint16([0 x i32] *, i32 %offset,
<$1 x i32> %mask) nounwind alwaysinline {
%mm = call i32 @__movmsk(<$1 x i32> %mask)
%any = icmp ne i32 %mm, 0
br i1 %any, label %doload, label %skip
doload:
%ptr16 = bitcast [0 x i32] *%0 to i16 *
%ptr = getelementptr i16 * %ptr16, i32 %offset
%ptr64 = bitcast i16 * %ptr to i`'eval(16*$1) *
%val = load i`'eval(16*$1) * %ptr64, align 2
%vval = bitcast i`'eval(16*$1) %val to <$1 x i16>
; unsigned, so use zero-extend...
%ret = zext <$1 x i16> %vval to <$1 x i32>
ret <$1 x i32> %ret
skip:
ret <$1 x i32> undef
}
define internal <$1 x i32> @__load_int16([0 x i32] *, i32 %offset,
<$1 x i32> %mask) nounwind alwaysinline {
%mm = call i32 @__movmsk(<$1 x i32> %mask)
%any = icmp ne i32 %mm, 0
br i1 %any, label %doload, label %skip
doload:
%ptr16 = bitcast [0 x i32] *%0 to i16 *
%ptr = getelementptr i16 * %ptr16, i32 %offset
%ptr64 = bitcast i16 * %ptr to i`'eval(16*$1) *
%val = load i`'eval(16*$1) * %ptr64, align 2
%vval = bitcast i`'eval(16*$1) %val to <$1 x i16>
; signed, so use sign-extend...
%ret = sext <$1 x i16> %vval to <$1 x i32>
ret <$1 x i32> %ret
skip:
ret <$1 x i32> undef
}
define internal void @__store_int8([0 x i32] *, i32 %offset, <$1 x i32> %val32,
<$1 x i32> %mask) nounwind alwaysinline {
%mm = call i32 @__movmsk(<$1 x i32> %mask)
%any = icmp ne i32 %mm, 0
br i1 %any, label %dostore, label %skip
dostore:
%val = trunc <$1 x i32> %val32 to <$1 x i8>
%val64 = bitcast <$1 x i8> %val to i`'eval(8*$1)
%mask8 = trunc <$1 x i32> %mask to <$1 x i8>
%mask64 = bitcast <$1 x i8> %mask8 to i`'eval(8*$1)
%notmask = xor i`'eval(8*$1) %mask64, -1
%ptr8 = bitcast [0 x i32] *%0 to i8 *
%ptr = getelementptr i8 * %ptr8, i32 %offset
%ptr64 = bitcast i8 * %ptr to i`'eval(8*$1) *
;; load the old value, use logical ops to blend based on the mask, then
;; store the result back
%old = load i`'eval(8*$1) * %ptr64, align 1
%oldmasked = and i`'eval(8*$1) %old, %notmask
%newmasked = and i`'eval(8*$1) %val64, %mask64
%final = or i`'eval(8*$1) %oldmasked, %newmasked
store i`'eval(8*$1) %final, i`'eval(8*$1) * %ptr64, align 1
ret void
skip:
ret void
}
define internal void @__store_int16([0 x i32] *, i32 %offset, <$1 x i32> %val32,
<$1 x i32> %mask) nounwind alwaysinline {
%mm = call i32 @__movmsk(<$1 x i32> %mask)
%any = icmp ne i32 %mm, 0
br i1 %any, label %dostore, label %skip
dostore:
%val = trunc <$1 x i32> %val32 to <$1 x i16>
%val64 = bitcast <$1 x i16> %val to i`'eval(16*$1)
%mask8 = trunc <$1 x i32> %mask to <$1 x i16>
%mask64 = bitcast <$1 x i16> %mask8 to i`'eval(16*$1)
%notmask = xor i`'eval(16*$1) %mask64, -1
%ptr16 = bitcast [0 x i32] *%0 to i16 *
%ptr = getelementptr i16 * %ptr16, i32 %offset
%ptr64 = bitcast i16 * %ptr to i`'eval(16*$1) *
;; as above, use mask to do blending with logical ops...
%old = load i`'eval(16*$1) * %ptr64, align 2
%oldmasked = and i`'eval(16*$1) %old, %notmask
%newmasked = and i`'eval(16*$1) %val64, %mask64
%final = or i`'eval(16*$1) %oldmasked, %newmasked
store i`'eval(16*$1) %final, i`'eval(16*$1) * %ptr64, align 2
ret void
skip:
ret void
}
'
)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; packed load and store functions
;;
;; These define functions to emulate those nice packed load and packed store
;; instructions. For packed store, given a pointer to destination array and
;; an offset into the array, for each lane where the mask is on, the
;; corresponding value for that lane is stored into packed locations in the
;; destination array. For packed load, each lane that has an active mask
;; loads a sequential value from the array.
;;
;; $1: vector width of the target
;;
;; FIXME: use the per_lane macro, defined below, to implement these!
define(`packed_load_and_store', `
define i32 @__packed_load_active([0 x i32] *, i32 %start_offset, <$1 x i32> * %val_ptr,
<$1 x i32> %full_mask) nounwind alwaysinline {
entry:
%mask = call i32 @__movmsk(<$1 x i32> %full_mask)
%baseptr = bitcast [0 x i32] * %0 to i32 *
%startptr = getelementptr i32 * %baseptr, i32 %start_offset
%mask_known = call i1 @__is_compile_time_constant_mask(<$1 x i32> %full_mask)
br i1 %mask_known, label %known_mask, label %unknown_mask
known_mask:
%allon = icmp eq i32 %mask, eval((1 << $1) -1)
br i1 %allon, label %all_on, label %not_all_on
all_on:
;; everyone wants to load, so just load an entire vector width in a single
;; vector load
%vecptr = bitcast i32 *%startptr to <$1 x i32> *
%vec_load = load <$1 x i32> *%vecptr, align 4
store <$1 x i32> %vec_load, <$1 x i32> * %val_ptr, align 4
ret i32 $1
not_all_on:
%alloff = icmp eq i32 %mask, 0
br i1 %alloff, label %all_off, label %unknown_mask
all_off:
;; no one wants to load
ret i32 0
unknown_mask:
br label %loop
loop:
%lane = phi i32 [ 0, %unknown_mask ], [ %nextlane, %loopend ]
%lanemask = phi i32 [ 1, %unknown_mask ], [ %nextlanemask, %loopend ]
%offset = phi i32 [ 0, %unknown_mask ], [ %nextoffset, %loopend ]
; is the current lane on?
%and = and i32 %mask, %lanemask
%do_load = icmp eq i32 %and, %lanemask
br i1 %do_load, label %load, label %loopend
load:
%loadptr = getelementptr i32 *%startptr, i32 %offset
%loadval = load i32 *%loadptr
%val_ptr_i32 = bitcast <$1 x i32> * %val_ptr to i32 *
%storeptr = getelementptr i32 *%val_ptr_i32, i32 %lane
store i32 %loadval, i32 *%storeptr
%offset1 = add i32 %offset, 1
br label %loopend
loopend:
%nextoffset = phi i32 [ %offset1, %load ], [ %offset, %loop ]
%nextlane = add i32 %lane, 1
%nextlanemask = mul i32 %lanemask, 2
; are we done yet?
%test = icmp ne i32 %nextlane, $1
br i1 %test, label %loop, label %done
done:
ret i32 %nextoffset
}
define i32 @__packed_store_active([0 x i32] *, i32 %start_offset, <$1 x i32> %vals,
<$1 x i32> %full_mask) nounwind alwaysinline {
entry:
%mask = call i32 @__movmsk(<$1 x i32> %full_mask)
%baseptr = bitcast [0 x i32] * %0 to i32 *
%startptr = getelementptr i32 * %baseptr, i32 %start_offset
%mask_known = call i1 @__is_compile_time_constant_mask(<$1 x i32> %full_mask)
br i1 %mask_known, label %known_mask, label %unknown_mask
known_mask:
%allon = icmp eq i32 %mask, eval((1 << $1) -1)
br i1 %allon, label %all_on, label %not_all_on
all_on:
%vecptr = bitcast i32 *%startptr to <$1 x i32> *
store <$1 x i32> %vals, <$1 x i32> * %vecptr, align 4
ret i32 $1
not_all_on:
%alloff = icmp eq i32 %mask, 0
br i1 %alloff, label %all_off, label %unknown_mask
all_off:
ret i32 0
unknown_mask:
br label %loop
loop:
%lane = phi i32 [ 0, %unknown_mask ], [ %nextlane, %loopend ]
%lanemask = phi i32 [ 1, %unknown_mask ], [ %nextlanemask, %loopend ]
%offset = phi i32 [ 0, %unknown_mask ], [ %nextoffset, %loopend ]
; is the current lane on?
%and = and i32 %mask, %lanemask
%do_store = icmp eq i32 %and, %lanemask
br i1 %do_store, label %store, label %loopend
store:
%storeval = extractelement <$1 x i32> %vals, i32 %lane
%storeptr = getelementptr i32 *%startptr, i32 %offset
store i32 %storeval, i32 *%storeptr
%offset1 = add i32 %offset, 1
br label %loopend
loopend:
%nextoffset = phi i32 [ %offset1, %store ], [ %offset, %loop ]
%nextlane = add i32 %lane, 1
%nextlanemask = mul i32 %lanemask, 2
; are we done yet?
%test = icmp ne i32 %nextlane, $1
br i1 %test, label %loop, label %done
done:
ret i32 %nextoffset
}
')
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; per_lane
;;
;; The scary macro below encapsulates the 'scalarization' idiom--i.e. we have
;; some operation that we'd like to perform only for the lanes where the
;; mask is on
;; $1: vector width of the target
;; $2: variable that holds the mask
;; $3: block of code to run for each lane that is on
;; Inside this code, any instances of the text "LANE" are replaced
;; with an i32 value that represents the current lane number
; num lanes, mask, code block to do per lane
define(`per_lane', `
br label %pl_entry
pl_entry:
%pl_mask = call i32 @__movmsk($2)
%pl_mask_known = call i1 @__is_compile_time_constant_mask($2)
br i1 %pl_mask_known, label %pl_known_mask, label %pl_unknown_mask
pl_known_mask:
;; the mask is known at compile time; see if it is something we can
;; handle more efficiently
%pl_is_allon = icmp eq i32 %pl_mask, eval((1<<$1)-1)
br i1 %pl_is_allon, label %pl_all_on, label %pl_not_all_on
pl_all_on:
;; the mask is all on--just expand the code for each lane sequentially
forloop(i, 0, eval($1-1),
`patsubst(`$3', `ID\|LANE', i)')
br label %pl_done
pl_not_all_on:
;; not all on--see if it is all off or mixed
;; for the mixed case, we just run the general case, though we could
;; try to be smart and just emit the code based on what it actually is,
;; for example by emitting the code straight-line without a loop and doing
;; the lane tests explicitly, leaving later optimization passes to eliminate
;; the stuff that is definitely not needed. Not clear if we will frequently
;; encounter a mask that is known at compile-time but is not either all on or
;; all off...
%pl_alloff = icmp eq i32 %pl_mask, 0
br i1 %pl_alloff, label %pl_done, label %pl_unknown_mask
pl_unknown_mask:
br label %pl_loop
pl_loop:
;; Loop over each lane and see if we want to do the work for this lane
%pl_lane = phi i32 [ 0, %pl_unknown_mask ], [ %pl_nextlane, %pl_loopend ]
%pl_lanemask = phi i32 [ 1, %pl_unknown_mask ], [ %pl_nextlanemask, %pl_loopend ]
; is the current lane on? if so, goto do work, otherwise to end of loop
%pl_and = and i32 %pl_mask, %pl_lanemask
%pl_doit = icmp eq i32 %pl_and, %pl_lanemask
br i1 %pl_doit, label %pl_dolane, label %pl_loopend
pl_dolane:
;; If so, substitute in the code from the caller and replace the LANE
;; stuff with the current lane number
patsubst(`patsubst(`$3', `LANE_ID', `_id')', `LANE', `%pl_lane')
br label %pl_loopend
pl_loopend:
%pl_nextlane = add i32 %pl_lane, 1
%pl_nextlanemask = mul i32 %pl_lanemask, 2
; are we done yet?
%pl_test = icmp ne i32 %pl_nextlane, $1
br i1 %pl_test, label %pl_loop, label %pl_done
pl_done:
')
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; gather
;;
;; $1: vector width of the target
;; $2: scalar type for which to generate functions to do gathers
; vec width, type
define(`gen_gather', `
;; Define the utility function to do the gather operation for a single element
;; of the type
define internal <$1 x $2> @__gather_elt_$2(i64 %ptr64, <$1 x i32> %offsets, <$1 x $2> %ret,
i32 %lane) nounwind readonly alwaysinline {
; compute address for this one from the base
%offset32 = extractelement <$1 x i32> %offsets, i32 %lane
%offset64 = zext i32 %offset32 to i64
%ptrdelta = add i64 %ptr64, %offset64
%ptr = inttoptr i64 %ptrdelta to $2 *
; load value and insert into returned value
%val = load $2 *%ptr
%updatedret = insertelement <$1 x $2> %ret, $2 %val, i32 %lane
ret <$1 x $2> %updatedret
}
define <$1 x $2> @__gather_base_offsets_$2(i8*, <$1 x i32> %offsets,
<$1 x i32> %vecmask) nounwind readonly alwaysinline {
entry:
%mask = call i32 @__movmsk(<$1 x i32> %vecmask)
%ptr64 = ptrtoint i8 * %0 to i64
%maskKnown = call i1 @__is_compile_time_constant_mask(<$1 x i32> %vecmask)
br i1 %maskKnown, label %known_mask, label %unknown_mask
known_mask:
%alloff = icmp eq i32 %mask, 0
br i1 %alloff, label %gather_all_off, label %unknown_mask
gather_all_off:
ret <$1 x $2> undef
unknown_mask:
; We can be clever and avoid the per-lane stuff for gathers if we are willing
; to require that the 0th element of the array being gathered from is always
; legal to read from (and we do indeed require that, given the benefits!)
;
; Set the offset to zero for lanes that are off
%offsetsPtr = alloca <$1 x i32>
store <$1 x i32> zeroinitializer, <$1 x i32> * %offsetsPtr
call void @__masked_store_blend_32(<$1 x i32> * %offsetsPtr, <$1 x i32> %offsets,
<$1 x i32> %vecmask)
%newOffsets = load <$1 x i32> * %offsetsPtr
%ret0 = call <$1 x $2> @__gather_elt_$2(i64 %ptr64, <$1 x i32> %newOffsets,
<$1 x $2> undef, i32 0)
forloop(lane, 1, eval($1-1),
`patsubst(patsubst(`%retLANE = call <$1 x $2> @__gather_elt_$2(i64 %ptr64,
<$1 x i32> %newOffsets, <$1 x $2> %retPREV, i32 LANE)
', `LANE', lane), `PREV', eval(lane-1))')
ret <$1 x $2> %ret`'eval($1-1)
}
'
)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; gen_scatter
;; Emit a function declaration for a scalarized scatter.
;;
;; $1: target vector width
;; $2: scalar type for which we want to generate code to scatter
define(`gen_scatter', `
;; Define the function that descripes the work to do to scatter a single
;; value
define internal void @__scatter_elt_$2(i64 %ptr64, <$1 x i32> %offsets, <$1 x $2> %values,
i32 %lane) nounwind alwaysinline {
%offset32 = extractelement <$1 x i32> %offsets, i32 %lane
%offset64 = zext i32 %offset32 to i64
%ptrdelta = add i64 %ptr64, %offset64
%ptr = inttoptr i64 %ptrdelta to $2 *
%storeval = extractelement <$1 x $2> %values, i32 %lane
store $2 %storeval, $2 * %ptr
ret void
}
define void @__scatter_base_offsets_$2(i8* %base, <$1 x i32> %offsets, <$1 x $2> %values,
<$1 x i32> %mask) nounwind alwaysinline {
;; And use the `per_lane' macro to do all of the per-lane work for scatter...
%ptr64 = ptrtoint i8 * %base to i64
per_lane($1, <$1 x i32> %mask, `
call void @__scatter_elt_$2(i64 %ptr64, <$1 x i32> %offsets, <$1 x $2> %values, i32 LANE)')
ret void
}
'
)