Files
ispc/examples_cuda/mandelbrot_tasks3d/cuLaunch.cpp
2013-11-04 11:44:49 +01:00

322 lines
8.0 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <cuda.h>
#include <vector>
#include <cassert>
#include "drvapi_error_string.h"
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
// These are the inline versions for all of the SDK helper functions
void __checkCudaErrors(CUresult err, const char *file, const int line) {
if(CUDA_SUCCESS != err) {
std::cerr << "checkCudeErrors() Driver API error = " << err << "\""
<< getCudaDrvErrorString(err) << "\" from file <" << file
<< ", line " << line << "\n";
exit(-1);
}
}
/**********************/
/* Basic CUDriver API */
CUcontext context;
void createContext(const int deviceId = 0)
{
CUdevice device;
int devCount;
checkCudaErrors(cuInit(0));
checkCudaErrors(cuDeviceGetCount(&devCount));
assert(devCount > 0);
checkCudaErrors(cuDeviceGet(&device, deviceId < devCount ? deviceId : 0));
char name[128];
checkCudaErrors(cuDeviceGetName(name, 128, device));
std::cout << "Using CUDA Device [0]: " << name << "\n";
int devMajor, devMinor;
checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
std::cout << "Device Compute Capability: "
<< devMajor << "." << devMinor << "\n";
if (devMajor < 2) {
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
exit(1);
}
// Create driver context
checkCudaErrors(cuCtxCreate(&context, 0, device));
}
void destroyContext()
{
checkCudaErrors(cuCtxDestroy(context));
}
CUmodule loadModule(const char * module)
{
CUmodule cudaModule;
checkCudaErrors(cuModuleLoadData(&cudaModule, module));
return cudaModule;
}
void unloadModule(CUmodule &cudaModule)
{
checkCudaErrors(cuModuleUnload(cudaModule));
}
CUfunction getFunction(CUmodule &cudaModule, const char * function)
{
CUfunction cudaFunction;
checkCudaErrors(cuModuleGetFunction(&cudaFunction, cudaModule, function));
return cudaFunction;
}
CUdeviceptr deviceMalloc(const size_t size)
{
CUdeviceptr d_buf;
checkCudaErrors(cuMemAlloc(&d_buf, size));
return d_buf;
}
void deviceFree(CUdeviceptr d_buf)
{
checkCudaErrors(cuMemFree(d_buf));
}
void memcpyD2H(void * h_buf, CUdeviceptr d_buf, const size_t size)
{
checkCudaErrors(cuMemcpyDtoH(h_buf, d_buf, size));
}
void memcpyH2D(CUdeviceptr d_buf, void * h_buf, const size_t size)
{
checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size));
}
#define deviceLaunch(func,nbx,nby,nbz,params) \
checkCudaErrors( \
cuLaunchKernel( \
(func), \
(nbx), (nby), (nbz), \
32, 1, 1, \
0, NULL, (params), NULL \
));
typedef CUdeviceptr devicePtr;
/**************/
extern "C"
{
#if 0
struct ModuleManager
{
private:
typedef std::pair<std::string, CUModule> ModulePair;
typedef std::map <std::string, CUModule> ModuleMap;
ModuleMap module_list;
ModuleMap::iterator findModule(const char * module_name)
{
return module_list.find(std::string(module_name));
}
public:
CUmodule loadModule(const char * module_name, const char * module_data)
{
const ModuleMap::iterator it = findModule(module_name)
if (it != ModuleMap::end)
{
CUmodule cudaModule = loadModule(module);
module_list.insert(std::make_pair(std::string(module_name), cudaModule));
return cudaModule
}
return it->second;
}
void unloadModule(const char * module_name)
{
ModuleMap::iterator it = findModule(module_name)
if (it != ModuleMap::end)
module_list.erase(it);
}
};
#endif
void *CUDAAlloc(void **handlePtr, int64_t size, int32_t alignment)
{
return NULL;
}
void CUDALaunch(
void **handlePtr,
const char * module_name,
const char * module,
const char * func_name,
void **func_args,
int countx, int county, int countz)
{
CUmodule cudaModule = loadModule(module);
CUfunction cudaFunction = getFunction(cudaModule, func_name);
deviceLaunch(cudaFunction, countx, county, countz, func_args);
unloadModule(cudaModule);
}
void CUDASync(void *handle)
{
checkCudaErrors(cuStreamSynchronize(0));
}
void CUDAFree(void *handle)
{
}
}
/********************/
/* Write a PPM image file with the image of the Mandelbrot set */
static void
writePPM(int *buf, int width, int height, const char *fn)
{
FILE *fp = fopen(fn, "wb");
fprintf(fp, "P6\n");
fprintf(fp, "%d %d\n", width, height);
fprintf(fp, "255\n");
for (int i = 0; i < width*height; ++i) {
// Map the iteration count to colors by just alternating between
// two greys.
char c = (buf[i] & 0x1) ? 240 : 20;
for (int j = 0; j < 3; ++j)
fputc(c, fp);
}
fclose(fp);
printf("Wrote image file %s\n", fn);
}
std::vector<char> readBinary(const char * filename)
{
std::vector<char> buffer;
FILE *fp = fopen(filename, "rb");
if (!fp )
{
fprintf(stderr, "file %s not found\n", filename);
assert(0);
}
#if 0
char c;
while ((c = fgetc(fp)) != EOF)
buffer.push_back(c);
#else
fseek(fp, 0, SEEK_END);
const unsigned long long size = ftell(fp); /*calc the size needed*/
fseek(fp, 0, SEEK_SET);
buffer.resize(size);
if (fp == NULL){ /*ERROR detection if file == empty*/
fprintf(stderr, "Error: There was an Error reading the file %s \n",filename);
exit(1);
}
else if (fread(&buffer[0], sizeof(char), size, fp) != size){ /* if count of read bytes != calculated size of .bin file -> ERROR*/
fprintf(stderr, "Error: There was an Error reading the file %s \n", filename);
exit(1);
}
#endif
fprintf(stderr, " read buffer of size= %d bytes \n", (int)buffer.size());
return buffer;
}
static void usage()
{
fprintf(stderr, "usage: mandelbrot [--scale=<factor>]\n");
exit(1);
}
extern "C"
void mandelbrot_ispc(
float x0, float y0,
float x1, float y1,
int width, int height,
int maxIterations, int output[])
{
float dx = (x1 - x0) / width;
float dy = (y1 - y0) / height;
int xspan = 16; /* make sure it is big enough to avoid false-sharing */
int yspan = 4;
const int nbx = width/xspan;
const int nby = height/yspan;
const int nbz = 1;
fprintf(stderr ," nbx= %d nby= %d nbtot= %d \n", nbx, nby, nbx*nby);
#if 0
launch [nbx,nby]
mandelbrot_scanline(x0, dx, y0, dy, width, height, xspan, yspan,
maxIterations, output);
#endif
// const std::vector<char> cubin = readBinary("cuLaunch.cubin");
const std::vector<char> cubin = readBinary("cuLaunch.ptx");
void *params[] = {&x0, &dx, &y0, &dy, &width, &height, &xspan, &yspan, &maxIterations, &output};
CUDALaunch(
NULL, //void **handlePtr,
"module_01", // const char * module_name,
&cubin[0], //const char * module,
"mandelbrot_scanline", //const char * func_name,
params, //void **func_args,
nbx,nby,nbz); //int countx, int county, int countz)
CUDASync(NULL);
}
int main(int argc, char *argv[])
{
unsigned int width = 1536;
unsigned int height = 1024;
float x0 = -2;
float x1 = 1;
float y0 = -1;
float y1 = 1;
if (argc == 1)
;
else if (argc == 2) {
if (strncmp(argv[1], "--scale=", 8) == 0) {
float scale = atof(argv[1] + 8);
if (scale == 0.f)
usage();
width *= scale;
height *= scale;
// round up to multiples of 16
width = (width + 0xf) & ~0xf;
height = (height + 0xf) & ~0xf;
}
else
usage();
}
else
usage();
/*******************/
createContext();
/*******************/
int maxIterations = 512;
int *h_buf = new int[width*height];
for (unsigned int i = 0; i < width*height; i++)
h_buf[i] = 0;
const size_t bufsize = sizeof(int)*width*height;
devicePtr d_buf = deviceMalloc(bufsize);
memcpyH2D(d_buf, h_buf, bufsize);
mandelbrot_ispc(x0,y0,x1,y1,width, height, maxIterations, (int*)d_buf);
memcpyD2H(h_buf, d_buf, bufsize);
deviceFree(d_buf);
writePPM(h_buf, width, height, "mandelbrot-cuda.ppm");
/*******************/
destroyContext();
/*******************/
return 0;
}