653 lines
26 KiB
LLVM
653 lines
26 KiB
LLVM
;; Copyright (c) 2010-2011, Intel Corporation
|
|
;; All rights reserved.
|
|
;;
|
|
;; Redistribution and use in source and binary forms, with or without
|
|
;; modification, are permitted provided that the following conditions are
|
|
;; met:
|
|
;;
|
|
;; * Redistributions of source code must retain the above copyright
|
|
;; notice, this list of conditions and the following disclaimer.
|
|
;;
|
|
;; * Redistributions in binary form must reproduce the above copyright
|
|
;; notice, this list of conditions and the following disclaimer in the
|
|
;; documentation and/or other materials provided with the distribution.
|
|
;;
|
|
;; * Neither the name of Intel Corporation nor the names of its
|
|
;; contributors may be used to endorse or promote products derived from
|
|
;; this software without specific prior written permission.
|
|
;;
|
|
;;
|
|
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; *** Untested *** AVX target implementation.
|
|
;;
|
|
;; The LLVM AVX code generator is incomplete, so the ispc AVX target
|
|
;; hasn't yet been tested. There is therefore a higher-than-normal
|
|
;; chance that there are bugs in the code in this file.
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; Basic 8-wide definitions
|
|
|
|
stdlib_core(8)
|
|
packed_load_and_store(8)
|
|
int8_16(8)
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; rcp
|
|
|
|
declare <8 x float> @llvm.x86.avx.rcp.ps.256(<8 x float>) nounwind readnone
|
|
declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone
|
|
|
|
define internal <8 x float> @__rcp_varying_float(<8 x float>) nounwind readonly alwaysinline {
|
|
; float iv = __rcp_v(v);
|
|
; return iv * (2. - v * iv);
|
|
|
|
%call = call <8 x float> @llvm.x86.avx.rcp.ps.256(<8 x float> %0)
|
|
; do one N-R iteration
|
|
%v_iv = fmul <8 x float> %0, %call
|
|
%two_minus = fsub <8 x float> <float 2., float 2., float 2., float 2.,
|
|
float 2., float 2., float 2., float 2.>, %v_iv
|
|
%iv_mul = fmul <8 x float> %call, %two_minus
|
|
ret <8 x float> %iv_mul
|
|
}
|
|
|
|
define internal float @__rcp_uniform_float(float) nounwind readonly alwaysinline {
|
|
; uniform float iv = extract(__rcp_u(v), 0);
|
|
; return iv * (2. - v * iv);
|
|
%vecval = insertelement <4 x float> undef, float %0, i32 0
|
|
%call = call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %vecval)
|
|
%scall = extractelement <4 x float> %call, i32 0
|
|
|
|
; do one N-R iteration
|
|
%v_iv = fmul float %0, %scall
|
|
%two_minus = fsub float 2., %v_iv
|
|
%iv_mul = fmul float %scall, %two_minus
|
|
ret float %iv_mul
|
|
}
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; rounding
|
|
|
|
declare <8 x float> @llvm.x86.avx.round.ps.256(<8 x float>, i32) nounwind readnone
|
|
declare <4 x float> @llvm.x86.sse.round.ss(<4 x float>, <4 x float>, i32) nounwind readnone
|
|
|
|
define internal <8 x float> @__round_varying_float(<8 x float>) nounwind readonly alwaysinline {
|
|
; roundps, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
|
|
%call = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %0, i32 8)
|
|
ret <8 x float> %call
|
|
}
|
|
|
|
define internal float @__round_uniform_float(float) nounwind readonly alwaysinline {
|
|
; roundss, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
|
|
; the roundss intrinsic is a total mess--docs say:
|
|
;
|
|
; __m128 _mm_round_ss (__m128 a, __m128 b, const int c)
|
|
;
|
|
; b is a 128-bit parameter. The lowest 32 bits are the result of the rounding function
|
|
; on b0. The higher order 96 bits are copied directly from input parameter a. The
|
|
; return value is described by the following equations:
|
|
;
|
|
; r0 = RND(b0)
|
|
; r1 = a1
|
|
; r2 = a2
|
|
; r3 = a3
|
|
;
|
|
; It doesn't matter what we pass as a, since we only need the r0 value
|
|
; here. So we pass the same register for both.
|
|
%xi = insertelement <4 x float> undef, float %0, i32 0
|
|
%xr = call <4 x float> @llvm.x86.sse.round.ss(<4 x float> %xi, <4 x float> %xi, i32 8)
|
|
%rs = extractelement <4 x float> %xr, i32 0
|
|
ret float %rs
|
|
}
|
|
|
|
define internal <8 x float> @__floor_varying_float(<8 x float>) nounwind readonly alwaysinline {
|
|
; roundps, round down 0b01 | don't signal precision exceptions 0b1000 = 9
|
|
%call = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %0, i32 9)
|
|
ret <8 x float> %call
|
|
}
|
|
|
|
define internal float @__floor_uniform_float(float) nounwind readonly alwaysinline {
|
|
; see above for round_ss instrinsic discussion...
|
|
%xi = insertelement <4 x float> undef, float %0, i32 0
|
|
; roundps, round down 0b01 | don't signal precision exceptions 0b1000 = 9
|
|
%xr = call <4 x float> @llvm.x86.sse.round.ss(<4 x float> %xi, <4 x float> %xi, i32 9)
|
|
%rs = extractelement <4 x float> %xr, i32 0
|
|
ret float %rs
|
|
}
|
|
|
|
define internal <8 x float> @__ceil_varying_float(<8 x float>) nounwind readonly alwaysinline {
|
|
; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10
|
|
%call = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %0, i32 10)
|
|
ret <8 x float> %call
|
|
}
|
|
|
|
define internal float @__ceil_uniform_float(float) nounwind readonly alwaysinline {
|
|
; see above for round_ss instrinsic discussion...
|
|
%xi = insertelement <4 x float> undef, float %0, i32 0
|
|
; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10
|
|
%xr = call <4 x float> @llvm.x86.sse.round.ss(<4 x float> %xi, <4 x float> %xi, i32 10)
|
|
%rs = extractelement <4 x float> %xr, i32 0
|
|
ret float %rs
|
|
}
|
|
|
|
declare <8 x float> @llvm.x86.avx.rsqrt.ps.256(<8 x float>) nounwind readnone
|
|
declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone
|
|
|
|
define internal <8 x float> @__rsqrt_varying_float(<8 x float> %v) nounwind readonly alwaysinline {
|
|
; float is = __rsqrt_v(v);
|
|
%is = call <8 x float> @llvm.x86.avx.rsqrt.ps.256(<8 x float> %v)
|
|
; return 0.5 * is * (3. - (v * is) * is);
|
|
%v_is = fmul <8 x float> %v, %is
|
|
%v_is_is = fmul <8 x float> %v_is, %is
|
|
%three_sub = fsub <8 x float> <float 3., float 3., float 3., float 3., float 3., float 3., float 3., float 3.>, %v_is_is
|
|
%is_mul = fmul <8 x float> %is, %three_sub
|
|
%half_scale = fmul <8 x float> <float 0.5, float 0.5, float 0.5, float 0.5, float 0.5, float 0.5, float 0.5, float 0.5>, %is_mul
|
|
ret <8 x float> %half_scale
|
|
}
|
|
|
|
define internal float @__rsqrt_uniform_float(float) nounwind readonly alwaysinline {
|
|
; uniform float is = extract(__rsqrt_u(v), 0);
|
|
%v = insertelement <4 x float> undef, float %0, i32 0
|
|
%vis = call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %v)
|
|
%is = extractelement <4 x float> %vis, i32 0
|
|
|
|
; return 0.5 * is * (3. - (v * is) * is);
|
|
%v_is = fmul float %0, %is
|
|
%v_is_is = fmul float %v_is, %is
|
|
%three_sub = fsub float 3., %v_is_is
|
|
%is_mul = fmul float %is, %three_sub
|
|
%half_scale = fmul float 0.5, %is_mul
|
|
ret float %half_scale
|
|
}
|
|
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; sqrt
|
|
|
|
declare <8 x float> @llvm.x86.avx.sqrt.ps.256(<8 x float>) nounwind readnone
|
|
declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone
|
|
|
|
define internal <8 x float> @__sqrt_varying_float(<8 x float>) nounwind readonly alwaysinline {
|
|
%call = call <8 x float> @llvm.x86.avx.sqrt.ps.256(<8 x float> %0)
|
|
ret <8 x float> %call
|
|
}
|
|
|
|
define internal float @__sqrt_uniform_float(float) nounwind readonly alwaysinline {
|
|
sse_unary_scalar(ret, 4, float, @llvm.x86.sse.sqrt.ss, %0)
|
|
ret float %ret
|
|
}
|
|
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; fastmath
|
|
|
|
declare void @llvm.x86.sse.stmxcsr(i32 *) nounwind
|
|
declare void @llvm.x86.sse.ldmxcsr(i32 *) nounwind
|
|
|
|
define internal void @__fastmath() nounwind alwaysinline {
|
|
%ptr = alloca i32
|
|
call void @llvm.x86.sse.stmxcsr(i32 * %ptr)
|
|
%oldval = load i32 *%ptr
|
|
|
|
; turn on DAZ (64)/FTZ (32768) -> 32832
|
|
%update = or i32 %oldval, 32832
|
|
store i32 %update, i32 *%ptr
|
|
call void @llvm.x86.sse.ldmxcsr(i32 * %ptr)
|
|
ret void
|
|
}
|
|
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; svml
|
|
|
|
; FIXME: need either to wire these up to the 8-wide SVML entrypoints,
|
|
; or, use the macro to call the 4-wide ones twice with our 8-wide
|
|
; vectors...
|
|
|
|
declare <8 x float> @__svml_sin(<8 x float>)
|
|
declare <8 x float> @__svml_cos(<8 x float>)
|
|
declare void @__svml_sincos(<8 x float>, <8 x float> *, <8 x float> *)
|
|
declare <8 x float> @__svml_tan(<8 x float>)
|
|
declare <8 x float> @__svml_atan(<8 x float>)
|
|
declare <8 x float> @__svml_atan2(<8 x float>, <8 x float>)
|
|
declare <8 x float> @__svml_exp(<8 x float>)
|
|
declare <8 x float> @__svml_log(<8 x float>)
|
|
declare <8 x float> @__svml_pow(<8 x float>, <8 x float>)
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; float min/max
|
|
|
|
declare <8 x float> @llvm.x86.avx.max.ps.256(<8 x float>, <8 x float>) nounwind readnone
|
|
declare <4 x float> @llvm.x86.sse.max.ss(<4 x float>, <4 x float>) nounwind readnone
|
|
declare <8 x float> @llvm.x86.avx.min.ps.256(<8 x float>, <8 x float>) nounwind readnone
|
|
declare <4 x float> @llvm.x86.sse.min.ss(<4 x float>, <4 x float>) nounwind readnone
|
|
|
|
define internal <8 x float> @__max_varying_float(<8 x float>,
|
|
<8 x float>) nounwind readonly alwaysinline {
|
|
%call = call <8 x float> @llvm.x86.avx.max.ps.256(<8 x float> %0, <8 x float> %1)
|
|
ret <8 x float> %call
|
|
}
|
|
|
|
define internal float @__max_uniform_float(float, float) nounwind readonly alwaysinline {
|
|
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.max.ss, %0, %1)
|
|
ret float %ret
|
|
}
|
|
|
|
define internal <8 x float> @__min_varying_float(<8 x float>,
|
|
<8 x float>) nounwind readonly alwaysinline {
|
|
%call = call <8 x float> @llvm.x86.avx.min.ps.256(<8 x float> %0, <8 x float> %1)
|
|
ret <8 x float> %call
|
|
}
|
|
|
|
define internal float @__min_uniform_float(float, float) nounwind readonly alwaysinline {
|
|
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.min.ss, %0, %1)
|
|
ret float %ret
|
|
}
|
|
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; int min/max
|
|
|
|
declare <8 x i32> @llvm.x86.avx.min.sd.256(<8 x i32>, <8 x i32>) nounwind readnone
|
|
declare <8 x i32> @llvm.x86.avx.max.sd.256(<8 x i32>, <8 x i32>) nounwind readnone
|
|
|
|
define internal <8 x i32> @__min_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
|
|
%call = call <8 x i32> @llvm.x86.avx.min.sd.256(<8 x i32> %0, <8 x i32> %1)
|
|
ret <8 x i32> %call
|
|
}
|
|
|
|
define internal i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline {
|
|
sse_binary_scalar(ret, 8, i32, @llvm.x86.avx.min.sd.256, %0, %1)
|
|
ret i32 %ret
|
|
}
|
|
|
|
define internal <8 x i32> @__max_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
|
|
%call = call <8 x i32> @llvm.x86.avx.max.sd.256(<8 x i32> %0, <8 x i32> %1)
|
|
ret <8 x i32> %call
|
|
}
|
|
|
|
define internal i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline {
|
|
sse_binary_scalar(ret, 8, i32, @llvm.x86.avx.max.sd.256, %0, %1)
|
|
ret i32 %ret
|
|
}
|
|
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; unsigned int min/max
|
|
|
|
; FIXME: looks like these aren't available in LLVM?
|
|
declare <8 x i32> @llvm.x86.avx.min.ud.256(<8 x i32>, <8 x i32>) nounwind readnone
|
|
declare <8 x i32> @llvm.x86.avx.max.ud.256(<8 x i32>, <8 x i32>) nounwind readnone
|
|
|
|
define internal <8 x i32> @__min_varying_uint32(<8 x i32>,
|
|
<8 x i32>) nounwind readonly alwaysinline {
|
|
%call = call <8 x i32> @llvm.x86.avx.min.ud.256(<8 x i32> %0, <8 x i32> %1)
|
|
ret <8 x i32> %call
|
|
}
|
|
|
|
define internal i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
|
|
sse_binary_scalar(ret, 8, i32, @llvm.x86.avx.min.ud.256, %0, %1)
|
|
ret i32 %ret
|
|
}
|
|
|
|
define internal <8 x i32> @__max_varying_uint32(<8 x i32>,
|
|
<8 x i32>) nounwind readonly alwaysinline {
|
|
%call = call <8 x i32> @llvm.x86.avx.max.ud.256(<8 x i32> %0, <8 x i32> %1)
|
|
ret <8 x i32> %call
|
|
}
|
|
|
|
define internal i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
|
|
sse_binary_scalar(ret, 8, i32, @llvm.x86.avx.max.ud.256, %0, %1)
|
|
ret i32 %ret
|
|
}
|
|
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
; horizontal ops
|
|
|
|
declare i32 @llvm.ctpop.i32(i32) nounwind readnone
|
|
|
|
define internal i32 @__popcnt(i32) nounwind readonly alwaysinline {
|
|
%call = call i32 @llvm.ctpop.i32(i32 %0)
|
|
ret i32 %call
|
|
}
|
|
|
|
declare i32 @llvm.x86.avx.movmsk.ps.256(<8 x float>) nounwind readnone
|
|
|
|
define internal i32 @__movmsk(<8 x i32>) nounwind readnone alwaysinline {
|
|
%floatmask = bitcast <8 x i32> %0 to <8 x float>
|
|
%v = call i32 @llvm.x86.avx.movmsk.ps.256(<8 x float> %floatmask) nounwind readnone
|
|
ret i32 %v
|
|
}
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; horizontal float ops
|
|
|
|
declare <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float>, <8 x float>) nounwind readnone
|
|
|
|
define internal float @__reduce_add_float(<8 x float>) nounwind readonly alwaysinline {
|
|
%v1 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %0, <8 x float> %0)
|
|
%v2 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %v1, <8 x float> %v1)
|
|
%scalar1 = extractelement <8 x float> %v2, i32 0
|
|
%scalar2 = extractelement <8 x float> %v2, i32 4
|
|
%sum = fadd float %scalar1, %scalar2
|
|
ret float %sum
|
|
}
|
|
|
|
|
|
define internal float @__reduce_min_float(<8 x float>) nounwind readnone alwaysinline {
|
|
reduce8(float, @__min_varying_float, @__min_uniform_float)
|
|
}
|
|
|
|
|
|
define internal float @__reduce_max_float(<8 x float>) nounwind readnone alwaysinline {
|
|
reduce8(float, @__max_varying_float, @__max_uniform_float)
|
|
}
|
|
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; horizontal int32 ops
|
|
|
|
define internal <8 x i32> @__add_varying_int32(<8 x i32>,
|
|
<8 x i32>) nounwind readnone alwaysinline {
|
|
%s = add <8 x i32> %0, %1
|
|
ret <8 x i32> %s
|
|
}
|
|
|
|
define internal i32 @__add_uniform_int32(i32, i32) nounwind readnone alwaysinline {
|
|
%s = add i32 %0, %1
|
|
ret i32 %s
|
|
}
|
|
|
|
define internal i32 @__reduce_add_int32(<8 x i32>) nounwind readnone alwaysinline {
|
|
reduce8(i32, @__add_varying_int32, @__add_uniform_int32)
|
|
}
|
|
|
|
|
|
define internal i32 @__reduce_min_int32(<8 x i32>) nounwind readnone alwaysinline {
|
|
reduce8(i32, @__min_varying_int32, @__min_uniform_int32)
|
|
}
|
|
|
|
|
|
define internal i32 @__reduce_max_int32(<8 x i32>) nounwind readnone alwaysinline {
|
|
reduce8(i32, @__max_varying_int32, @__max_uniform_int32)
|
|
}
|
|
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;;; horizontal uint32 ops
|
|
|
|
define internal i32 @__reduce_add_uint32(<8 x i32> %v) nounwind readnone alwaysinline {
|
|
%r = call i32 @__reduce_add_int32(<8 x i32> %v)
|
|
ret i32 %r
|
|
}
|
|
|
|
define internal i32 @__reduce_min_uint32(<8 x i32>) nounwind readnone alwaysinline {
|
|
reduce8(i32, @__min_varying_uint32, @__min_uniform_uint32)
|
|
}
|
|
|
|
|
|
define internal i32 @__reduce_max_uint32(<8 x i32>) nounwind readnone alwaysinline {
|
|
reduce8(i32, @__max_varying_uint32, @__max_uniform_uint32)
|
|
}
|
|
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; unaligned loads/loads+broadcasts
|
|
|
|
define <8 x i32> @__load_and_broadcast_32(i8 *, <8 x i32> %mask) nounwind alwaysinline {
|
|
%mm = call i32 @__movmsk(<8 x i32> %mask)
|
|
%any_on = icmp ne i32 %mm, 0
|
|
br i1 %any_on, label %load, label %skip
|
|
|
|
load:
|
|
; TODO: make sure this becomes a vbroadcast...
|
|
%ptr = bitcast i8 * %0 to i32 *
|
|
%val = load i32 * %ptr
|
|
|
|
%ret0 = insertelement <8 x i32> undef, i32 %val, i32 0
|
|
%ret1 = insertelement <8 x i32> %ret0, i32 %val, i32 1
|
|
%ret2 = insertelement <8 x i32> %ret1, i32 %val, i32 2
|
|
%ret3 = insertelement <8 x i32> %ret2, i32 %val, i32 3
|
|
%ret4 = insertelement <8 x i32> %ret3, i32 %val, i32 4
|
|
%ret5 = insertelement <8 x i32> %ret4, i32 %val, i32 5
|
|
%ret6 = insertelement <8 x i32> %ret5, i32 %val, i32 6
|
|
%ret7 = insertelement <8 x i32> %ret6, i32 %val, i32 7
|
|
ret <8 x i32> %ret7
|
|
|
|
skip:
|
|
ret <8 x i32> undef
|
|
}
|
|
|
|
|
|
define <8 x i64> @__load_and_broadcast_64(i8 *, <8 x i32> %mask) nounwind alwaysinline {
|
|
%mm = call i32 @__movmsk(<8 x i32> %mask)
|
|
%any_on = icmp ne i32 %mm, 0
|
|
br i1 %any_on, label %load, label %skip
|
|
|
|
load:
|
|
; TODO: make sure this becomes a vbroadcast...
|
|
%ptr = bitcast i8 * %0 to i64 *
|
|
%val = load i64 * %ptr
|
|
|
|
%ret0 = insertelement <8 x i64> undef, i64 %val, i32 0
|
|
%ret1 = insertelement <8 x i64> %ret0, i64 %val, i32 1
|
|
%ret2 = insertelement <8 x i64> %ret1, i64 %val, i32 2
|
|
%ret3 = insertelement <8 x i64> %ret2, i64 %val, i32 3
|
|
%ret4 = insertelement <8 x i64> %ret3, i64 %val, i32 4
|
|
%ret5 = insertelement <8 x i64> %ret4, i64 %val, i32 5
|
|
%ret6 = insertelement <8 x i64> %ret5, i64 %val, i32 6
|
|
%ret7 = insertelement <8 x i64> %ret6, i64 %val, i32 7
|
|
ret <8 x i64> %ret3
|
|
|
|
skip:
|
|
ret <8 x i64> undef
|
|
}
|
|
|
|
|
|
declare <8 x float> @llvm.x86.avx.maskload.ps.256(i8 *, <8 x float> %mask)
|
|
declare <4 x double> @llvm.x86.avx.maskload.pd.256(i8 *, <4 x double> %mask)
|
|
|
|
define <8 x i32> @__load_masked_32(i8 *, <8 x i32> %mask) nounwind alwaysinline {
|
|
%floatmask = bitcast <8 x i32> %mask to <8 x float>
|
|
%floatval = call <8 x float> @llvm.x86.avx.maskload.ps.256(i8 * %0, <8 x float> %floatmask)
|
|
%retval = bitcast <8 x float> %floatval to <8 x i32>
|
|
ret <8 x i32> %retval
|
|
}
|
|
|
|
|
|
define <8 x i64> @__load_masked_64(i8 *, <8 x i32> %mask) nounwind alwaysinline {
|
|
; double up masks, bitcast to doubles
|
|
%mask0 = shufflevector <8 x i32> %mask, <8 x i32> undef,
|
|
<8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 2, i32 2, i32 3, i32 3>
|
|
%mask1 = shufflevector <8 x i32> %mask, <8 x i32> undef,
|
|
<8 x i32> <i32 4, i32 4, i32 5, i32 5, i32 6, i32 6, i32 7, i32 7>
|
|
%mask0d = bitcast <8 x i32> %mask0 to <4 x double>
|
|
%mask1d = bitcast <8 x i32> %mask1 to <4 x double>
|
|
|
|
%val0d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %0, <4 x double> %mask0d)
|
|
%ptr1 = getelementptr i8 * %0, i32 32
|
|
%val1d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %ptr1, <4 x double> %mask1d)
|
|
|
|
%vald = shufflevector <4 x double> %val0d, <4 x double> %val1d,
|
|
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
|
|
%val = bitcast <8 x double> %vald to <8 x i64>
|
|
ret <8 x i64> %val
|
|
}
|
|
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; masked store
|
|
|
|
; note that mask is the 2nd parameter, not the 3rd one!!
|
|
declare void @llvm.x86.avx.maskstore.ps.256(i8 *, <8 x float>, <8 x float>)
|
|
declare void @llvm.x86.avx.maskstore.pd.256(i8 *, <4 x double>, <4 x double>)
|
|
|
|
define void @__masked_store_32(<8 x i32>* nocapture, <8 x i32>,
|
|
<8 x i32>) nounwind alwaysinline {
|
|
%ptr = bitcast <8 x i32> * %0 to i8 *
|
|
%val = bitcast <8 x i32> %1 to <8 x float>
|
|
%mask = bitcast <8 x i32> %2 to <8 x float>
|
|
call void @llvm.x86.avx.maskstore.ps.256(i8 * %ptr, <8 x float> %mask, <8 x float> %val)
|
|
ret void
|
|
}
|
|
|
|
define void @__masked_store_64(<8 x i64>* nocapture, <8 x i64>,
|
|
<8 x i32> %mask) nounwind alwaysinline {
|
|
%ptr = bitcast <8 x i64> * %0 to i8 *
|
|
%val = bitcast <8 x i64> %1 to <8 x double>
|
|
|
|
%mask0 = shufflevector <8 x i32> %mask, <8 x i32> undef,
|
|
<8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 2, i32 2, i32 3, i32 3>
|
|
%mask1 = shufflevector <8 x i32> %mask, <8 x i32> undef,
|
|
<8 x i32> <i32 4, i32 4, i32 5, i32 5, i32 6, i32 6, i32 7, i32 7>
|
|
|
|
%mask0d = bitcast <8 x i32> %mask0 to <4 x double>
|
|
%mask1d = bitcast <8 x i32> %mask1 to <4 x double>
|
|
|
|
%val0 = shufflevector <8 x double> %val, <8 x double> undef,
|
|
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
|
|
%val1 = shufflevector <8 x double> %val, <8 x double> undef,
|
|
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
|
|
|
|
call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr, <4 x double> %mask0d, <4 x double> %val0)
|
|
%ptr1 = getelementptr i8 * %ptr, i32 32
|
|
call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr1, <4 x double> %mask1d, <4 x double> %val1)
|
|
ret void
|
|
}
|
|
|
|
|
|
declare <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float>, <8 x float>,
|
|
<8 x float>) nounwind readnone
|
|
|
|
|
|
define void @__masked_store_blend_32(<8 x i32>* nocapture, <8 x i32>,
|
|
<8 x i32>) nounwind alwaysinline {
|
|
%mask_as_float = bitcast <8 x i32> %2 to <8 x float>
|
|
%oldValue = load <8 x i32>* %0, align 4
|
|
%oldAsFloat = bitcast <8 x i32> %oldValue to <8 x float>
|
|
%newAsFloat = bitcast <8 x i32> %1 to <8 x float>
|
|
%blend = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %oldAsFloat,
|
|
<8 x float> %newAsFloat,
|
|
<8 x float> %mask_as_float)
|
|
%blendAsInt = bitcast <8 x float> %blend to <8 x i32>
|
|
store <8 x i32> %blendAsInt, <8 x i32>* %0, align 4
|
|
ret void
|
|
}
|
|
|
|
|
|
define void @__masked_store_blend_64(<8 x i64>* nocapture %ptr, <8 x i64> %new,
|
|
<8 x i32> %i32mask) nounwind alwaysinline {
|
|
%oldValue = load <8 x i64>* %ptr, align 8
|
|
%mask = bitcast <8 x i32> %i32mask to <8 x float>
|
|
|
|
; Do 4x64-bit blends by doing two <8 x i32> blends, where the <8 x i32> values
|
|
; are actually bitcast <4 x i64> values
|
|
;
|
|
; set up the first four 64-bit values
|
|
%old01 = shufflevector <8 x i64> %oldValue, <8 x i64> undef,
|
|
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
|
|
%old01f = bitcast <4 x i64> %old01 to <8 x float>
|
|
%new01 = shufflevector <8 x i64> %new, <8 x i64> undef,
|
|
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
|
|
%new01f = bitcast <4 x i64> %new01 to <8 x float>
|
|
; compute mask--note that the indices are all doubled-up
|
|
%mask01 = shufflevector <8 x float> %mask, <8 x float> undef,
|
|
<8 x i32> <i32 0, i32 0, i32 1, i32 1,
|
|
i32 2, i32 2, i32 3, i32 3>
|
|
; and blend them
|
|
%result01f = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %old01f,
|
|
<8 x float> %new01f,
|
|
<8 x float> %mask01)
|
|
%result01 = bitcast <8 x float> %result01f to <4 x i64>
|
|
|
|
; and again
|
|
%old23 = shufflevector <8 x i64> %oldValue, <8 x i64> undef,
|
|
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
|
|
%old23f = bitcast <4 x i64> %old23 to <8 x float>
|
|
%new23 = shufflevector <8 x i64> %new, <8 x i64> undef,
|
|
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
|
|
%new23f = bitcast <4 x i64> %new23 to <8 x float>
|
|
; compute mask--note that the values are doubled-up...
|
|
%mask23 = shufflevector <8 x float> %mask, <8 x float> undef,
|
|
<8 x i32> <i32 4, i32 4, i32 5, i32 5,
|
|
i32 6, i32 6, i32 7, i32 7>
|
|
; and blend them
|
|
%result23f = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %old23f,
|
|
<8 x float> %new23f,
|
|
<8 x float> %mask23)
|
|
%result23 = bitcast <8 x float> %result23f to <4 x i64>
|
|
|
|
; reconstruct the final <8 x i64> vector
|
|
%final = shufflevector <4 x i64> %result01, <4 x i64> %result23,
|
|
<8 x i32> <i32 0, i32 1, i32 2, i32 3,
|
|
i32 4, i32 5, i32 6, i32 7>
|
|
store <8 x i64> %final, <8 x i64> * %ptr, align 8
|
|
ret void
|
|
}
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; gather/scatter
|
|
|
|
gen_gather(8, i32)
|
|
gen_gather(8, i64)
|
|
gen_scatter(8, i32)
|
|
gen_scatter(8, i64)
|
|
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; double precision sqrt
|
|
|
|
declare <4 x double> @llvm.x86.avx.sqrt.pd.256(<4 x double>) nounwind readnone
|
|
declare <2 x double> @llvm.x86.sse.sqrt.sd(<2 x double>) nounwind readnone
|
|
|
|
define internal <8 x double> @__sqrt_varying_double(<8 x double>) nounwind alwaysinline {
|
|
unary4to8(ret, double, @llvm.x86.avx.sqrt.pd.256, %0)
|
|
ret <8 x double> %ret
|
|
}
|
|
|
|
define internal double @__sqrt_uniform_double(double) nounwind alwaysinline {
|
|
sse_unary_scalar(ret, 2, double, @llvm.x86.sse.sqrt.sd, %0)
|
|
ret double %ret
|
|
}
|
|
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; double precision min/max
|
|
|
|
declare <4 x double> @llvm.x86.avx.max.pd.256(<4 x double>, <4 x double>) nounwind readnone
|
|
declare <2 x double> @llvm.x86.sse.max.sd(<2 x double>, <2 x double>) nounwind readnone
|
|
declare <4 x double> @llvm.x86.avx.min.pd.256(<4 x double>, <4 x double>) nounwind readnone
|
|
declare <2 x double> @llvm.x86.sse.min.sd(<2 x double>, <2 x double>) nounwind readnone
|
|
|
|
define internal <8 x double> @__min_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
|
|
binary4to8(ret, double, @llvm.x86.avx.min.pd.256, %0, %1)
|
|
ret <8 x double> %ret
|
|
}
|
|
|
|
define internal double @__min_uniform_double(double, double) nounwind readnone alwaysinline {
|
|
sse_binary_scalar(ret, 2, double, @llvm.x86.sse.min.sd, %0, %1)
|
|
ret double %ret
|
|
}
|
|
|
|
define internal <8 x double> @__max_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
|
|
binary4to8(ret, double, @llvm.x86.avx.max.pd.256, %0, %1)
|
|
ret <8 x double> %ret
|
|
}
|
|
|
|
define internal double @__max_uniform_double(double, double) nounwind readnone alwaysinline {
|
|
sse_binary_scalar(ret, 2, double, @llvm.x86.sse.max.sd, %0, %1)
|
|
ret double %ret
|
|
}
|