Files
ispc/examples_cuda/deferred/kernels1.ispc
2013-11-15 17:23:22 +01:00

557 lines
21 KiB
Plaintext

/*
Copyright (c) 2010-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef __NVPTX__
#warning "emitting DEVICE code"
#define programCount warpSize()
#define programIndex laneIndex()
#define taskIndex blockIndex0()
#define taskCount blockCount0()
#define cif if
#else
#warning "emitting HOST code"
#endif
#include "deferred.h"
struct InputDataArrays
{
float *zBuffer;
unsigned int16 *normalEncoded_x; // half float
unsigned int16 *normalEncoded_y; // half float
unsigned int16 *specularAmount; // half float
unsigned int16 *specularPower; // half float
unsigned int8 *albedo_x; // unorm8
unsigned int8 *albedo_y; // unorm8
unsigned int8 *albedo_z; // unorm8
float *lightPositionView_x;
float *lightPositionView_y;
float *lightPositionView_z;
float *lightAttenuationBegin;
float *lightColor_x;
float *lightColor_y;
float *lightColor_z;
float *lightAttenuationEnd;
};
struct InputHeader
{
float cameraProj[4][4];
float cameraNear;
float cameraFar;
int32 framebufferWidth;
int32 framebufferHeight;
int32 numLights;
int32 inputDataChunkSize;
int32 inputDataArrayOffsets[idaNum];
};
///////////////////////////////////////////////////////////////////////////
// Common utility routines
static inline float
dot3(float x, float y, float z, float a, float b, float c) {
return (x*a + y*b + z*c);
}
static inline void
normalize3(float x, float y, float z, float &ox, float &oy, float &oz) {
float n = rsqrt(x*x + y*y + z*z);
ox = x * n;
oy = y * n;
oz = z * n;
}
static inline float
Unorm8ToFloat32(unsigned int8 u) {
return (float)u * (1.0f / 255.0f);
}
static inline unsigned int8
Float32ToUnorm8(float f) {
return (unsigned int8)(f * 255.0f);
}
static inline void
ComputeZBounds(
uniform int32 tileStartX, uniform int32 tileEndX,
uniform int32 tileStartY, uniform int32 tileEndY,
// G-buffer data
uniform float zBuffer[],
uniform int32 gBufferWidth,
// Camera data
uniform float cameraProj_33, uniform float cameraProj_43,
uniform float cameraNear, uniform float cameraFar,
// Output
uniform float &minZ,
uniform float &maxZ
)
{
// Find Z bounds
float laneMinZ = cameraFar;
float laneMaxZ = cameraNear;
for (uniform int32 y = tileStartY; y < tileEndY; ++y)
foreach (x = tileStartX ... tileEndX)
{
// Unproject depth buffer Z value into view space
float z = zBuffer[y * gBufferWidth + x];
float viewSpaceZ = cameraProj_43 / (z - cameraProj_33);
// Work out Z bounds for our samples
// Avoid considering skybox/background or otherwise invalid pixels
if ((viewSpaceZ < cameraFar) && (viewSpaceZ >= cameraNear)) {
laneMinZ = min(laneMinZ, viewSpaceZ);
laneMaxZ = max(laneMaxZ, viewSpaceZ);
}
}
minZ = reduce_min(laneMinZ);
maxZ = reduce_max(laneMaxZ);
}
static inline uniform int32
IntersectLightsWithTileMinMax(
uniform int32 tileStartX, uniform int32 tileEndX,
uniform int32 tileStartY, uniform int32 tileEndY,
// Tile data
uniform float minZ,
uniform float maxZ,
// G-buffer data
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
// Camera data
uniform float cameraProj_11, uniform float cameraProj_22,
// Light Data
uniform int32 numLights,
uniform float light_positionView_x_array[],
uniform float light_positionView_y_array[],
uniform float light_positionView_z_array[],
uniform float light_attenuationEnd_array[],
// Output
uniform int32 tileLightIndices[]
)
{
uniform float gBufferScale_x = 0.5f * (float)gBufferWidth;
uniform float gBufferScale_y = 0.5f * (float)gBufferHeight;
uniform float frustumPlanes_xy[4] = {
-(cameraProj_11 * gBufferScale_x),
(cameraProj_11 * gBufferScale_x),
(cameraProj_22 * gBufferScale_y),
-(cameraProj_22 * gBufferScale_y) };
uniform float frustumPlanes_z[4] = {
tileEndX - gBufferScale_x,
-tileStartX + gBufferScale_x,
tileEndY - gBufferScale_y,
-tileStartY + gBufferScale_y };
for (uniform int i = 0; i < 4; ++i) {
uniform float norm = rsqrt(frustumPlanes_xy[i] * frustumPlanes_xy[i] +
frustumPlanes_z[i] * frustumPlanes_z[i]);
frustumPlanes_xy[i] *= norm;
frustumPlanes_z[i] *= norm;
}
uniform int32 tileNumLights = 0;
foreach (lightIndex = 0 ... numLights)
{
float light_positionView_z = light_positionView_z_array[lightIndex];
float light_attenuationEnd = light_attenuationEnd_array[lightIndex];
float light_attenuationEndNeg = -light_attenuationEnd;
float d = light_positionView_z - minZ;
bool inFrustum = (d >= light_attenuationEndNeg);
d = maxZ - light_positionView_z;
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
// This seems better than cif(!inFrustum) ccontinue; here since we
// don't actually need to mask the rest of this function - this is
// just a greedy early-out. Could also structure all of this as
// nested if() statements, but this a bit easier to read
if (any(inFrustum))
{
float light_positionView_x = light_positionView_x_array[lightIndex];
float light_positionView_y = light_positionView_y_array[lightIndex];
d = light_positionView_z * frustumPlanes_z[0] +
light_positionView_x * frustumPlanes_xy[0];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
d = light_positionView_z * frustumPlanes_z[1] +
light_positionView_x * frustumPlanes_xy[1];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
d = light_positionView_z * frustumPlanes_z[2] +
light_positionView_y * frustumPlanes_xy[2];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
d = light_positionView_z * frustumPlanes_z[3] +
light_positionView_y * frustumPlanes_xy[3];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
// Pack and store intersecting lights
const bool active = inFrustum && lightIndex < numLights;
if(any(active))
tileNumLights += packed_store_active(active, &tileLightIndices[tileNumLights], lightIndex);
}
}
return tileNumLights;
}
static inline uniform int32
IntersectLightsWithTile(
uniform int32 tileStartX, uniform int32 tileEndX,
uniform int32 tileStartY, uniform int32 tileEndY,
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
// G-buffer data
uniform float zBuffer[],
// Camera data
uniform float cameraProj_11, uniform float cameraProj_22,
uniform float cameraProj_33, uniform float cameraProj_43,
uniform float cameraNear, uniform float cameraFar,
// Light Data
uniform int32 numLights,
uniform float light_positionView_x_array[],
uniform float light_positionView_y_array[],
uniform float light_positionView_z_array[],
uniform float light_attenuationEnd_array[],
// Output
uniform int32 tileLightIndices[]
)
{
uniform float minZ, maxZ;
ComputeZBounds(tileStartX, tileEndX, tileStartY, tileEndY,
zBuffer, gBufferWidth, cameraProj_33, cameraProj_43, cameraNear, cameraFar,
minZ, maxZ);
uniform int32 tileNumLights = IntersectLightsWithTileMinMax(
tileStartX, tileEndX, tileStartY, tileEndY, minZ, maxZ,
gBufferWidth, gBufferHeight, cameraProj_11, cameraProj_22,
MAX_LIGHTS, light_positionView_x_array, light_positionView_y_array,
light_positionView_z_array, light_attenuationEnd_array,
tileLightIndices);
return tileNumLights;
}
static inline void
ShadeTile(
uniform int32 tileStartX, uniform int32 tileEndX,
uniform int32 tileStartY, uniform int32 tileEndY,
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
const uniform InputDataArrays &inputData,
// Camera data
uniform float cameraProj_11, uniform float cameraProj_22,
uniform float cameraProj_33, uniform float cameraProj_43,
// Light list
uniform int32 tileLightIndices[],
uniform int32 tileNumLights,
// UI
uniform bool visualizeLightCount,
// Output
uniform unsigned int8 framebuffer_r[],
uniform unsigned int8 framebuffer_g[],
uniform unsigned int8 framebuffer_b[]
)
{
if (tileNumLights == 0 || visualizeLightCount) {
uniform unsigned int8 c = (unsigned int8)(min(tileNumLights << 2, 255));
for (uniform int32 y = tileStartY; y < tileEndY; ++y)
foreach (x = tileStartX ... tileEndX)
{
int32 framebufferIndex = (y * gBufferWidth + x);
framebuffer_r[framebufferIndex] = c;
framebuffer_g[framebufferIndex] = c;
framebuffer_b[framebufferIndex] = c;
}
} else {
uniform float twoOverGBufferWidth = 2.0f / gBufferWidth;
uniform float twoOverGBufferHeight = 2.0f / gBufferHeight;
for (uniform int32 y = tileStartY; y < tileEndY; ++y) {
uniform float positionScreen_y = -(((0.5f + y) * twoOverGBufferHeight) - 1.f);
foreach (x = tileStartX ... tileEndX) {
int32 gBufferOffset = y * gBufferWidth + x;
// Reconstruct position and (negative) view vector from G-buffer
float surface_positionView_x, surface_positionView_y, surface_positionView_z;
float Vneg_x, Vneg_y, Vneg_z;
float z = inputData.zBuffer[gBufferOffset];
// Compute screen/clip-space position
// NOTE: Mind DX11 viewport transform and pixel center!
float positionScreen_x = (0.5f + (float)(x)) *
twoOverGBufferWidth - 1.0f;
// Unproject depth buffer Z value into view space
surface_positionView_z = cameraProj_43 / (z - cameraProj_33);
surface_positionView_x = positionScreen_x * surface_positionView_z /
cameraProj_11;
surface_positionView_y = positionScreen_y * surface_positionView_z /
cameraProj_22;
// We actually end up with a vector pointing *at* the
// surface (i.e. the negative view vector)
normalize3(surface_positionView_x, surface_positionView_y,
surface_positionView_z, Vneg_x, Vneg_y, Vneg_z);
// Reconstruct normal from G-buffer
float surface_normal_x, surface_normal_y, surface_normal_z;
float normal_x = half_to_float(inputData.normalEncoded_x[gBufferOffset]);
float normal_y = half_to_float(inputData.normalEncoded_y[gBufferOffset]);
float f = (normal_x - normal_x * normal_x) + (normal_y - normal_y * normal_y);
float m = sqrt(4.0f * f - 1.0f);
surface_normal_x = m * (4.0f * normal_x - 2.0f);
surface_normal_y = m * (4.0f * normal_y - 2.0f);
surface_normal_z = 3.0f - 8.0f * f;
// Load other G-buffer parameters
float surface_specularAmount =
half_to_float(inputData.specularAmount[gBufferOffset]);
float surface_specularPower =
half_to_float(inputData.specularPower[gBufferOffset]);
float surface_albedo_x = Unorm8ToFloat32(inputData.albedo_x[gBufferOffset]);
float surface_albedo_y = Unorm8ToFloat32(inputData.albedo_y[gBufferOffset]);
float surface_albedo_z = Unorm8ToFloat32(inputData.albedo_z[gBufferOffset]);
float lit_x = 0.0f;
float lit_y = 0.0f;
float lit_z = 0.0f;
for (uniform int32 tileLightIndex = 0; tileLightIndex < tileNumLights;
++tileLightIndex) {
uniform int32 lightIndex = tileLightIndices[tileLightIndex];
// Gather light data relevant to initial culling
uniform float light_positionView_x =
inputData.lightPositionView_x[lightIndex];
uniform float light_positionView_y =
inputData.lightPositionView_y[lightIndex];
uniform float light_positionView_z =
inputData.lightPositionView_z[lightIndex];
uniform float light_attenuationEnd =
inputData.lightAttenuationEnd[lightIndex];
// Compute light vector
float L_x = light_positionView_x - surface_positionView_x;
float L_y = light_positionView_y - surface_positionView_y;
float L_z = light_positionView_z - surface_positionView_z;
float distanceToLight2 = dot3(L_x, L_y, L_z, L_x, L_y, L_z);
// Clip at end of attenuation
float light_attenutaionEnd2 = light_attenuationEnd * light_attenuationEnd;
cif (distanceToLight2 < light_attenutaionEnd2) {
float distanceToLight = sqrt(distanceToLight2);
// HLSL "rcp" is allowed to be fairly inaccurate
float distanceToLightRcp = rcp(distanceToLight);
L_x *= distanceToLightRcp;
L_y *= distanceToLightRcp;
L_z *= distanceToLightRcp;
// Start computing brdf
float NdotL = dot3(surface_normal_x, surface_normal_y,
surface_normal_z, L_x, L_y, L_z);
// Clip back facing
cif (NdotL > 0.0f) {
uniform float light_attenuationBegin =
inputData.lightAttenuationBegin[lightIndex];
// Light distance attenuation (linstep)
float lightRange = (light_attenuationEnd - light_attenuationBegin);
float falloffPosition = (light_attenuationEnd - distanceToLight);
float attenuation = min(falloffPosition / lightRange, 1.0f);
float H_x = (L_x - Vneg_x);
float H_y = (L_y - Vneg_y);
float H_z = (L_z - Vneg_z);
normalize3(H_x, H_y, H_z, H_x, H_y, H_z);
float NdotH = dot3(surface_normal_x, surface_normal_y,
surface_normal_z, H_x, H_y, H_z);
NdotH = max(NdotH, 0.0f);
float specular = pow(NdotH, surface_specularPower);
float specularNorm = (surface_specularPower + 2.0f) *
(1.0f / 8.0f);
float specularContrib = surface_specularAmount *
specularNorm * specular;
float k = attenuation * NdotL * (1.0f + specularContrib);
uniform float light_color_x = inputData.lightColor_x[lightIndex];
uniform float light_color_y = inputData.lightColor_y[lightIndex];
uniform float light_color_z = inputData.lightColor_z[lightIndex];
float lightContrib_x = surface_albedo_x * light_color_x;
float lightContrib_y = surface_albedo_y * light_color_y;
float lightContrib_z = surface_albedo_z * light_color_z;
lit_x += lightContrib_x * k;
lit_y += lightContrib_y * k;
lit_z += lightContrib_z * k;
}
}
}
// Gamma correct
// These pows are pretty slow right now, but we can do
// something faster if really necessary to squeeze every
// last bit of performance out of it
float gamma = 1.0 / 2.2f;
lit_x = pow(clamp(lit_x, 0.0f, 1.0f), gamma);
lit_y = pow(clamp(lit_y, 0.0f, 1.0f), gamma);
lit_z = pow(clamp(lit_z, 0.0f, 1.0f), gamma);
framebuffer_r[gBufferOffset] = Float32ToUnorm8(lit_x);
framebuffer_g[gBufferOffset] = Float32ToUnorm8(lit_y);
framebuffer_b[gBufferOffset] = Float32ToUnorm8(lit_z);
}
}
}
}
///////////////////////////////////////////////////////////////////////////
// Static decomposition
void task
RenderTile(uniform int num_groups_x, uniform int num_groups_y,
const uniform InputHeader inputHeaderPtr[],
const uniform InputDataArrays inputDataPtr[],
uniform int visualizeLightCount,
// Output
uniform unsigned int8 framebuffer_r[],
uniform unsigned int8 framebuffer_g[],
uniform unsigned int8 framebuffer_b[]) {
if (taskIndex >= taskCount) return;
const uniform InputHeader inputHeader = *inputHeaderPtr;
const uniform InputDataArrays inputData = *inputDataPtr;
uniform int32 group_y = taskIndex / num_groups_x;
uniform int32 group_x = taskIndex % num_groups_x;
uniform int32 tile_start_x = group_x * MIN_TILE_WIDTH;
uniform int32 tile_start_y = group_y * MIN_TILE_HEIGHT;
uniform int32 tile_end_x = tile_start_x + MIN_TILE_WIDTH;
uniform int32 tile_end_y = tile_start_y + MIN_TILE_HEIGHT;
uniform int framebufferWidth = inputHeader.framebufferWidth;
uniform int framebufferHeight = inputHeader.framebufferHeight;
uniform float cameraProj_00 = inputHeader.cameraProj[0][0];
uniform float cameraProj_11 = inputHeader.cameraProj[1][1];
uniform float cameraProj_22 = inputHeader.cameraProj[2][2];
uniform float cameraProj_32 = inputHeader.cameraProj[3][2];
// Light intersection: figure out which lights illuminate this tile.
#if 1
uniform int * uniform tileLightIndices = uniform new uniform int [MAX_LIGHTS];
#else
uniform int tileLightIndices[MAX_LIGHTS]; // Light list for the tile
#endif
#if 1
uniform int numTileLights =
IntersectLightsWithTile(tile_start_x, tile_end_x,
tile_start_y, tile_end_y,
framebufferWidth, framebufferHeight,
inputData.zBuffer,
cameraProj_00, cameraProj_11,
cameraProj_22, cameraProj_32,
inputHeader.cameraNear, inputHeader.cameraFar,
MAX_LIGHTS,
inputData.lightPositionView_x,
inputData.lightPositionView_y,
inputData.lightPositionView_z,
inputData.lightAttenuationEnd,
tileLightIndices);
// And now shade the tile, using the lights in tileLightIndices
ShadeTile(tile_start_x, tile_end_x, tile_start_y, tile_end_y,
framebufferWidth, framebufferHeight, inputData,
cameraProj_00, cameraProj_11, cameraProj_22, cameraProj_32,
tileLightIndices, numTileLights, visualizeLightCount,
framebuffer_r, framebuffer_g, framebuffer_b);
#endif
#if 1
delete tileLightIndices;
#endif
}
export void
RenderStatic(uniform InputHeader inputHeaderPtr[],
uniform InputDataArrays inputDataPtr[],
uniform int visualizeLightCount,
// Output
uniform unsigned int8 framebuffer_r[],
uniform unsigned int8 framebuffer_g[],
uniform unsigned int8 framebuffer_b[]) {
const uniform InputHeader inputHeader = *inputHeaderPtr;
const uniform InputDataArrays inputData = *inputDataPtr;
uniform int num_groups_x = (inputHeader.framebufferWidth +
MIN_TILE_WIDTH - 1) / MIN_TILE_WIDTH;
uniform int num_groups_y = (inputHeader.framebufferHeight +
MIN_TILE_HEIGHT - 1) / MIN_TILE_HEIGHT;
uniform int num_groups = num_groups_x * num_groups_y;
// Launch a task to render each tile, each of which is MIN_TILE_WIDTH
// by MIN_TILE_HEIGHT pixels.
launch[num_groups] RenderTile(num_groups_x, num_groups_y,
inputHeaderPtr, inputDataPtr, visualizeLightCount,
framebuffer_r, framebuffer_g, framebuffer_b);
sync;
}