Files
ispc/examples_cuda/rt/rt_cu.cpp
2013-11-13 16:23:05 +01:00

565 lines
16 KiB
C++

/*
Copyright (c) 2010-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#define NOMINMAX
#pragma warning (disable: 4244)
#pragma warning (disable: 4305)
#endif
#include <stdio.h>
#include <math.h>
#include <algorithm>
#include <assert.h>
#include <string.h>
#include <sys/types.h>
#include "../timing.h"
#include "rt_ispc.h"
#include <sys/time.h>
/******************************/
double rtc(void)
{
struct timeval Tvalue;
double etime;
struct timezone dummy;
gettimeofday(&Tvalue,&dummy);
etime = (double) Tvalue.tv_sec +
1.e-6*((double) Tvalue.tv_usec);
return etime;
}
/******************************/
#include <cassert>
#include <iostream>
#include <cuda.h>
#include "drvapi_error_string.h"
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
// These are the inline versions for all of the SDK helper functions
void __checkCudaErrors(CUresult err, const char *file, const int line) {
if(CUDA_SUCCESS != err) {
std::cerr << "checkCudeErrors() Driver API error = " << err << "\""
<< getCudaDrvErrorString(err) << "\" from file <" << file
<< ", line " << line << "\n";
exit(-1);
}
}
/**********************/
/* Basic CUDriver API */
CUcontext context;
void createContext(const int deviceId = 0)
{
CUdevice device;
int devCount;
checkCudaErrors(cuInit(0));
checkCudaErrors(cuDeviceGetCount(&devCount));
assert(devCount > 0);
checkCudaErrors(cuDeviceGet(&device, deviceId < devCount ? deviceId : 0));
char name[128];
checkCudaErrors(cuDeviceGetName(name, 128, device));
std::cout << "Using CUDA Device [0]: " << name << "\n";
int devMajor, devMinor;
checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
std::cout << "Device Compute Capability: "
<< devMajor << "." << devMinor << "\n";
if (devMajor < 2) {
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
exit(1);
}
// Create driver context
checkCudaErrors(cuCtxCreate(&context, 0, device));
}
void destroyContext()
{
checkCudaErrors(cuCtxDestroy(context));
}
CUmodule loadModule(const char * module)
{
const double t0 = rtc();
CUmodule cudaModule;
// in this branch we use compilation with parameters
CUlinkState CUState;
CUlinkState *lState = &CUState;
const int nOptions = 7;
CUjit_option options[nOptions];
void* optionVals[nOptions];
float walltime;
const unsigned int logSize = 32768;
char error_log[logSize],
info_log[logSize];
void *cuOut;
size_t outSize;
int myErr = 0;
// Setup linker options
// Return walltime from JIT compilation
options[0] = CU_JIT_WALL_TIME;
optionVals[0] = (void*) &walltime;
// Pass a buffer for info messages
options[1] = CU_JIT_INFO_LOG_BUFFER;
optionVals[1] = (void*) info_log;
// Pass the size of the info buffer
options[2] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
optionVals[2] = (void*) logSize;
// Pass a buffer for error message
options[3] = CU_JIT_ERROR_LOG_BUFFER;
optionVals[3] = (void*) error_log;
// Pass the size of the error buffer
options[4] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES;
optionVals[4] = (void*) logSize;
// Make the linker verbose
options[5] = CU_JIT_LOG_VERBOSE;
optionVals[5] = (void*) 1;
// Max # of registers/pthread
options[6] = CU_JIT_MAX_REGISTERS;
int jitRegCount = 32;
optionVals[6] = (void *)(size_t)jitRegCount;
// Create a pending linker invocation
checkCudaErrors(cuLinkCreate(nOptions,options, optionVals, lState));
#if 0
if (sizeof(void *)==4)
{
// Load the PTX from the string myPtx32
printf("Loading myPtx32[] program\n");
// PTX May also be loaded from file, as per below.
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)myPtx32, strlen(myPtx32)+1, 0, 0, 0, 0);
}
else
#endif
{
// Load the PTX from the string myPtx (64-bit)
fprintf(stderr, "Loading ptx..\n");
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)module, strlen(module)+1, 0, 0, 0, 0);
myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_LIBRARY, "libcudadevrt.a", 0,0,0);
// PTX May also be loaded from file, as per below.
// myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_PTX, "myPtx64.ptx",0,0,0);
}
// Complete the linker step
myErr = cuLinkComplete(*lState, &cuOut, &outSize);
if ( myErr != CUDA_SUCCESS )
{
// Errors will be put in error_log, per CU_JIT_ERROR_LOG_BUFFER option above.
fprintf(stderr,"PTX Linker Error:\n%s\n",error_log);
assert(0);
}
// Linker walltime and info_log were requested in options above.
fprintf(stderr, "CUDA Link Completed in %fms [ %g ms]. Linker Output:\n%s\n",walltime,info_log,1e3*(rtc() - t0));
// Load resulting cuBin into module
checkCudaErrors(cuModuleLoadData(&cudaModule, cuOut));
// Destroy the linker invocation
checkCudaErrors(cuLinkDestroy(*lState));
fprintf(stderr, " loadModule took %g ms \n", 1e3*(rtc() - t0));
return cudaModule;
}
void unloadModule(CUmodule &cudaModule)
{
checkCudaErrors(cuModuleUnload(cudaModule));
}
CUfunction getFunction(CUmodule &cudaModule, const char * function)
{
CUfunction cudaFunction;
checkCudaErrors(cuModuleGetFunction(&cudaFunction, cudaModule, function));
return cudaFunction;
}
CUdeviceptr deviceMalloc(const size_t size)
{
CUdeviceptr d_buf;
checkCudaErrors(cuMemAlloc(&d_buf, size));
return d_buf;
}
void deviceFree(CUdeviceptr d_buf)
{
checkCudaErrors(cuMemFree(d_buf));
}
void memcpyD2H(void * h_buf, CUdeviceptr d_buf, const size_t size)
{
checkCudaErrors(cuMemcpyDtoH(h_buf, d_buf, size));
}
void memcpyH2D(CUdeviceptr d_buf, void * h_buf, const size_t size)
{
checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size));
}
#define deviceLaunch(func,params) \
checkCudaErrors(cuFuncSetCacheConfig((func), CU_FUNC_CACHE_PREFER_L1)); \
checkCudaErrors( \
cuLaunchKernel( \
(func), \
1,1,1, \
32, 1, 1, \
0, NULL, (params), NULL \
));
typedef CUdeviceptr devicePtr;
/**************/
#include <vector>
std::vector<char> readBinary(const char * filename)
{
std::vector<char> buffer;
FILE *fp = fopen(filename, "rb");
if (!fp )
{
fprintf(stderr, "file %s not found\n", filename);
assert(0);
}
#if 0
char c;
while ((c = fgetc(fp)) != EOF)
buffer.push_back(c);
#else
fseek(fp, 0, SEEK_END);
const unsigned long long size = ftell(fp); /*calc the size needed*/
fseek(fp, 0, SEEK_SET);
buffer.resize(size);
if (fp == NULL){ /*ERROR detection if file == empty*/
fprintf(stderr, "Error: There was an Error reading the file %s \n",filename);
exit(1);
}
else if (fread(&buffer[0], sizeof(char), size, fp) != size){ /* if count of read bytes != calculated size of .bin file -> ERROR*/
fprintf(stderr, "Error: There was an Error reading the file %s \n", filename);
exit(1);
}
#endif
fprintf(stderr, " read buffer of size= %d bytes \n", (int)buffer.size());
return buffer;
}
extern "C"
{
double CUDALaunch(
void **handlePtr,
const char * func_name,
void **func_args)
{
const std::vector<char> module_str = readBinary("__kernels.ptx");
const char * module = &module_str[0];
CUmodule cudaModule = loadModule(module);
CUfunction cudaFunction = getFunction(cudaModule, func_name);
const double t0 = rtc();
deviceLaunch(cudaFunction, func_args);
checkCudaErrors(cuStreamSynchronize(0));
const double dt = rtc() - t0;
unloadModule(cudaModule);
return dt;
}
}
/******************************/
using namespace ispc;
typedef unsigned int uint;
static void writeImage(int *idImage, float *depthImage, int width, int height,
const char *filename) {
FILE *f = fopen(filename, "wb");
if (!f) {
perror(filename);
exit(1);
}
fprintf(f, "P6\n%d %d\n255\n", width, height);
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
// use the bits from the object id of the hit object to make a
// random color
int id = idImage[y * width + x];
unsigned char r = 0, g = 0, b = 0;
for (int i = 0; i < 8; ++i) {
// extract bit 3*i for red, 3*i+1 for green, 3*i+2 for blue
int rbit = (id & (1 << (3*i))) >> (3*i);
int gbit = (id & (1 << (3*i+1))) >> (3*i+1);
int bbit = (id & (1 << (3*i+2))) >> (3*i+2);
// and then set the bits of the colors starting from the
// high bits...
r |= rbit << (7-i);
g |= gbit << (7-i);
b |= bbit << (7-i);
}
fputc(r, f);
fputc(g, f);
fputc(b, f);
}
}
fclose(f);
printf("Wrote image file %s\n", filename);
}
static void usage() {
fprintf(stderr, "rt [--scale=<factor>] <scene name base>\n");
exit(1);
}
int main(int argc, char *argv[]) {
float scale = 1.f;
const char *filename = NULL;
for (int i = 1; i < argc; ++i) {
if (strncmp(argv[i], "--scale=", 8) == 0) {
scale = atof(argv[i] + 8);
if (scale == 0.f)
usage();
}
else if (filename != NULL)
usage();
else
filename = argv[i];
}
if (filename == NULL)
usage();
#define READ(var, n) \
if (fread(&(var), sizeof(var), n, f) != (unsigned int)n) { \
fprintf(stderr, "Unexpected EOF reading scene file\n"); \
return 1; \
} else /* eat ; */
//
// Read the camera specification information from the camera file
//
char fnbuf[1024];
sprintf(fnbuf, "%s.camera", filename);
FILE *f = fopen(fnbuf, "rb");
if (!f) {
perror(fnbuf);
return 1;
}
//
// Nothing fancy, and trouble if we run on a big-endian system, just
// fread in the bits
//
int baseWidth, baseHeight;
float camera2world[4][4], raster2camera[4][4];
READ(baseWidth, 1);
READ(baseHeight, 1);
READ(camera2world[0][0], 16);
READ(raster2camera[0][0], 16);
//
// Read in the serialized BVH
//
sprintf(fnbuf, "%s.bvh", filename);
f = fopen(fnbuf, "rb");
if (!f) {
perror(fnbuf);
return 1;
}
// The BVH file starts with an int that gives the total number of BVH
// nodes
uint nNodes;
READ(nNodes, 1);
LinearBVHNode *nodes = new LinearBVHNode[nNodes];
for (unsigned int i = 0; i < nNodes; ++i) {
// Each node is 6x floats for a boox, then an integer for an offset
// to the second child node, then an integer that encodes the type
// of node, the total number of int it if a leaf node, etc.
float b[6];
READ(b[0], 6);
nodes[i].bounds[0][0] = b[0];
nodes[i].bounds[0][1] = b[1];
nodes[i].bounds[0][2] = b[2];
nodes[i].bounds[1][0] = b[3];
nodes[i].bounds[1][1] = b[4];
nodes[i].bounds[1][2] = b[5];
READ(nodes[i].offset, 1);
READ(nodes[i].nPrimitives, 1);
READ(nodes[i].splitAxis, 1);
READ(nodes[i].pad, 1);
}
// And then read the triangles
uint nTris;
READ(nTris, 1);
Triangle *triangles = new Triangle[nTris];
for (uint i = 0; i < nTris; ++i) {
// 9x floats for the 3 vertices
float v[9];
READ(v[0], 9);
float *vp = v;
for (int j = 0; j < 3; ++j) {
triangles[i].p[j][0] = *vp++;
triangles[i].p[j][1] = *vp++;
triangles[i].p[j][2] = *vp++;
}
// And create an object id
triangles[i].id = i+1;
}
fclose(f);
int height = int(baseHeight * scale);
int width = int(baseWidth * scale);
// allocate images; one to hold hit object ids, one to hold depth to
// the first interseciton
int *id = new int[width*height];
float *image = new float[width*height];
//
// Run 3 iterations with ispc + 1 core, record the minimum time
//
double minTimeISPC = 1e30;
#if 0
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
raytrace_ispc(width, height, baseWidth, baseHeight, raster2camera,
camera2world, image, id, nodes, triangles);
double dt = get_elapsed_mcycles();
minTimeISPC = std::min(dt, minTimeISPC);
}
printf("[rt ispc, 1 core]:\t\t[%.3f] million cycles for %d x %d image\n",
minTimeISPC, width, height);
writeImage(id, image, width, height, "rt-ispc-1core.ppm");
#endif
memset(id, 0, width*height*sizeof(int));
memset(image, 0, width*height*sizeof(float));
/*******************/
createContext();
/*******************/
devicePtr d_raster2camera = deviceMalloc(4*4*sizeof(float));
devicePtr d_camera2world = deviceMalloc(4*4*sizeof(float));
devicePtr d_nodes = deviceMalloc(nNodes*sizeof(LinearBVHNode));
devicePtr d_triangles = deviceMalloc(nTris *sizeof(Triangle));
devicePtr d_image = deviceMalloc(width*height*sizeof(float));
devicePtr d_id = deviceMalloc(width*height*sizeof(int));
memcpyH2D(d_raster2camera, raster2camera, 4*4*sizeof(float));
memcpyH2D(d_camera2world, camera2world, 4*4*sizeof(float));
memcpyH2D(d_nodes, nodes, nNodes*sizeof(LinearBVHNode));
memcpyH2D(d_triangles, triangles, nTris*sizeof(Triangle));
memcpyH2D(d_image, image, width*height*sizeof(float));
memcpyH2D(d_id, id, width*height*sizeof(int));
//
// Run 3 iterations with ispc + 1 core, record the minimum time
//
double minTimeISPCtasks = 1e30;
for (int i = 0; i < 3; ++i) {
#if 0
reset_and_start_timer();
const double t0 = rtc();
raytrace_ispc_tasks(
width,
height,
baseWidth,
baseHeight,
(float(*)[4])d_raster2camera,
(float(*)[4])d_camera2world,
(float*)d_image,
(int*)d_id,
(LinearBVHNode*)d_nodes,
(Triangle*)d_triangles);
double dt = rtc() - t0; //get_elapsed_mcycles();
#else
const char * func_name = "raytrace_ispc_tasks";
void *func_args[] = {&width, &height, &baseWidth, &baseHeight,
&d_raster2camera, &d_camera2world,
&d_image, &d_id,
&d_nodes, &d_triangles};
const double dt = CUDALaunch(NULL, func_name, func_args);
#endif
minTimeISPCtasks = std::min(dt, minTimeISPCtasks);
}
printf("[rt ispc + tasks]:\t\t[%.3f] million cycles for %d x %d image\n",
minTimeISPCtasks, width, height);
memcpyD2H(image, d_image, width*height*sizeof(float));
memcpyD2H(id, d_id, width*height*sizeof(int));
writeImage(id, image, width, height, "rt-cuda.ppm");
/*******************/
destroyContext();
/*******************/
memset(id, 0, width*height*sizeof(int));
memset(image, 0, width*height*sizeof(float));
//
// And 3 iterations with the serial implementation, reporting the
// minimum time.
//
double minTimeSerial = 1e30;
#if 0
for (int i = 0; i < 3; ++i) {
reset_and_start_timer();
const double t0 = rtc();
raytrace_serial(width, height, baseWidth, baseHeight, raster2camera,
camera2world, image, id, nodes, triangles);
double dt = rtc() - t0; //get_elapsed_mcycles();
minTimeSerial = std::min(dt, minTimeSerial);
}
printf("[rt serial]:\t\t\t[%.3f] million cycles for %d x %d image\n",
minTimeSerial, width, height);
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n",
minTimeSerial / minTimeISPC, minTimeSerial / minTimeISPCtasks);
writeImage(id, image, width, height, "rt-serial.ppm");
#endif
return 0;
}