Files
ispc/examples/options/options_serial.cpp
2011-06-21 12:48:50 -07:00

115 lines
3.5 KiB
C++

/*
Copyright (c) 2010-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#define NOMINMAX
#pragma warning (disable: 4244)
#pragma warning (disable: 4305)
#endif
#include "options_defs.h"
#include <math.h>
#include <algorithm>
// Cumulative normal distribution function
static inline float
CND(float X) {
float L = fabsf(X);
float k = 1.0 / (1.0 + 0.2316419 * L);
float k2 = k*k;
float k3 = k2*k;
float k4 = k2*k2;
float k5 = k3*k2;
const float invSqrt2Pi = 0.39894228040f;
float w = (0.31938153f * k - 0.356563782f * k2 + 1.781477937f * k3 +
-1.821255978f * k4 + 1.330274429f * k5);
w *= invSqrt2Pi * expf(-L * L * .5f);
if (X > 0.f)
w = 1.0 - w;
return w;
}
void
black_scholes_serial(float Sa[], float Xa[], float Ta[],
float ra[], float va[],
float result[], int count) {
for (int i = 0; i < count; ++i) {
float S = Sa[i], X = Xa[i];
float T = Ta[i], r = ra[i];
float v = va[i];
float d1 = (logf(S/X) + (r + v * v * .5f) * T) / (v * sqrtf(T));
float d2 = d1 - v * sqrtf(T);
result[i] = S * CND(d1) - X * expf(-r * T) * CND(d2);
}
}
void
binomial_put_serial(float Sa[], float Xa[], float Ta[],
float ra[], float va[],
float result[], int count) {
float V[BINOMIAL_NUM];
for (int i = 0; i < count; ++i) {
float S = Sa[i], X = Xa[i];
float T = Ta[i], r = ra[i];
float v = va[i];
float dt = T / BINOMIAL_NUM;
float u = expf(v * sqrtf(dt));
float d = 1. / u;
float disc = expf(r * dt);
float Pu = (disc - d) / (u - d);
for (int j = 0; j < BINOMIAL_NUM; ++j) {
float upow = powf(u, (float)(2*j-BINOMIAL_NUM));
V[j] = std::max(0.f, X - S * upow);
}
for (int j = BINOMIAL_NUM-1; j >= 0; --j)
for (int k = 0; k < j; ++k)
V[k] = ((1 - Pu) * V[k] + Pu * V[k + 1]) / disc;
result[i] = V[0];
}
}