Files
ispc/builtins-avx.ll

754 lines
29 KiB
LLVM

;; Copyright (c) 2010-2011, Intel Corporation
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;;
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;;
;; * Neither the name of Intel Corporation nor the names of its
;; contributors may be used to endorse or promote products derived from
;; this software without specific prior written permission.
;;
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; *** Untested *** AVX target implementation.
;;
;; The LLVM AVX code generator is incomplete, so the ispc AVX target
;; hasn't yet been tested. There is therefore a higher-than-normal
;; chance that there are bugs in the code in this file.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Basic 8-wide definitions
stdlib_core(8)
packed_load_and_store(8)
scans(8)
int64minmax(8)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rcp
declare <8 x float> @llvm.x86.avx.rcp.ps.256(<8 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone
define internal <8 x float> @__rcp_varying_float(<8 x float>) nounwind readonly alwaysinline {
; float iv = __rcp_v(v);
; return iv * (2. - v * iv);
%call = call <8 x float> @llvm.x86.avx.rcp.ps.256(<8 x float> %0)
; do one N-R iteration
%v_iv = fmul <8 x float> %0, %call
%two_minus = fsub <8 x float> <float 2., float 2., float 2., float 2.,
float 2., float 2., float 2., float 2.>, %v_iv
%iv_mul = fmul <8 x float> %call, %two_minus
ret <8 x float> %iv_mul
}
define internal float @__rcp_uniform_float(float) nounwind readonly alwaysinline {
; uniform float iv = extract(__rcp_u(v), 0);
; return iv * (2. - v * iv);
%vecval = insertelement <4 x float> undef, float %0, i32 0
%call = call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %vecval)
%scall = extractelement <4 x float> %call, i32 0
; do one N-R iteration
%v_iv = fmul float %0, %scall
%two_minus = fsub float 2., %v_iv
%iv_mul = fmul float %scall, %two_minus
ret float %iv_mul
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding floats
declare <8 x float> @llvm.x86.avx.round.ps.256(<8 x float>, i32) nounwind readnone
declare <4 x float> @llvm.x86.sse.round.ss(<4 x float>, <4 x float>, i32) nounwind readnone
define internal <8 x float> @__round_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
%call = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %0, i32 8)
ret <8 x float> %call
}
define internal float @__round_uniform_float(float) nounwind readonly alwaysinline {
; roundss, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8
; the roundss intrinsic is a total mess--docs say:
;
; __m128 _mm_round_ss (__m128 a, __m128 b, const int c)
;
; b is a 128-bit parameter. The lowest 32 bits are the result of the rounding function
; on b0. The higher order 96 bits are copied directly from input parameter a. The
; return value is described by the following equations:
;
; r0 = RND(b0)
; r1 = a1
; r2 = a2
; r3 = a3
;
; It doesn't matter what we pass as a, since we only need the r0 value
; here. So we pass the same register for both.
%xi = insertelement <4 x float> undef, float %0, i32 0
%xr = call <4 x float> @llvm.x86.sse.round.ss(<4 x float> %xi, <4 x float> %xi, i32 8)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
define internal <8 x float> @__floor_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round down 0b01 | don't signal precision exceptions 0b1000 = 9
%call = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %0, i32 9)
ret <8 x float> %call
}
define internal float @__floor_uniform_float(float) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <4 x float> undef, float %0, i32 0
; roundps, round down 0b01 | don't signal precision exceptions 0b1000 = 9
%xr = call <4 x float> @llvm.x86.sse.round.ss(<4 x float> %xi, <4 x float> %xi, i32 9)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
define internal <8 x float> @__ceil_varying_float(<8 x float>) nounwind readonly alwaysinline {
; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10
%call = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %0, i32 10)
ret <8 x float> %call
}
define internal float @__ceil_uniform_float(float) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <4 x float> undef, float %0, i32 0
; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10
%xr = call <4 x float> @llvm.x86.sse.round.ss(<4 x float> %xi, <4 x float> %xi, i32 10)
%rs = extractelement <4 x float> %xr, i32 0
ret float %rs
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding doubles
declare <4 x double> @llvm.x86.avx.round.pd.256(<4 x double>, i32) nounwind readnone
declare <2 x double> @llvm.x86.sse41.round.sd(<2 x double>, <2 x double>, i32) nounwind readnone
define internal <8 x double> @__round_varying_double(<8 x double>) nounwind readonly alwaysinline {
round4to8double(%0, 8)
}
define internal double @__round_uniform_double(double) nounwind readonly alwaysinline {
%xi = insertelement <2 x double> undef, double %0, i32 0
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 8)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
define internal <8 x double> @__floor_varying_double(<8 x double>) nounwind readonly alwaysinline {
; roundpd, round down 0b01 | don't signal precision exceptions 0b1000 = 9
round4to8double(%0, 9)
}
define internal double @__floor_uniform_double(double) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <2 x double> undef, double %0, i32 0
; roundpd, round down 0b01 | don't signal precision exceptions 0b1000 = 9
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 9)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
define internal <8 x double> @__ceil_varying_double(<8 x double>) nounwind readonly alwaysinline {
; roundpd, round up 0b10 | don't signal precision exceptions 0b1000 = 10
round4to8double(%0, 10)
}
define internal double @__ceil_uniform_double(double) nounwind readonly alwaysinline {
; see above for round_ss instrinsic discussion...
%xi = insertelement <2 x double> undef, double %0, i32 0
; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10
%xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 10)
%rs = extractelement <2 x double> %xr, i32 0
ret double %rs
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rsqrt
declare <8 x float> @llvm.x86.avx.rsqrt.ps.256(<8 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone
define internal <8 x float> @__rsqrt_varying_float(<8 x float> %v) nounwind readonly alwaysinline {
; float is = __rsqrt_v(v);
%is = call <8 x float> @llvm.x86.avx.rsqrt.ps.256(<8 x float> %v)
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul <8 x float> %v, %is
%v_is_is = fmul <8 x float> %v_is, %is
%three_sub = fsub <8 x float> <float 3., float 3., float 3., float 3., float 3., float 3., float 3., float 3.>, %v_is_is
%is_mul = fmul <8 x float> %is, %three_sub
%half_scale = fmul <8 x float> <float 0.5, float 0.5, float 0.5, float 0.5, float 0.5, float 0.5, float 0.5, float 0.5>, %is_mul
ret <8 x float> %half_scale
}
define internal float @__rsqrt_uniform_float(float) nounwind readonly alwaysinline {
; uniform float is = extract(__rsqrt_u(v), 0);
%v = insertelement <4 x float> undef, float %0, i32 0
%vis = call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %v)
%is = extractelement <4 x float> %vis, i32 0
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul float %0, %is
%v_is_is = fmul float %v_is, %is
%three_sub = fsub float 3., %v_is_is
%is_mul = fmul float %is, %three_sub
%half_scale = fmul float 0.5, %is_mul
ret float %half_scale
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; sqrt
declare <8 x float> @llvm.x86.avx.sqrt.ps.256(<8 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone
define internal <8 x float> @__sqrt_varying_float(<8 x float>) nounwind readonly alwaysinline {
%call = call <8 x float> @llvm.x86.avx.sqrt.ps.256(<8 x float> %0)
ret <8 x float> %call
}
define internal float @__sqrt_uniform_float(float) nounwind readonly alwaysinline {
sse_unary_scalar(ret, 4, float, @llvm.x86.sse.sqrt.ss, %0)
ret float %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; fastmath
declare void @llvm.x86.sse.stmxcsr(i8 *) nounwind
declare void @llvm.x86.sse.ldmxcsr(i8 *) nounwind
define internal void @__fastmath() nounwind alwaysinline {
%ptr = alloca i32
%ptr8 = bitcast i32 * %ptr to i8 *
call void @llvm.x86.sse.stmxcsr(i8 * %ptr8)
%oldval = load i32 *%ptr
; turn on DAZ (64)/FTZ (32768) -> 32832
%update = or i32 %oldval, 32832
store i32 %update, i32 *%ptr
call void @llvm.x86.sse.ldmxcsr(i8 * %ptr8)
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; svml
; FIXME: need either to wire these up to the 8-wide SVML entrypoints,
; or, use the macro to call the 4-wide ones twice with our 8-wide
; vectors...
declare <8 x float> @__svml_sin(<8 x float>)
declare <8 x float> @__svml_cos(<8 x float>)
declare void @__svml_sincos(<8 x float>, <8 x float> *, <8 x float> *)
declare <8 x float> @__svml_tan(<8 x float>)
declare <8 x float> @__svml_atan(<8 x float>)
declare <8 x float> @__svml_atan2(<8 x float>, <8 x float>)
declare <8 x float> @__svml_exp(<8 x float>)
declare <8 x float> @__svml_log(<8 x float>)
declare <8 x float> @__svml_pow(<8 x float>, <8 x float>)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; float min/max
declare <8 x float> @llvm.x86.avx.max.ps.256(<8 x float>, <8 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.max.ss(<4 x float>, <4 x float>) nounwind readnone
declare <8 x float> @llvm.x86.avx.min.ps.256(<8 x float>, <8 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.min.ss(<4 x float>, <4 x float>) nounwind readnone
define internal <8 x float> @__max_varying_float(<8 x float>,
<8 x float>) nounwind readonly alwaysinline {
%call = call <8 x float> @llvm.x86.avx.max.ps.256(<8 x float> %0, <8 x float> %1)
ret <8 x float> %call
}
define internal float @__max_uniform_float(float, float) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.max.ss, %0, %1)
ret float %ret
}
define internal <8 x float> @__min_varying_float(<8 x float>,
<8 x float>) nounwind readonly alwaysinline {
%call = call <8 x float> @llvm.x86.avx.min.ps.256(<8 x float> %0, <8 x float> %1)
ret <8 x float> %call
}
define internal float @__min_uniform_float(float, float) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, float, @llvm.x86.sse.min.ss, %0, %1)
ret float %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; int min/max
; no 8-wide integer stuff in avx1...
declare <4 x i32> @llvm.x86.sse41.pminsd(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.x86.sse41.pmaxsd(<4 x i32>, <4 x i32>) nounwind readnone
define internal <8 x i32> @__min_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
binary4to8(ret, i32, @llvm.x86.sse41.pminsd, %0, %1)
ret <8 x i32> %ret
}
define internal i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminsd, %0, %1)
ret i32 %ret
}
define internal <8 x i32> @__max_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
binary4to8(ret, i32, @llvm.x86.sse41.pmaxsd, %0, %1)
ret <8 x i32> %ret
}
define internal i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxsd, %0, %1)
ret i32 %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unsigned int min/max
declare <4 x i32> @llvm.x86.sse41.pminud(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.x86.sse41.pmaxud(<4 x i32>, <4 x i32>) nounwind readnone
define internal <8 x i32> @__min_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
binary4to8(ret, i32, @llvm.x86.sse41.pminud, %0, %1)
ret <8 x i32> %ret
}
define internal i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminud, %0, %1)
ret i32 %ret
}
define internal <8 x i32> @__max_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
binary4to8(ret, i32, @llvm.x86.sse41.pmaxud, %0, %1)
ret <8 x i32> %ret
}
define internal i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxud, %0, %1)
ret i32 %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops
declare i32 @llvm.ctpop.i32(i32) nounwind readnone
define internal i32 @__popcnt_int32(i32) nounwind readonly alwaysinline {
%call = call i32 @llvm.ctpop.i32(i32 %0)
ret i32 %call
}
declare i64 @llvm.ctpop.i64(i64) nounwind readnone
define internal i64 @__popcnt_int64(i64) nounwind readonly alwaysinline {
%call = call i64 @llvm.ctpop.i64(i64 %0)
ret i64 %call
}
declare i32 @llvm.x86.avx.movmsk.ps.256(<8 x float>) nounwind readnone
define internal i32 @__movmsk(<8 x i32>) nounwind readnone alwaysinline {
%floatmask = bitcast <8 x i32> %0 to <8 x float>
%v = call i32 @llvm.x86.avx.movmsk.ps.256(<8 x float> %floatmask) nounwind readnone
ret i32 %v
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; horizontal float ops
declare <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float>, <8 x float>) nounwind readnone
define internal float @__reduce_add_float(<8 x float>) nounwind readonly alwaysinline {
%v1 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %0, <8 x float> %0)
%v2 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %v1, <8 x float> %v1)
%scalar1 = extractelement <8 x float> %v2, i32 0
%scalar2 = extractelement <8 x float> %v2, i32 4
%sum = fadd float %scalar1, %scalar2
ret float %sum
}
define internal float @__reduce_min_float(<8 x float>) nounwind readnone alwaysinline {
reduce8(float, @__min_varying_float, @__min_uniform_float)
}
define internal float @__reduce_max_float(<8 x float>) nounwind readnone alwaysinline {
reduce8(float, @__max_varying_float, @__max_uniform_float)
}
reduce_equal(8)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; horizontal int32 ops
define internal <8 x i32> @__add_varying_int32(<8 x i32>,
<8 x i32>) nounwind readnone alwaysinline {
%s = add <8 x i32> %0, %1
ret <8 x i32> %s
}
define internal i32 @__add_uniform_int32(i32, i32) nounwind readnone alwaysinline {
%s = add i32 %0, %1
ret i32 %s
}
define internal i32 @__reduce_add_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__add_varying_int32, @__add_uniform_int32)
}
define internal i32 @__reduce_min_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__min_varying_int32, @__min_uniform_int32)
}
define internal i32 @__reduce_max_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__max_varying_int32, @__max_uniform_int32)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; horizontal uint32 ops
define internal i32 @__reduce_add_uint32(<8 x i32> %v) nounwind readnone alwaysinline {
%r = call i32 @__reduce_add_int32(<8 x i32> %v)
ret i32 %r
}
define internal i32 @__reduce_min_uint32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__min_varying_uint32, @__min_uniform_uint32)
}
define internal i32 @__reduce_max_uint32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__max_varying_uint32, @__max_uniform_uint32)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; horizontal double ops
declare <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double>, <4 x double>) nounwind readnone
define internal double @__reduce_add_double(<8 x double>) nounwind readonly alwaysinline {
%v0 = shufflevector <8 x double> %0, <8 x double> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%v1 = shufflevector <8 x double> %0, <8 x double> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%sum0 = call <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double> %v0, <4 x double> %v1)
%sum1 = call <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double> %sum0, <4 x double> %sum0)
%scalar1 = extractelement <4 x double> %sum0, i32 0
%scalar2 = extractelement <4 x double> %sum1, i32 1
%sum = fadd double %scalar1, %scalar2
ret double %sum
}
define internal double @__reduce_min_double(<8 x double>) nounwind readnone alwaysinline {
reduce8(double, @__min_varying_double, @__min_uniform_double)
}
define internal double @__reduce_max_double(<8 x double>) nounwind readnone alwaysinline {
reduce8(double, @__max_varying_double, @__max_uniform_double)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; horizontal int64 ops
define internal <8 x i64> @__add_varying_int64(<8 x i64>,
<8 x i64>) nounwind readnone alwaysinline {
%s = add <8 x i64> %0, %1
ret <8 x i64> %s
}
define internal i64 @__add_uniform_int64(i64, i64) nounwind readnone alwaysinline {
%s = add i64 %0, %1
ret i64 %s
}
define internal i64 @__reduce_add_int64(<8 x i64>) nounwind readnone alwaysinline {
reduce8(i64, @__add_varying_int64, @__add_uniform_int64)
}
define internal i64 @__reduce_min_int64(<8 x i64>) nounwind readnone alwaysinline {
reduce8(i64, @__min_varying_int64, @__min_uniform_int64)
}
define internal i64 @__reduce_max_int64(<8 x i64>) nounwind readnone alwaysinline {
reduce8(i64, @__max_varying_int64, @__max_uniform_int64)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; horizontal uint64 ops
define internal i64 @__reduce_add_uint64(<8 x i64> %v) nounwind readnone alwaysinline {
%r = call i64 @__reduce_add_int64(<8 x i64> %v)
ret i64 %r
}
define internal i64 @__reduce_min_uint64(<8 x i64>) nounwind readnone alwaysinline {
reduce8(i64, @__min_varying_uint64, @__min_uniform_uint64)
}
define internal i64 @__reduce_max_uint64(<8 x i64>) nounwind readnone alwaysinline {
reduce8(i64, @__max_varying_uint64, @__max_uniform_uint64)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unaligned loads/loads+broadcasts
load_and_broadcast(8, i8, 8)
load_and_broadcast(8, i16, 16)
load_and_broadcast(8, i32, 32)
load_and_broadcast(8, i64, 64)
; no masked load instruction for i8 and i16 types??
load_masked(8, i8, 8, 1)
load_masked(8, i16, 16, 2)
declare <8 x float> @llvm.x86.avx.maskload.ps.256(i8 *, <8 x float> %mask)
declare <4 x double> @llvm.x86.avx.maskload.pd.256(i8 *, <4 x double> %mask)
define <8 x i32> @__load_masked_32(i8 *, <8 x i32> %mask) nounwind alwaysinline {
%floatmask = bitcast <8 x i32> %mask to <8 x float>
%floatval = call <8 x float> @llvm.x86.avx.maskload.ps.256(i8 * %0, <8 x float> %floatmask)
%retval = bitcast <8 x float> %floatval to <8 x i32>
ret <8 x i32> %retval
}
define <8 x i64> @__load_masked_64(i8 *, <8 x i32> %mask) nounwind alwaysinline {
; double up masks, bitcast to doubles
%mask0 = shufflevector <8 x i32> %mask, <8 x i32> undef,
<8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 2, i32 2, i32 3, i32 3>
%mask1 = shufflevector <8 x i32> %mask, <8 x i32> undef,
<8 x i32> <i32 4, i32 4, i32 5, i32 5, i32 6, i32 6, i32 7, i32 7>
%mask0d = bitcast <8 x i32> %mask0 to <4 x double>
%mask1d = bitcast <8 x i32> %mask1 to <4 x double>
%val0d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %0, <4 x double> %mask0d)
%ptr1 = getelementptr i8 * %0, i32 32
%val1d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %ptr1, <4 x double> %mask1d)
%vald = shufflevector <4 x double> %val0d, <4 x double> %val1d,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%val = bitcast <8 x double> %vald to <8 x i64>
ret <8 x i64> %val
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; masked store
; FIXME: there is no AVX instruction for these, but we could be clever
; by packing the bits down and setting the last 3/4 or half, respectively,
; of the mask to zero... Not sure if this would be a win in the end
gen_masked_store(8, i8, 8)
gen_masked_store(8, i16, 16)
; note that mask is the 2nd parameter, not the 3rd one!!
declare void @llvm.x86.avx.maskstore.ps.256(i8 *, <8 x float>, <8 x float>)
declare void @llvm.x86.avx.maskstore.pd.256(i8 *, <4 x double>, <4 x double>)
define void @__masked_store_32(<8 x i32>* nocapture, <8 x i32>,
<8 x i32>) nounwind alwaysinline {
%ptr = bitcast <8 x i32> * %0 to i8 *
%val = bitcast <8 x i32> %1 to <8 x float>
%mask = bitcast <8 x i32> %2 to <8 x float>
call void @llvm.x86.avx.maskstore.ps.256(i8 * %ptr, <8 x float> %mask, <8 x float> %val)
ret void
}
define void @__masked_store_64(<8 x i64>* nocapture, <8 x i64>,
<8 x i32> %mask) nounwind alwaysinline {
%ptr = bitcast <8 x i64> * %0 to i8 *
%val = bitcast <8 x i64> %1 to <8 x double>
%mask0 = shufflevector <8 x i32> %mask, <8 x i32> undef,
<8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 2, i32 2, i32 3, i32 3>
%mask1 = shufflevector <8 x i32> %mask, <8 x i32> undef,
<8 x i32> <i32 4, i32 4, i32 5, i32 5, i32 6, i32 6, i32 7, i32 7>
%mask0d = bitcast <8 x i32> %mask0 to <4 x double>
%mask1d = bitcast <8 x i32> %mask1 to <4 x double>
%val0 = shufflevector <8 x double> %val, <8 x double> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%val1 = shufflevector <8 x double> %val, <8 x double> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr, <4 x double> %mask0d, <4 x double> %val0)
%ptr1 = getelementptr i8 * %ptr, i32 32
call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr1, <4 x double> %mask1d, <4 x double> %val1)
ret void
}
masked_store_blend_8_16_by_8()
declare <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float>, <8 x float>,
<8 x float>) nounwind readnone
define void @__masked_store_blend_32(<8 x i32>* nocapture, <8 x i32>,
<8 x i32>) nounwind alwaysinline {
%mask_as_float = bitcast <8 x i32> %2 to <8 x float>
%oldValue = load <8 x i32>* %0, align 4
%oldAsFloat = bitcast <8 x i32> %oldValue to <8 x float>
%newAsFloat = bitcast <8 x i32> %1 to <8 x float>
%blend = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %oldAsFloat,
<8 x float> %newAsFloat,
<8 x float> %mask_as_float)
%blendAsInt = bitcast <8 x float> %blend to <8 x i32>
store <8 x i32> %blendAsInt, <8 x i32>* %0, align 4
ret void
}
define void @__masked_store_blend_64(<8 x i64>* nocapture %ptr, <8 x i64> %new,
<8 x i32> %i32mask) nounwind alwaysinline {
%oldValue = load <8 x i64>* %ptr, align 8
%mask = bitcast <8 x i32> %i32mask to <8 x float>
; Do 4x64-bit blends by doing two <8 x i32> blends, where the <8 x i32> values
; are actually bitcast <4 x i64> values
;
; set up the first four 64-bit values
%old01 = shufflevector <8 x i64> %oldValue, <8 x i64> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%old01f = bitcast <4 x i64> %old01 to <8 x float>
%new01 = shufflevector <8 x i64> %new, <8 x i64> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%new01f = bitcast <4 x i64> %new01 to <8 x float>
; compute mask--note that the indices are all doubled-up
%mask01 = shufflevector <8 x float> %mask, <8 x float> undef,
<8 x i32> <i32 0, i32 0, i32 1, i32 1,
i32 2, i32 2, i32 3, i32 3>
; and blend them
%result01f = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %old01f,
<8 x float> %new01f,
<8 x float> %mask01)
%result01 = bitcast <8 x float> %result01f to <4 x i64>
; and again
%old23 = shufflevector <8 x i64> %oldValue, <8 x i64> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%old23f = bitcast <4 x i64> %old23 to <8 x float>
%new23 = shufflevector <8 x i64> %new, <8 x i64> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%new23f = bitcast <4 x i64> %new23 to <8 x float>
; compute mask--note that the values are doubled-up...
%mask23 = shufflevector <8 x float> %mask, <8 x float> undef,
<8 x i32> <i32 4, i32 4, i32 5, i32 5,
i32 6, i32 6, i32 7, i32 7>
; and blend them
%result23f = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %old23f,
<8 x float> %new23f,
<8 x float> %mask23)
%result23 = bitcast <8 x float> %result23f to <4 x i64>
; reconstruct the final <8 x i64> vector
%final = shufflevector <4 x i64> %result01, <4 x i64> %result23,
<8 x i32> <i32 0, i32 1, i32 2, i32 3,
i32 4, i32 5, i32 6, i32 7>
store <8 x i64> %final, <8 x i64> * %ptr, align 8
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; gather/scatter
gen_gather(8, i8)
gen_gather(8, i16)
gen_gather(8, i32)
gen_gather(8, i64)
gen_scatter(8, i8)
gen_scatter(8, i16)
gen_scatter(8, i32)
gen_scatter(8, i64)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision sqrt
declare <4 x double> @llvm.x86.avx.sqrt.pd.256(<4 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse.sqrt.sd(<2 x double>) nounwind readnone
define internal <8 x double> @__sqrt_varying_double(<8 x double>) nounwind alwaysinline {
unary4to8(ret, double, @llvm.x86.avx.sqrt.pd.256, %0)
ret <8 x double> %ret
}
define internal double @__sqrt_uniform_double(double) nounwind alwaysinline {
sse_unary_scalar(ret, 2, double, @llvm.x86.sse.sqrt.sd, %0)
ret double %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision min/max
declare <4 x double> @llvm.x86.avx.max.pd.256(<4 x double>, <4 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse.max.sd(<2 x double>, <2 x double>) nounwind readnone
declare <4 x double> @llvm.x86.avx.min.pd.256(<4 x double>, <4 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse.min.sd(<2 x double>, <2 x double>) nounwind readnone
define internal <8 x double> @__min_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
binary4to8(ret, double, @llvm.x86.avx.min.pd.256, %0, %1)
ret <8 x double> %ret
}
define internal double @__min_uniform_double(double, double) nounwind readnone alwaysinline {
sse_binary_scalar(ret, 2, double, @llvm.x86.sse.min.sd, %0, %1)
ret double %ret
}
define internal <8 x double> @__max_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
binary4to8(ret, double, @llvm.x86.avx.max.pd.256, %0, %1)
ret <8 x double> %ret
}
define internal double @__max_uniform_double(double, double) nounwind readnone alwaysinline {
sse_binary_scalar(ret, 2, double, @llvm.x86.sse.max.sd, %0, %1)
ret double %ret
}