256 lines
8.7 KiB
Plaintext
256 lines
8.7 KiB
Plaintext
#if 1
|
|
struct int2 { int x,y; };
|
|
struct int4 { int x,y,z,w; };
|
|
#else
|
|
typedef int<2> int2;
|
|
typedef int<4> int4;
|
|
#endif
|
|
|
|
static int4 scan4(const int4 idata)
|
|
{
|
|
const int idx = programIndex;
|
|
|
|
int4 val4 = idata;
|
|
int sum[3];
|
|
sum[0] = val4.x;
|
|
sum[1] = val4.y + sum[0];
|
|
sum[2] = val4.z + sum[1];
|
|
|
|
int val = val4.w + sum[2];
|
|
val = exclusive_scan_add(val);
|
|
|
|
val4.x = val;
|
|
val4.y = val + sum[0];
|
|
val4.z = val + sum[1];
|
|
val4.w = val + sum[2];
|
|
|
|
return val4;
|
|
}
|
|
|
|
static int4 rank4(int4 preds)
|
|
{
|
|
const int localId = programIndex;
|
|
const uniform int localSize = programCount;
|
|
|
|
const int4 address = scan4(preds);
|
|
|
|
const int numtrue = broadcast(address.w + preds.w, localSize-1);
|
|
|
|
int4 rank;
|
|
const int idx = localId*4;
|
|
rank.x = (preds.x) ? address.x : numtrue + idx - address.x;
|
|
rank.y = (preds.y) ? address.y : numtrue + idx + 1 - address.y;
|
|
rank.z = (preds.z) ? address.z : numtrue + idx + 2 - address.z;
|
|
rank.w = (preds.w) ? address.w : numtrue + idx + 3 - address.w;
|
|
|
|
return rank;
|
|
}
|
|
|
|
static void radixSortBlockKeysOnly(int4 &key_inout, uniform int nbits, uniform int startbit)
|
|
{
|
|
const int localId = programIndex;
|
|
const uniform int localSize = programCount;
|
|
|
|
uniform int sMem[programCount*4];
|
|
|
|
int4 key = key_inout;
|
|
for (uniform int shift = startbit; shift < (startbit + nbits); ++shift)
|
|
{
|
|
int4 lsb;
|
|
lsb.x = !((key.x >> shift) & 0x1);
|
|
lsb.y = !((key.y >> shift) & 0x1);
|
|
lsb.z = !((key.z >> shift) & 0x1);
|
|
lsb.w = !((key.w >> shift) & 0x1);
|
|
|
|
const int4 r = rank4(lsb);
|
|
|
|
// This arithmetic strides the ranks across 4 CTA_SIZE regions
|
|
sMem[(r.x & 3) * localSize + (r.x >> 2)] = key.x;
|
|
sMem[(r.y & 3) * localSize + (r.y >> 2)] = key.y;
|
|
sMem[(r.z & 3) * localSize + (r.z >> 2)] = key.z;
|
|
sMem[(r.w & 3) * localSize + (r.w >> 2)] = key.w;
|
|
|
|
// The above allows us to read without 4-way bank conflicts:
|
|
key.x = sMem[localId ];
|
|
key.y = sMem[localId + localSize];
|
|
key.z = sMem[localId + 2 * localSize];
|
|
key.w = sMem[localId + 3 * localSize];
|
|
}
|
|
}
|
|
|
|
task void radixSortBlocksKeysOnly(
|
|
uniform int keysIn[],
|
|
uniform int keysOut[],
|
|
uniform int nbits,
|
|
uniform int startbit,
|
|
uniform int numElements,
|
|
uniform int totalBlocks)
|
|
{
|
|
const int globalId = taskIndex * programCount + programIndex;
|
|
|
|
int4 key;
|
|
key.x = keysIn[4*globalId + 0];
|
|
key.y = keysIn[4*globalId + 1];
|
|
key.z = keysIn[4*globalId + 2];
|
|
key.w = keysIn[4*globalId + 3];
|
|
|
|
radixSortBlockKeysOnly(key, nbits, startbit);
|
|
|
|
keysOut[4*globalId+0] = key.x;
|
|
keysOut[4*globalId+1] = key.y;
|
|
keysOut[4*globalId+2] = key.z;
|
|
keysOut[4*globalId+3] = key.w;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Given an array with blocks sorted according to a 4-bit radix group, each
|
|
// block counts the number of keys that fall into each radix in the group, and
|
|
// finds the starting offset of each radix in the block. It then writes the radix
|
|
// counts to the counters array, and the starting offsets to the blockOffsets array.
|
|
//
|
|
// Template parameters are used to generate efficient code for various special cases
|
|
// For example, we have to handle arrays that are a multiple of the block size
|
|
// (fullBlocks) differently than arrays that are not. "loop" is used when persistent
|
|
// CTAs are used.
|
|
//
|
|
// By persistent CTAs we mean that we launch only as many thread blocks as can
|
|
// be resident in the GPU and no more, rather than launching as many threads as
|
|
// we have elements. Persistent CTAs loop over blocks of elements until all work
|
|
// is complete. This can be faster in some cases. In our tests it is faster
|
|
// for large sorts (and the threshold is higher on compute version 1.1 and earlier
|
|
// GPUs than it is on compute version 1.2 GPUs.
|
|
//
|
|
//----------------------------------------------------------------------------
|
|
task void findRadixOffsets(
|
|
uniform int keys[],
|
|
uniform int counters[],
|
|
uniform int blockOffsets[],
|
|
uniform int startbit,
|
|
uniform int numElements,
|
|
uniform int totalBlocks)
|
|
{
|
|
uniform int sStartPointers[16];
|
|
|
|
const uniform int groupId = taskIndex;
|
|
const int localId = programIndex;
|
|
const uniform int groupSize = programCount;
|
|
const int globalId = taskIndex * programCount + programIndex;
|
|
|
|
int2 radix2;
|
|
|
|
radix2.x = keys[2*globalId + 0];
|
|
radix2.y = keys[2*globalId + 1];
|
|
|
|
uniform int sRadix1[4*programCount];
|
|
|
|
sRadix1[2 * localId] = (radix2.x >> startbit) & 0xF;
|
|
sRadix1[2 * localId + 1] = (radix2.y >> startbit) & 0xF;
|
|
|
|
// Finds the position where the sRadix1 entries differ and stores start
|
|
// index for each radix.
|
|
if(localId < 16)
|
|
sStartPointers[localId] = 0;
|
|
|
|
if((localId > 0) && (sRadix1[localId] != sRadix1[localId - 1]) )
|
|
sStartPointers[sRadix1[localId]] = localId;
|
|
|
|
if(sRadix1[localId + groupSize] != sRadix1[localId + groupSize - 1])
|
|
sStartPointers[sRadix1[localId + groupSize]] = localId + groupSize;
|
|
|
|
if(localId < 16)
|
|
blockOffsets[groupId*16 + localId] = sStartPointers[localId];
|
|
|
|
// Compute the sizes of each block.
|
|
if((localId > 0) && (sRadix1[localId] != sRadix1[localId - 1]) )
|
|
sStartPointers[sRadix1[localId - 1]] =
|
|
localId - sStartPointers[sRadix1[localId - 1]];
|
|
if(sRadix1[localId + groupSize] != sRadix1[localId + groupSize - 1] )
|
|
sStartPointers[sRadix1[localId + groupSize - 1]] =
|
|
localId + groupSize - sStartPointers[sRadix1[localId + groupSize - 1]];
|
|
|
|
|
|
if(localId == groupSize - 1)
|
|
sStartPointers[sRadix1[2 * groupSize - 1]] =
|
|
2 * groupSize - sStartPointers[sRadix1[2 * groupSize - 1]];
|
|
|
|
if(localId < 16)
|
|
counters[localId * totalBlocks + groupId] = sStartPointers[localId];
|
|
}
|
|
|
|
// a naive scan routine that works only for array that
|
|
// can fit into a single block, just for debugging purpose,
|
|
// not used in the sort now
|
|
task void scanNaive(
|
|
uniform int odata[],
|
|
uniform int idata[],
|
|
uniform int n)
|
|
{
|
|
if (programIndex < n)
|
|
odata[programIndex] = exclusive_scan_add(idata[programIndex]);
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
// reorderData shuffles data in the array globally after the radix offsets
|
|
// have been found. On compute version 1.1 and earlier GPUs, this code depends
|
|
// on RadixSort::CTA_SIZE being 16 * number of radices (i.e. 16 * 2^nbits).
|
|
//
|
|
// On compute version 1.1 GPUs ("manualCoalesce=true") this function ensures
|
|
// that all writes are coalesced using extra work in the kernel. On later
|
|
// GPUs coalescing rules have been relaxed, so this extra overhead hurts
|
|
// performance. On these GPUs we set manualCoalesce=false and directly store
|
|
// the results.
|
|
//
|
|
// Template parameters are used to generate efficient code for various special cases
|
|
// For example, we have to handle arrays that are a multiple of the block size
|
|
// (fullBlocks) differently than arrays that are not. "loop" is used when persistent
|
|
// CTAs are used.
|
|
//
|
|
// By persistent CTAs we mean that we launch only as many thread blocks as can
|
|
// be resident in the GPU and no more, rather than launching as many threads as
|
|
// we have elements. Persistent CTAs loop over blocks of elements until all work
|
|
// is complete. This can be faster in some cases. In our tests it is faster
|
|
// for large sorts (and the threshold is higher on compute version 1.1 and earlier
|
|
// GPUs than it is on compute version 1.2 GPUs.
|
|
//----------------------------------------------------------------------------
|
|
task void reorderDataKeysOnly(
|
|
uniform int outKeys[],
|
|
uniform int keys[],
|
|
uniform int blockOffsets[],
|
|
uniform int offsets[],
|
|
uniform int sizes[],
|
|
uniform int startbit,
|
|
uniform int numElements,
|
|
uniform int totalBlocks)
|
|
{
|
|
uniform int sOffsets[16];
|
|
uniform int sBlockOffsets[16];
|
|
uniform int2 sKeys2[programCount];
|
|
uniform int * uniform sKeys1 = (uniform int * uniform)&sKeys2[0];
|
|
|
|
const uniform int groupId = taskIndex;
|
|
const int globalId = taskIndex*programCount + programIndex;
|
|
const int localId = programIndex;
|
|
const uniform int groupSize = programCount;
|
|
|
|
sKeys2[localId].x = keys[2*globalId + 0];
|
|
sKeys2[localId].y = keys[2*globalId + 1];
|
|
|
|
if(localId < 16)
|
|
{
|
|
sOffsets[localId] = offsets[localId * totalBlocks + groupId];
|
|
sBlockOffsets[localId] = blockOffsets[groupId * 16 + localId];
|
|
}
|
|
|
|
int radix = (sKeys1[localId] >> startbit) & 0xF;
|
|
int globalOffset = sOffsets[radix] + localId - sBlockOffsets[radix];
|
|
|
|
if (globalOffset < numElements)
|
|
outKeys[globalOffset] = sKeys1[localId];
|
|
|
|
radix = (sKeys1[localId + groupSize] >> startbit) & 0xF;
|
|
globalOffset = sOffsets[radix] + localId + groupSize - sBlockOffsets[radix];
|
|
|
|
if (globalOffset < numElements)
|
|
outKeys[globalOffset] = sKeys1[localId + groupSize];
|
|
}
|