Files
ispc/sym.cpp
Aaron Gutierrez a47cab4dfa Replicates all needed state between expanded functions
commit 5e6f06cf59
Author: Aaron Gutierrez <gutierrez.aaron.m@gmail.com>
Date:   Thu May 11 15:42:11 2017 -0400

    Fixed issue with aliasing local variables

    ISPC++ now produces valid code, or an appropriate error message, for all
    of my test cases.

commit bfe723e1b7
Author: Aaron Gutierrez <gutierrez.aaron.m@gmail.com>
Date:   Thu May 11 03:09:38 2017 -0400

    Actually copy the AST.

    Type replacement works except for function parameters.

commit f65b3e6300
Author: Aaron Gutierrez <gutierrez.aaron.m@gmail.com>
Date:   Thu May 11 01:19:50 2017 -0400

    [WIP] Remove cases for ForeachStmt and SymbolExpr

commit 2e28640860
Merge: 6a91c5d d020107
Author: Aaron Gutierrez <gutierrez.aaron.m@gmail.com>
Date:   Wed May 10 23:13:40 2017 -0400

    Merge branch 'master' into copy_ast

commit 6a91c5d5ac
Author: Aaron Gutierrez <gutierrez.aaron.m@gmail.com>
Date:   Wed May 10 11:11:39 2017 -0400

    Attempt to replicate AST when expanding polytypes
2017-05-11 15:43:29 -04:00

415 lines
13 KiB
C++

/*
Copyright (c) 2010-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file sym.cpp
@brief file with definitions for symbol and symbol table classes.
*/
#include "sym.h"
#include "type.h"
#include "util.h"
#include <stdio.h>
///////////////////////////////////////////////////////////////////////////
// Symbol
Symbol::Symbol(const std::string &n, SourcePos p, const Type *t,
StorageClass sc)
: pos(p), name(n) {
storagePtr = NULL;
function = exportedFunction = NULL;
type = t;
constValue = NULL;
storageClass = sc;
varyingCFDepth = 0;
parentFunction = NULL;
}
///////////////////////////////////////////////////////////////////////////
// SymbolTable
SymbolTable::SymbolTable() {
PushScope();
}
SymbolTable::~SymbolTable() {
// Otherwise we have mismatched push/pop scopes
Assert(variables.size() == 1);
PopScope();
}
void
SymbolTable::PushScope() {
SymbolMapType *sm;
if (freeSymbolMaps.size() > 0) {
sm = freeSymbolMaps.back();
freeSymbolMaps.pop_back();
sm->erase(sm->begin(), sm->end());
}
else
sm = new SymbolMapType;
variables.push_back(sm);
}
void
SymbolTable::PopScope() {
Assert(variables.size() > 1);
freeSymbolMaps.push_back(variables.back());
variables.pop_back();
}
bool
SymbolTable::AddVariable(Symbol *symbol, bool issueScopeWarning) {
Assert(symbol != NULL);
// Check to see if a symbol of the same name has already been declared.
for (int i = (int)variables.size() - 1; i >= 0; --i) {
SymbolMapType &sm = *(variables[i]);
if (sm.find(symbol->name) != sm.end()) {
if (i == (int)variables.size()-1 && issueScopeWarning) {
// If a symbol of the same name was declared in the
// same scope, it's an error.
Error(symbol->pos, "Ignoring redeclaration of symbol \"%s\".",
symbol->name.c_str());
return false;
}
else {
// Otherwise it's just shadowing something else, which
// is legal but dangerous..
if (issueScopeWarning) {
Warning(symbol->pos,
"Symbol \"%s\" shadows symbol declared in outer scope.",
symbol->name.c_str());
}
(*variables.back())[symbol->name] = symbol;
return true;
}
}
}
// No matches, so go ahead and add it...
(*variables.back())[symbol->name] = symbol;
return true;
}
Symbol *
SymbolTable::LookupVariable(const char *name) {
// Note that we iterate through the variables vectors backwards, since
// we want to search from the innermost scope to the outermost, so that
// we get the right symbol if we have multiple variables in different
// scopes that shadow each other.
for (int i = (int)variables.size() - 1; i >= 0; --i) {
SymbolMapType &sm = *(variables[i]);
SymbolMapType::iterator iter = sm.find(name);
if (iter != sm.end())
return iter->second;
}
return NULL;
}
bool
SymbolTable::AddFunction(Symbol *symbol) {
const FunctionType *ft = CastType<FunctionType>(symbol->type);
Assert(ft != NULL);
if (LookupFunction(symbol->name.c_str(), ft, true) != NULL)
// A function of the same name and type has already been added to
// the symbol table
return false;
std::vector<Symbol *> &funOverloads = functions[symbol->name];
funOverloads.push_back(symbol);
return true;
}
void
SymbolTable::MapPolyFunction(std::string name, std::string polyname,
const FunctionType *type) {
std::vector<Symbol *> &polyExpansions = polyFunctions[name];
SourcePos p;
polyExpansions.push_back(new Symbol(polyname, p, type, SC_NONE));
}
bool
SymbolTable::LookupFunction(const char *name, std::vector<Symbol *> *matches) {
FunctionMapType::iterator iter = functions.find(name);
if (iter != functions.end()) {
if (matches == NULL)
return true;
else {
const std::vector<Symbol *> &funcs = iter->second;
for (int j = 0; j < (int)funcs.size(); ++j)
matches->push_back(funcs[j]);
}
}
return matches ? (matches->size() > 0) : false;
}
Symbol *
SymbolTable::LookupFunction(const char *name, const FunctionType *type,
bool ignorePoly) {
FunctionMapType::iterator iter = functions.find(name);
if (iter != functions.end()) {
std::vector<Symbol *> funcs = iter->second;
for (int j = 0; j < (int)funcs.size(); ++j) {
if (Type::Equal(funcs[j]->type, type))
return funcs[j];
}
}
// Try looking for a polymorphic function
if (!ignorePoly && polyFunctions[name].size() > 0) {
std::string n = name;
return new Symbol(name, polyFunctions[name][0]->pos, type);
}
return NULL;
}
std::vector<Symbol *>&
SymbolTable::LookupPolyFunction(const char *name) {
return polyFunctions[name];
}
void
SymbolTable::GetPolyFunctions(std::vector<std::string> *funcs) {
FunctionMapType::iterator it = polyFunctions.begin();
for (; it != polyFunctions.end(); it++) {
funcs->push_back(it->first);
}
}
bool
SymbolTable::AddType(const char *name, const Type *type, SourcePos pos) {
const Type *t = LookupType(name);
if (t != NULL && CastType<UndefinedStructType>(t) == NULL) {
// If we have a previous declaration of anything other than an
// UndefinedStructType with this struct name, issue an error. If
// we have an UndefinedStructType, then we'll fall through to the
// code below that adds the definition to the type map.
Error(pos, "Ignoring redefinition of type \"%s\".", name);
return false;
}
types[name] = type;
return true;
}
const Type *
SymbolTable::LookupType(const char *name) const {
// Again, search through the type maps backward to get scoping right.
TypeMapType::const_iterator iter = types.find(name);
if (iter != types.end())
return iter->second;
return NULL;
}
bool
SymbolTable::ContainsType(const Type *type) const {
TypeMapType::const_iterator iter = types.begin();
while (iter != types.end()) {
if (iter->second == type) {
return true;
}
iter++;
}
return false;
}
std::vector<std::string>
SymbolTable::ClosestVariableOrFunctionMatch(const char *str) const {
// This is a little wasteful, but we'll look through all of the
// variable and function symbols and compute the edit distance from the
// given string to them. If the edit distance is under maxDelta, then
// it goes in the entry of the matches[] array corresponding to its
// edit distance.
const int maxDelta = 2;
std::vector<std::string> matches[maxDelta+1];
for (int i = 0; i < (int)variables.size(); ++i) {
const SymbolMapType &sv = *(variables[i]);
SymbolMapType::const_iterator iter;
for (iter = sv.begin(); iter != sv.end(); ++iter) {
const Symbol *sym = iter->second;
int dist = StringEditDistance(str, sym->name, maxDelta+1);
if (dist <= maxDelta)
matches[dist].push_back(sym->name);
}
}
FunctionMapType::const_iterator iter;
for (iter = functions.begin(); iter != functions.end(); ++iter) {
int dist = StringEditDistance(str, iter->first, maxDelta+1);
if (dist <= maxDelta)
matches[dist].push_back(iter->first);
}
// Now, return the first entry of matches[] that is non-empty, if any.
for (int i = 0; i <= maxDelta; ++i) {
if (matches[i].size())
return matches[i];
}
// Otherwise, no joy.
return std::vector<std::string>();
}
std::vector<std::string>
SymbolTable::ClosestTypeMatch(const char *str) const {
return closestTypeMatch(str, true);
}
std::vector<std::string>
SymbolTable::ClosestEnumTypeMatch(const char *str) const {
return closestTypeMatch(str, false);
}
std::vector<std::string>
SymbolTable::closestTypeMatch(const char *str, bool structsVsEnums) const {
// This follows the same approach as ClosestVariableOrFunctionMatch()
// above; compute all edit distances, keep the ones shorter than
// maxDelta, return the first non-empty vector of one or more sets of
// alternatives with minimal edit distance.
const int maxDelta = 2;
std::vector<std::string> matches[maxDelta+1];
TypeMapType::const_iterator iter;
for (iter = types.begin(); iter != types.end(); ++iter) {
// Skip over either StructTypes or EnumTypes, depending on the
// value of the structsVsEnums parameter
bool isEnum = (CastType<EnumType>(iter->second) != NULL);
if (isEnum && structsVsEnums)
continue;
else if (!isEnum && !structsVsEnums)
continue;
int dist = StringEditDistance(str, iter->first, maxDelta+1);
if (dist <= maxDelta)
matches[dist].push_back(iter->first);
}
for (int i = 0; i <= maxDelta; ++i) {
if (matches[i].size())
return matches[i];
}
return std::vector<std::string>();
}
void
SymbolTable::Print() {
int depth = 0;
fprintf(stderr, "Variables:\n----------------\n");
for (int i = 0; i < (int)variables.size(); ++i) {
SymbolMapType &sm = *(variables[i]);
SymbolMapType::iterator iter;
for (iter = sm.begin(); iter != sm.end(); ++iter) {
fprintf(stderr, "%*c", depth, ' ');
Symbol *sym = iter->second;
fprintf(stderr, "%s [%s]", sym->name.c_str(),
sym->type->GetString().c_str());
}
fprintf(stderr, "\n");
depth += 4;
}
fprintf(stderr, "Functions:\n----------------\n");
FunctionMapType::iterator fiter = functions.begin();
while (fiter != functions.end()) {
fprintf(stderr, "%s\n", fiter->first.c_str());
std::vector<Symbol *> &syms = fiter->second;
for (unsigned int j = 0; j < syms.size(); ++j)
fprintf(stderr, " %s\n", syms[j]->type->GetString().c_str());
++fiter;
}
depth = 0;
fprintf(stderr, "Named types:\n---------------\n");
TypeMapType::iterator siter = types.begin();
while (siter != types.end()) {
fprintf(stderr, "%*c", depth, ' ');
fprintf(stderr, "%s -> %s\n", siter->first.c_str(),
siter->second->GetString().c_str());
++siter;
}
}
inline int ispcRand() {
#ifdef ISPC_IS_WINDOWS
return rand();
#else
return lrand48();
#endif
}
Symbol *
SymbolTable::RandomSymbol() {
int v = ispcRand() % variables.size();
if (variables[v]->size() == 0)
return NULL;
int count = ispcRand() % variables[v]->size();
SymbolMapType::iterator iter = variables[v]->begin();
while (count-- > 0) {
++iter;
Assert(iter != variables[v]->end());
}
return iter->second;
}
const Type *
SymbolTable::RandomType() {
int count = types.size();
TypeMapType::iterator iter = types.begin();
while (count-- > 0) {
++iter;
Assert(iter != types.end());
}
return iter->second;
}