Files
ispc/builtins/target-sse2-x2.ll
Dmitry Babokin 8e47273186 Copyright refresh
2015-04-22 16:39:11 +03:00

665 lines
24 KiB
LLVM

;; Copyright (c) 2010-2015, Intel Corporation
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;;
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;;
;; * Neither the name of Intel Corporation nor the names of its
;; contributors may be used to endorse or promote products derived from
;; this software without specific prior written permission.
;;
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;; This file defines the target for "double-pumped" SSE2, i.e. running
;; with 8-wide vectors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; standard 8-wide definitions from m4 macros
define(`WIDTH',`8')
define(`MASK',`i32')
include(`util.m4')
stdlib_core()
packed_load_and_store()
scans()
int64minmax()
saturation_arithmetic()
include(`target-sse2-common.ll')
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; half conversion routines
declare float @__half_to_float_uniform(i16 %v) nounwind readnone
declare <WIDTH x float> @__half_to_float_varying(<WIDTH x i16> %v) nounwind readnone
declare i16 @__float_to_half_uniform(float %v) nounwind readnone
declare <WIDTH x i16> @__float_to_half_varying(<WIDTH x float> %v) nounwind readnone
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rcp
declare <4 x float> @llvm.x86.sse.rcp.ps(<4 x float>) nounwind readnone
define <8 x float> @__rcp_varying_float(<8 x float>) nounwind readonly alwaysinline {
; float iv = __rcp_v(v);
; return iv * (2. - v * iv);
unary4to8(call, float, @llvm.x86.sse.rcp.ps, %0)
; do one N-R iteration
%v_iv = fmul <8 x float> %0, %call
%two_minus = fsub <8 x float> <float 2., float 2., float 2., float 2.,
float 2., float 2., float 2., float 2.>, %v_iv
%iv_mul = fmul <8 x float> %call, %two_minus
ret <8 x float> %iv_mul
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rsqrt
declare <4 x float> @llvm.x86.sse.rsqrt.ps(<4 x float>) nounwind readnone
define <8 x float> @__rsqrt_varying_float(<8 x float> %v) nounwind readonly alwaysinline {
; float is = __rsqrt_v(v);
unary4to8(is, float, @llvm.x86.sse.rsqrt.ps, %v)
; return 0.5 * is * (3. - (v * is) * is);
%v_is = fmul <8 x float> %v, %is
%v_is_is = fmul <8 x float> %v_is, %is
%three_sub = fsub <8 x float> <float 3., float 3., float 3., float 3.,
float 3., float 3., float 3., float 3.>, %v_is_is
%is_mul = fmul <8 x float> %is, %three_sub
%half_scale = fmul <8 x float> <float 0.5, float 0.5, float 0.5, float 0.5,
float 0.5, float 0.5, float 0.5, float 0.5>, %is_mul
ret <8 x float> %half_scale
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; sqrt
declare <4 x float> @llvm.x86.sse.sqrt.ps(<4 x float>) nounwind readnone
define <8 x float> @__sqrt_varying_float(<8 x float>) nounwind readonly alwaysinline {
unary4to8(call, float, @llvm.x86.sse.sqrt.ps, %0)
ret <8 x float> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; svml stuff
include(`svml.m4')
;; single precision
svml_declare(float,f4,4)
svml_define_x(float,f4,4,f,8)
;; double precision
svml_declare(double,2,2)
svml_define_x(double,2,2,d,8)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; float min/max
declare <4 x float> @llvm.x86.sse.max.ps(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.min.ps(<4 x float>, <4 x float>) nounwind readnone
define <8 x float> @__max_varying_float(<8 x float>, <8 x float>) nounwind readonly alwaysinline {
binary4to8(call, float, @llvm.x86.sse.max.ps, %0, %1)
ret <8 x float> %call
}
define <8 x float> @__min_varying_float(<8 x float>, <8 x float>) nounwind readonly alwaysinline {
binary4to8(call, float, @llvm.x86.sse.min.ps, %0, %1)
ret <8 x float> %call
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; min/max
; There is no blend instruction with SSE2, so we simulate it with bit
; operations on i32s. For these two vselect functions, for each
; vector element, if the mask is on, we return the corresponding value
; from %1, and otherwise return the value from %0.
define <8 x i32> @__vselect_i32(<8 x i32>, <8 x i32> ,
<8 x i32> %mask) nounwind readnone alwaysinline {
%notmask = xor <8 x i32> %mask, <i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1>
%cleared_old = and <8 x i32> %0, %notmask
%masked_new = and <8 x i32> %1, %mask
%new = or <8 x i32> %cleared_old, %masked_new
ret <8 x i32> %new
}
define <8 x float> @__vselect_float(<8 x float>, <8 x float>,
<8 x i32> %mask) nounwind readnone alwaysinline {
%v0 = bitcast <8 x float> %0 to <8 x i32>
%v1 = bitcast <8 x float> %1 to <8 x i32>
%r = call <8 x i32> @__vselect_i32(<8 x i32> %v0, <8 x i32> %v1, <8 x i32> %mask)
%rf = bitcast <8 x i32> %r to <8 x float>
ret <8 x float> %rf
}
; To do vector integer min and max, we do the vector compare and then sign
; extend the i1 vector result to an i32 mask. The __vselect does the
; rest...
define <8 x i32> @__min_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
%c = icmp slt <8 x i32> %0, %1
%mask = sext <8 x i1> %c to <8 x i32>
%v = call <8 x i32> @__vselect_i32(<8 x i32> %1, <8 x i32> %0, <8 x i32> %mask)
ret <8 x i32> %v
}
define i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline {
%c = icmp slt i32 %0, %1
%r = select i1 %c, i32 %0, i32 %1
ret i32 %r
}
define <8 x i32> @__max_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
%c = icmp sgt <8 x i32> %0, %1
%mask = sext <8 x i1> %c to <8 x i32>
%v = call <8 x i32> @__vselect_i32(<8 x i32> %1, <8 x i32> %0, <8 x i32> %mask)
ret <8 x i32> %v
}
define i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline {
%c = icmp sgt i32 %0, %1
%r = select i1 %c, i32 %0, i32 %1
ret i32 %r
}
; The functions for unsigned ints are similar, just with unsigned
; comparison functions...
define <8 x i32> @__min_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
%c = icmp ult <8 x i32> %0, %1
%mask = sext <8 x i1> %c to <8 x i32>
%v = call <8 x i32> @__vselect_i32(<8 x i32> %1, <8 x i32> %0, <8 x i32> %mask)
ret <8 x i32> %v
}
define i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
%c = icmp ult i32 %0, %1
%r = select i1 %c, i32 %0, i32 %1
ret i32 %r
}
define <8 x i32> @__max_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline {
%c = icmp ugt <8 x i32> %0, %1
%mask = sext <8 x i1> %c to <8 x i32>
%v = call <8 x i32> @__vselect_i32(<8 x i32> %1, <8 x i32> %0, <8 x i32> %mask)
ret <8 x i32> %v
}
define i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline {
%c = icmp ugt i32 %0, %1
%r = select i1 %c, i32 %0, i32 %1
ret i32 %r
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; horizontal ops / reductions
declare i32 @llvm.x86.sse.movmsk.ps(<4 x float>) nounwind readnone
define i64 @__movmsk(<8 x i32>) nounwind readnone alwaysinline {
; first do two 4-wide movmsk calls
%floatmask = bitcast <8 x i32> %0 to <8 x float>
%m0 = shufflevector <8 x float> %floatmask, <8 x float> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%v0 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m0) nounwind readnone
%m1 = shufflevector <8 x float> %floatmask, <8 x float> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%v1 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m1) nounwind readnone
; and shift the first one over by 4 before ORing it with the value
; of the second one
%v1s = shl i32 %v1, 4
%v = or i32 %v0, %v1s
%v64 = zext i32 %v to i64
ret i64 %v64
}
define i1 @__any(<8 x i32>) nounwind readnone alwaysinline {
; first do two 4-wide movmsk calls
%floatmask = bitcast <8 x i32> %0 to <8 x float>
%m0 = shufflevector <8 x float> %floatmask, <8 x float> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%v0 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m0) nounwind readnone
%m1 = shufflevector <8 x float> %floatmask, <8 x float> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%v1 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m1) nounwind readnone
; and shift the first one over by 4 before ORing it with the value
; of the second one
%v1s = shl i32 %v1, 4
%v = or i32 %v0, %v1s
%cmp = icmp ne i32 %v, 0
ret i1 %cmp
}
define i1 @__all(<8 x i32>) nounwind readnone alwaysinline {
; first do two 4-wide movmsk calls
%floatmask = bitcast <8 x i32> %0 to <8 x float>
%m0 = shufflevector <8 x float> %floatmask, <8 x float> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%v0 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m0) nounwind readnone
%m1 = shufflevector <8 x float> %floatmask, <8 x float> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%v1 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m1) nounwind readnone
; and shift the first one over by 4 before ORing it with the value
; of the second one
%v1s = shl i32 %v1, 4
%v = or i32 %v0, %v1s
%cmp = icmp eq i32 %v, 255
ret i1 %cmp
}
define i1 @__none(<8 x i32>) nounwind readnone alwaysinline {
; first do two 4-wide movmsk calls
%floatmask = bitcast <8 x i32> %0 to <8 x float>
%m0 = shufflevector <8 x float> %floatmask, <8 x float> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%v0 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m0) nounwind readnone
%m1 = shufflevector <8 x float> %floatmask, <8 x float> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%v1 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m1) nounwind readnone
; and shift the first one over by 4 before ORing it with the value
; of the second one
%v1s = shl i32 %v1, 4
%v = or i32 %v0, %v1s
%cmp = icmp eq i32 %v, 0
ret i1 %cmp
}
declare <2 x i64> @llvm.x86.sse2.psad.bw(<16 x i8>, <16 x i8>) nounwind readnone
define i16 @__reduce_add_int8(<8 x i8>) nounwind readnone alwaysinline {
%wide8 = shufflevector <8 x i8> %0, <8 x i8> zeroinitializer,
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
i32 8, i32 8, i32 8, i32 8, i32 8, i32 8, i32 8, i32 8>
%rv = call <2 x i64> @llvm.x86.sse2.psad.bw(<16 x i8> %wide8,
<16 x i8> zeroinitializer)
%r0 = extractelement <2 x i64> %rv, i32 0
%r1 = extractelement <2 x i64> %rv, i32 1
%r = add i64 %r0, %r1
%r16 = trunc i64 %r to i16
ret i16 %r16
}
define internal <8 x i16> @__add_varying_i16(<8 x i16>,
<8 x i16>) nounwind readnone alwaysinline {
%r = add <8 x i16> %0, %1
ret <8 x i16> %r
}
define internal i16 @__add_uniform_i16(i16, i16) nounwind readnone alwaysinline {
%r = add i16 %0, %1
ret i16 %r
}
define i16 @__reduce_add_int16(<8 x i16>) nounwind readnone alwaysinline {
reduce8(i16, @__add_varying_i16, @__add_uniform_i16)
}
define <4 x float> @__vec4_add_float(<4 x float> %v0,
<4 x float> %v1) nounwind readnone alwaysinline {
%v = fadd <4 x float> %v0, %v1
ret <4 x float> %v
}
define float @__add_float(float, float) nounwind readnone alwaysinline {
%v = fadd float %0, %1
ret float %v
}
define float @__reduce_add_float(<8 x float>) nounwind readnone alwaysinline {
reduce8by4(float, @__vec4_add_float, @__add_float)
}
define float @__reduce_min_float(<8 x float>) nounwind readnone alwaysinline {
reduce8(float, @__min_varying_float, @__min_uniform_float)
}
define float @__reduce_max_float(<8 x float>) nounwind readnone alwaysinline {
reduce8(float, @__max_varying_float, @__max_uniform_float)
}
; helper function for reduce_add_int32
define <4 x i32> @__vec4_add_int32(<4 x i32> %v0,
<4 x i32> %v1) nounwind readnone alwaysinline {
%v = add <4 x i32> %v0, %v1
ret <4 x i32> %v
}
; helper function for reduce_add_int32
define i32 @__add_int32(i32, i32) nounwind readnone alwaysinline {
%v = add i32 %0, %1
ret i32 %v
}
define i32 @__reduce_add_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8by4(i32, @__vec4_add_int32, @__add_int32)
}
define i32 @__reduce_min_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__min_varying_int32, @__min_uniform_int32)
}
define i32 @__reduce_max_int32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__max_varying_int32, @__max_uniform_int32)
}
define i32 @__reduce_min_uint32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__min_varying_uint32, @__min_uniform_uint32)
}
define i32 @__reduce_max_uint32(<8 x i32>) nounwind readnone alwaysinline {
reduce8(i32, @__max_varying_uint32, @__max_uniform_uint32)
}
define <4 x double> @__add_varying_double(<4 x double>,
<4 x double>) nounwind readnone alwaysinline {
%r = fadd <4 x double> %0, %1
ret <4 x double> %r
}
define double @__add_uniform_double(double, double) nounwind readnone alwaysinline {
%r = fadd double %0, %1
ret double %r
}
define double @__reduce_add_double(<8 x double>) nounwind readnone {
reduce8by4(double, @__add_varying_double, @__add_uniform_double)
}
define double @__reduce_min_double(<8 x double>) nounwind readnone {
reduce8(double, @__min_varying_double, @__min_uniform_double)
}
define double @__reduce_max_double(<8 x double>) nounwind readnone {
reduce8(double, @__max_varying_double, @__max_uniform_double)
}
define <4 x i64> @__add_varying_int64(<4 x i64>,
<4 x i64>) nounwind readnone alwaysinline {
%r = add <4 x i64> %0, %1
ret <4 x i64> %r
}
define i64 @__add_uniform_int64(i64, i64) nounwind readnone alwaysinline {
%r = add i64 %0, %1
ret i64 %r
}
define i64 @__reduce_add_int64(<8 x i64>) nounwind readnone {
reduce8by4(i64, @__add_varying_int64, @__add_uniform_int64)
}
define i64 @__reduce_min_int64(<8 x i64>) nounwind readnone {
reduce8(i64, @__min_varying_int64, @__min_uniform_int64)
}
define i64 @__reduce_max_int64(<8 x i64>) nounwind readnone {
reduce8(i64, @__max_varying_int64, @__max_uniform_int64)
}
define i64 @__reduce_min_uint64(<8 x i64>) nounwind readnone {
reduce8(i64, @__min_varying_uint64, @__min_uniform_uint64)
}
define i64 @__reduce_max_uint64(<8 x i64>) nounwind readnone {
reduce8(i64, @__max_varying_uint64, @__max_uniform_uint64)
}
reduce_equal(8)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; unaligned loads/loads+broadcasts
masked_load(i8, 1)
masked_load(i16, 2)
masked_load(i32, 4)
masked_load(float, 4)
masked_load(i64, 8)
masked_load(double, 8)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; gather/scatter
gen_gather_factored(i8)
gen_gather_factored(i16)
gen_gather_factored(i32)
gen_gather_factored(float)
gen_gather_factored(i64)
gen_gather_factored(double)
gen_scatter(i8)
gen_scatter(i16)
gen_scatter(i32)
gen_scatter(float)
gen_scatter(i64)
gen_scatter(double)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; float rounding
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding
;;
;; There are not any rounding instructions in SSE2, so we have to emulate
;; the functionality with multiple instructions...
; The code for __round_* is the result of compiling the following source
; code.
;
; export float Round(float x) {
; unsigned int sign = signbits(x);
; unsigned int ix = intbits(x);
; ix ^= sign;
; x = floatbits(ix);
; x += 0x1.0p23f;
; x -= 0x1.0p23f;
; ix = intbits(x);
; ix ^= sign;
; x = floatbits(ix);
; return x;
;}
define <8 x float> @__round_varying_float(<8 x float>) nounwind readonly alwaysinline {
%float_to_int_bitcast.i.i.i.i = bitcast <8 x float> %0 to <8 x i32>
%bitop.i.i = and <8 x i32> %float_to_int_bitcast.i.i.i.i, <i32 -2147483648, i32 -2147483648, i32 -2147483648, i32 -2147483648, i32 -2147483648, i32 -2147483648, i32 -2147483648, i32 -2147483648>
%bitop.i = xor <8 x i32> %float_to_int_bitcast.i.i.i.i, %bitop.i.i
%int_to_float_bitcast.i.i40.i = bitcast <8 x i32> %bitop.i to <8 x float>
%binop.i = fadd <8 x float> %int_to_float_bitcast.i.i40.i, <float 8.388608e+06, float 8.388608e+06, float 8.388608e+06, float 8.388608e+06, float 8.388608e+06, float 8.388608e+06, float 8.388608e+06, float 8.388608e+06>
%binop21.i = fadd <8 x float> %binop.i, <float -8.388608e+06, float -8.388608e+06, float -8.388608e+06, float -8.388608e+06, float -8.388608e+06, float -8.388608e+06, float -8.388608e+06, float -8.388608e+06>
%float_to_int_bitcast.i.i.i = bitcast <8 x float> %binop21.i to <8 x i32>
%bitop31.i = xor <8 x i32> %float_to_int_bitcast.i.i.i, %bitop.i.i
%int_to_float_bitcast.i.i.i = bitcast <8 x i32> %bitop31.i to <8 x float>
ret <8 x float> %int_to_float_bitcast.i.i.i
}
;; Similarly, for implementations of the __floor* functions below, we have the
;; bitcode from compiling the following source code...
;export float Floor(float x) {
; float y = Round(x);
; unsigned int cmp = y > x ? 0xffffffff : 0;
; float delta = -1.f;
; unsigned int idelta = intbits(delta);
; idelta &= cmp;
; delta = floatbits(idelta);
; return y + delta;
;}
define <8 x float> @__floor_varying_float(<8 x float>) nounwind readonly alwaysinline {
%calltmp.i = tail call <8 x float> @__round_varying_float(<8 x float> %0) nounwind
%bincmp.i = fcmp ogt <8 x float> %calltmp.i, %0
%val_to_boolvec32.i = sext <8 x i1> %bincmp.i to <8 x i32>
%bitop.i = and <8 x i32> %val_to_boolvec32.i, <i32 -1082130432, i32 -1082130432, i32 -1082130432, i32 -1082130432, i32 -1082130432, i32 -1082130432, i32 -1082130432, i32 -1082130432>
%int_to_float_bitcast.i.i.i = bitcast <8 x i32> %bitop.i to <8 x float>
%binop.i = fadd <8 x float> %calltmp.i, %int_to_float_bitcast.i.i.i
ret <8 x float> %binop.i
}
;; And here is the code we compiled to get the __ceil* functions below
;
;export uniform float Ceil(uniform float x) {
; uniform float y = Round(x);
; uniform int yltx = y < x ? 0xffffffff : 0;
; uniform float delta = 1.f;
; uniform int idelta = intbits(delta);
; idelta &= yltx;
; delta = floatbits(idelta);
; return y + delta;
;}
define <8 x float> @__ceil_varying_float(<8 x float>) nounwind readonly alwaysinline {
%calltmp.i = tail call <8 x float> @__round_varying_float(<8 x float> %0) nounwind
%bincmp.i = fcmp olt <8 x float> %calltmp.i, %0
%val_to_boolvec32.i = sext <8 x i1> %bincmp.i to <8 x i32>
%bitop.i = and <8 x i32> %val_to_boolvec32.i, <i32 1065353216, i32 1065353216, i32 1065353216, i32 1065353216, i32 1065353216, i32 1065353216, i32 1065353216, i32 1065353216>
%int_to_float_bitcast.i.i.i = bitcast <8 x i32> %bitop.i to <8 x float>
%binop.i = fadd <8 x float> %calltmp.i, %int_to_float_bitcast.i.i.i
ret <8 x float> %binop.i
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; rounding doubles
define <8 x double> @__round_varying_double(<8 x double>) nounwind readonly alwaysinline {
unary1to8(double, @round)
}
define <8 x double> @__floor_varying_double(<8 x double>) nounwind readonly alwaysinline {
unary1to8(double, @floor)
}
define <8 x double> @__ceil_varying_double(<8 x double>) nounwind readonly alwaysinline {
unary1to8(double, @ceil)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; masked store
gen_masked_store(i8)
gen_masked_store(i16)
gen_masked_store(i32)
gen_masked_store(i64)
masked_store_blend_8_16_by_8()
define void @__masked_store_blend_i32(<8 x i32>* nocapture, <8 x i32>,
<8 x i32> %mask) nounwind alwaysinline {
%val = load PTR_OP_ARGS(`<8 x i32> ') %0, align 4
%newval = call <8 x i32> @__vselect_i32(<8 x i32> %val, <8 x i32> %1, <8 x i32> %mask)
store <8 x i32> %newval, <8 x i32> * %0, align 4
ret void
}
define void @__masked_store_blend_i64(<8 x i64>* nocapture %ptr, <8 x i64> %new,
<8 x i32> %mask) nounwind alwaysinline {
%oldValue = load PTR_OP_ARGS(`<8 x i64>') %ptr, align 8
; Do 8x64-bit blends by doing two <8 x i32> blends, where the <8 x i32> values
; are actually bitcast <2 x i64> values
;
; set up the first two 64-bit values
%old0123 = shufflevector <8 x i64> %oldValue, <8 x i64> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%old0123f = bitcast <4 x i64> %old0123 to <8 x float>
%new0123 = shufflevector <8 x i64> %new, <8 x i64> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
%new0123f = bitcast <4 x i64> %new0123 to <8 x float>
; compute mask--note that the indices are doubled-up
%mask0123 = shufflevector <8 x i32> %mask, <8 x i32> undef,
<8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 2, i32 2, i32 3, i32 3>
; and blend the first 4 values
%result0123f = call <8 x float> @__vselect_float(<8 x float> %old0123f, <8 x float> %new0123f,
<8 x i32> %mask0123)
%result0123 = bitcast <8 x float> %result0123f to <4 x i64>
; and again
%old4567 = shufflevector <8 x i64> %oldValue, <8 x i64> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%old4567f = bitcast <4 x i64> %old4567 to <8 x float>
%new4567 = shufflevector <8 x i64> %new, <8 x i64> undef,
<4 x i32> <i32 4, i32 5, i32 6, i32 7>
%new4567f = bitcast <4 x i64> %new4567 to <8 x float>
; compute mask--note that the values are doubled-up
%mask4567 = shufflevector <8 x i32> %mask, <8 x i32> undef,
<8 x i32> <i32 4, i32 4, i32 5, i32 5, i32 6, i32 6, i32 7, i32 7>
; and blend the two of the values
%result4567f = call <8 x float> @__vselect_float(<8 x float> %old4567f, <8 x float> %new4567f,
<8 x i32> %mask4567)
%result4567 = bitcast <8 x float> %result4567f to <4 x i64>
; reconstruct the final <8 x i64> vector
%final = shufflevector <4 x i64> %result0123, <4 x i64> %result4567,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
store <8 x i64> %final, <8 x i64> * %ptr, align 8
ret void
}
masked_store_float_double()
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision sqrt
declare <2 x double> @llvm.x86.sse2.sqrt.pd(<2 x double>) nounwind readnone
define <8 x double> @__sqrt_varying_double(<8 x double>) nounwind alwaysinline {
unary2to8(ret, double, @llvm.x86.sse2.sqrt.pd, %0)
ret <8 x double> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; double precision float min/max
declare <2 x double> @llvm.x86.sse2.max.pd(<2 x double>, <2 x double>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.min.pd(<2 x double>, <2 x double>) nounwind readnone
define <8 x double> @__min_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
binary2to8(ret, double, @llvm.x86.sse2.min.pd, %0, %1)
ret <8 x double> %ret
}
define <8 x double> @__max_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline {
binary2to8(ret, double, @llvm.x86.sse2.max.pd, %0, %1)
ret <8 x double> %ret
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; reciprocals in double precision, if supported
rsqrtd_decl()
rcpd_decl()
transcendetals_decl()
trigonometry_decl()