Files
ispc/builtins/target-neon-16.ll
2016-09-05 15:56:25 +01:00

528 lines
20 KiB
LLVM

;;
;; target-neon-16.ll
;;
;; Copyright(c) 2013-2015 Google, Inc.
;;
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;;
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;;
;; * Neither the name of Matt Pharr nor the names of its
;; contributors may be used to endorse or promote products derived from
;; this software without specific prior written permission.
;;
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
define(`WIDTH',`8')
define(`MASK',`i16')
include(`util.m4')
include(`target-neon-common.ll')
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; half conversion routines
define <8 x float> @__half_to_float_varying(<8 x i16> %v) nounwind readnone alwaysinline {
unary4to8conv(r, i16, float, @llvm.arm.neon.vcvthf2fp, %v)
ret <8 x float> %r
}
define <8 x i16> @__float_to_half_varying(<8 x float> %v) nounwind readnone alwaysinline {
unary4to8conv(r, float, i16, @llvm.arm.neon.vcvtfp2hf, %v)
ret <8 x i16> %r
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; math
;; round/floor/ceil
;; FIXME: grabbed these from the sse2 target, which does not have native
;; instructions for these. Is there a better approach for NEON?
define <8 x float> @__round_varying_float(<8 x float>) nounwind readonly alwaysinline {
%float_to_int_bitcast.i.i.i.i = bitcast <8 x float> %0 to <8 x i32>
%bitop.i.i = and <8 x i32> %float_to_int_bitcast.i.i.i.i,
<i32 -2147483648, i32 -2147483648, i32 -2147483648, i32 -2147483648,
i32 -2147483648, i32 -2147483648, i32 -2147483648, i32 -2147483648>
%bitop.i = xor <8 x i32> %float_to_int_bitcast.i.i.i.i, %bitop.i.i
%int_to_float_bitcast.i.i40.i = bitcast <8 x i32> %bitop.i to <8 x float>
%binop.i = fadd <8 x float> %int_to_float_bitcast.i.i40.i,
<float 8.388608e+06, float 8.388608e+06, float 8.388608e+06, float 8.388608e+06,
float 8.388608e+06, float 8.388608e+06, float 8.388608e+06, float 8.388608e+06>
%binop21.i = fadd <8 x float> %binop.i,
<float -8.388608e+06, float -8.388608e+06, float -8.388608e+06, float -8.388608e+06,
float -8.388608e+06, float -8.388608e+06, float -8.388608e+06, float -8.388608e+06>
%float_to_int_bitcast.i.i.i = bitcast <8 x float> %binop21.i to <8 x i32>
%bitop31.i = xor <8 x i32> %float_to_int_bitcast.i.i.i, %bitop.i.i
%int_to_float_bitcast.i.i.i = bitcast <8 x i32> %bitop31.i to <8 x float>
ret <8 x float> %int_to_float_bitcast.i.i.i
}
define <8 x float> @__floor_varying_float(<8 x float>) nounwind readonly alwaysinline {
%calltmp.i = tail call <8 x float> @__round_varying_float(<8 x float> %0) nounwind
%bincmp.i = fcmp ogt <8 x float> %calltmp.i, %0
%val_to_boolvec32.i = sext <8 x i1> %bincmp.i to <8 x i32>
%bitop.i = and <8 x i32> %val_to_boolvec32.i,
<i32 -1082130432, i32 -1082130432, i32 -1082130432, i32 -1082130432,
i32 -1082130432, i32 -1082130432, i32 -1082130432, i32 -1082130432>
%int_to_float_bitcast.i.i.i = bitcast <8 x i32> %bitop.i to <8 x float>
%binop.i = fadd <8 x float> %calltmp.i, %int_to_float_bitcast.i.i.i
ret <8 x float> %binop.i
}
define <8 x float> @__ceil_varying_float(<8 x float>) nounwind readonly alwaysinline {
%calltmp.i = tail call <8 x float> @__round_varying_float(<8 x float> %0) nounwind
%bincmp.i = fcmp olt <8 x float> %calltmp.i, %0
%val_to_boolvec32.i = sext <8 x i1> %bincmp.i to <8 x i32>
%bitop.i = and <8 x i32> %val_to_boolvec32.i,
<i32 1065353216, i32 1065353216, i32 1065353216, i32 1065353216,
i32 1065353216, i32 1065353216, i32 1065353216, i32 1065353216>
%int_to_float_bitcast.i.i.i = bitcast <8 x i32> %bitop.i to <8 x float>
%binop.i = fadd <8 x float> %calltmp.i, %int_to_float_bitcast.i.i.i
ret <8 x float> %binop.i
}
;; FIXME: rounding doubles and double vectors needs to be implemented
declare <WIDTH x double> @__round_varying_double(<WIDTH x double>) nounwind readnone
declare <WIDTH x double> @__floor_varying_double(<WIDTH x double>) nounwind readnone
declare <WIDTH x double> @__ceil_varying_double(<WIDTH x double>) nounwind readnone
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; min/max
declare <4 x float> @llvm.arm.neon.vmins.v4f32(<4 x float>, <4 x float>) nounwind readnone
declare <4 x float> @llvm.arm.neon.vmaxs.v4f32(<4 x float>, <4 x float>) nounwind readnone
define <WIDTH x float> @__max_varying_float(<WIDTH x float>,
<WIDTH x float>) nounwind readnone alwaysinline {
binary4to8(r, float, @llvm.arm.neon.vmaxs.v4f32, %0, %1)
ret <WIDTH x float> %r
}
define <WIDTH x float> @__min_varying_float(<WIDTH x float>,
<WIDTH x float>) nounwind readnone alwaysinline {
binary4to8(r, float, @llvm.arm.neon.vmins.v4f32, %0, %1)
ret <WIDTH x float> %r
}
declare <4 x i32> @llvm.arm.neon.vmins.v4i32(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.arm.neon.vminu.v4i32(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.arm.neon.vmaxs.v4i32(<4 x i32>, <4 x i32>) nounwind readnone
declare <4 x i32> @llvm.arm.neon.vmaxu.v4i32(<4 x i32>, <4 x i32>) nounwind readnone
define <WIDTH x i32> @__min_varying_int32(<WIDTH x i32>, <WIDTH x i32>) nounwind readnone alwaysinline {
binary4to8(r, i32, @llvm.arm.neon.vmins.v4i32, %0, %1)
ret <WIDTH x i32> %r
}
define <WIDTH x i32> @__max_varying_int32(<WIDTH x i32>, <WIDTH x i32>) nounwind readnone alwaysinline {
binary4to8(r, i32, @llvm.arm.neon.vmaxs.v4i32, %0, %1)
ret <WIDTH x i32> %r
}
define <WIDTH x i32> @__min_varying_uint32(<WIDTH x i32>, <WIDTH x i32>) nounwind readnone alwaysinline {
binary4to8(r, i32, @llvm.arm.neon.vminu.v4i32, %0, %1)
ret <WIDTH x i32> %r
}
define <WIDTH x i32> @__max_varying_uint32(<WIDTH x i32>, <WIDTH x i32>) nounwind readnone alwaysinline {
binary4to8(r, i32, @llvm.arm.neon.vmaxu.v4i32, %0, %1)
ret <WIDTH x i32> %r
}
;; sqrt/rsqrt/rcp
declare <4 x float> @llvm.arm.neon.vrecpe.v4f32(<4 x float>) nounwind readnone
declare <4 x float> @llvm.arm.neon.vrecps.v4f32(<4 x float>, <4 x float>) nounwind readnone
define <WIDTH x float> @__rcp_varying_float(<WIDTH x float> %d) nounwind readnone alwaysinline {
unary4to8(x0, float, @llvm.arm.neon.vrecpe.v4f32, %d)
binary4to8(x0_nr, float, @llvm.arm.neon.vrecps.v4f32, %d, %x0)
%x1 = fmul <WIDTH x float> %x0, %x0_nr
binary4to8(x1_nr, float, @llvm.arm.neon.vrecps.v4f32, %d, %x1)
%x2 = fmul <WIDTH x float> %x1, %x1_nr
ret <WIDTH x float> %x2
}
declare <4 x float> @llvm.arm.neon.vrsqrte.v4f32(<4 x float>) nounwind readnone
declare <4 x float> @llvm.arm.neon.vrsqrts.v4f32(<4 x float>, <4 x float>) nounwind readnone
define <WIDTH x float> @__rsqrt_varying_float(<WIDTH x float> %d) nounwind readnone alwaysinline {
unary4to8(x0, float, @llvm.arm.neon.vrsqrte.v4f32, %d)
%x0_2 = fmul <WIDTH x float> %x0, %x0
binary4to8(x0_nr, float, @llvm.arm.neon.vrsqrts.v4f32, %d, %x0_2)
%x1 = fmul <WIDTH x float> %x0, %x0_nr
%x1_2 = fmul <WIDTH x float> %x1, %x1
binary4to8(x1_nr, float, @llvm.arm.neon.vrsqrts.v4f32, %d, %x1_2)
%x2 = fmul <WIDTH x float> %x1, %x1_nr
ret <WIDTH x float> %x2
}
define float @__rsqrt_uniform_float(float) nounwind readnone alwaysinline {
%v1 = bitcast float %0 to <1 x float>
%vs = shufflevector <1 x float> %v1, <1 x float> undef,
<8 x i32> <i32 0, i32 undef, i32 undef, i32 undef,
i32 undef, i32 undef, i32 undef, i32 undef>
%vr = call <8 x float> @__rsqrt_varying_float(<8 x float> %vs)
%r = extractelement <8 x float> %vr, i32 0
ret float %r
}
define float @__rcp_uniform_float(float) nounwind readnone alwaysinline {
%v1 = bitcast float %0 to <1 x float>
%vs = shufflevector <1 x float> %v1, <1 x float> undef,
<8 x i32> <i32 0, i32 undef, i32 undef, i32 undef,
i32 undef, i32 undef, i32 undef, i32 undef>
%vr = call <8 x float> @__rcp_varying_float(<8 x float> %vs)
%r = extractelement <8 x float> %vr, i32 0
ret float %r
}
declare <4 x float> @llvm.sqrt.v4f32(<4 x float>)
define <WIDTH x float> @__sqrt_varying_float(<WIDTH x float>) nounwind readnone alwaysinline {
unary4to8(result, float, @llvm.sqrt.v4f32, %0)
;; this returns nan for v=0, which is undesirable..
;; %rsqrt = call <WIDTH x float> @__rsqrt_varying_float(<WIDTH x float> %0)
;; %result = fmul <4 x float> %rsqrt, %0
ret <8 x float> %result
}
declare <4 x double> @llvm.sqrt.v4f64(<4 x double>)
define <WIDTH x double> @__sqrt_varying_double(<WIDTH x double>) nounwind readnone alwaysinline {
unary4to8(r, double, @llvm.sqrt.v4f64, %0)
ret <WIDTH x double> %r
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; reductions
define i64 @__movmsk(<WIDTH x MASK>) nounwind readnone alwaysinline {
%and_mask = and <WIDTH x i16> %0,
<i16 1, i16 2, i16 4, i16 8, i16 16, i16 32, i16 64, i16 128>
%v4 = call <4 x i32> @llvm.arm.neon.vpaddlu.v4i32.v8i16(<8 x i16> %and_mask)
%v2 = call <2 x i64> @llvm.arm.neon.vpaddlu.v2i64.v4i32(<4 x i32> %v4)
%va = extractelement <2 x i64> %v2, i32 0
%vb = extractelement <2 x i64> %v2, i32 1
%v = or i64 %va, %vb
ret i64 %v
}
define i1 @__any(<WIDTH x MASK>) nounwind readnone alwaysinline {
v8tov4(MASK, %0, %v0123, %v4567)
%vor = or <4 x MASK> %v0123, %v4567
%v0 = extractelement <4 x MASK> %vor, i32 0
%v1 = extractelement <4 x MASK> %vor, i32 1
%v2 = extractelement <4 x MASK> %vor, i32 2
%v3 = extractelement <4 x MASK> %vor, i32 3
%v01 = or MASK %v0, %v1
%v23 = or MASK %v2, %v3
%v = or MASK %v01, %v23
%cmp = icmp ne MASK %v, 0
ret i1 %cmp
}
define i1 @__all(<WIDTH x MASK>) nounwind readnone alwaysinline {
v8tov4(MASK, %0, %v0123, %v4567)
%vand = and <4 x MASK> %v0123, %v4567
%v0 = extractelement <4 x MASK> %vand, i32 0
%v1 = extractelement <4 x MASK> %vand, i32 1
%v2 = extractelement <4 x MASK> %vand, i32 2
%v3 = extractelement <4 x MASK> %vand, i32 3
%v01 = and MASK %v0, %v1
%v23 = and MASK %v2, %v3
%v = and MASK %v01, %v23
%cmp = icmp ne MASK %v, 0
ret i1 %cmp
}
define i1 @__none(<WIDTH x MASK>) nounwind readnone alwaysinline {
%any = call i1 @__any(<WIDTH x MASK> %0)
%none = icmp eq i1 %any, 0
ret i1 %none
}
;; $1: scalar type
;; $2: vector/vector reduce function (2 x <WIDTH x vec> -> <WIDTH x vec>)
;; $3: pairwise vector reduce function (2 x <2 x vec> -> <2 x vec>)
;; $4: scalar reduce function
define(`neon_reduce', `
v8tov4($1, %0, %v0123, %v4567)
%v0123_8 = shufflevector <4 x $1> %v0123, <4 x $1> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef>
%v4567_8 = shufflevector <4 x $1> %v4567, <4 x $1> undef,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef>
%vfirst = call <8 x $1> $2(<8 x $1> %v0123_8, <8 x $1> %v4567_8)
%vfirst_4 = shufflevector <8 x $1> %vfirst, <8 x $1> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
v4tov2($1, %vfirst_4, %v0, %v1)
%vh = call <2 x $1> $3(<2 x $1> %v0, <2 x $1> %v1)
%vh0 = extractelement <2 x $1> %vh, i32 0
%vh1 = extractelement <2 x $1> %vh, i32 1
%r = call $1 $4($1 %vh0, $1 %vh1)
ret $1 %r
')
declare <2 x float> @llvm.arm.neon.vpadd.v2f32(<2 x float>, <2 x float>) nounwind readnone
define internal float @add_f32(float, float) nounwind readnone alwaysinline {
%r = fadd float %0, %1
ret float %r
}
define internal <WIDTH x float> @__add_varying_float(<WIDTH x float>, <WIDTH x float>) nounwind readnone alwaysinline {
%r = fadd <WIDTH x float> %0, %1
ret <WIDTH x float> %r
}
define float @__reduce_add_float(<WIDTH x float>) nounwind readnone alwaysinline {
neon_reduce(float, @__add_varying_float, @llvm.arm.neon.vpadd.v2f32, @add_f32)
}
declare <2 x float> @llvm.arm.neon.vpmins.v2f32(<2 x float>, <2 x float>) nounwind readnone
define internal float @min_f32(float, float) nounwind readnone alwaysinline {
%cmp = fcmp olt float %0, %1
%r = select i1 %cmp, float %0, float %1
ret float %r
}
define float @__reduce_min_float(<WIDTH x float>) nounwind readnone alwaysinline {
neon_reduce(float, @__min_varying_float, @llvm.arm.neon.vpmins.v2f32, @min_f32)
}
declare <2 x float> @llvm.arm.neon.vpmaxs.v2f32(<2 x float>, <2 x float>) nounwind readnone
define internal float @max_f32(float, float) nounwind readnone alwaysinline {
%cmp = fcmp ugt float %0, %1
%r = select i1 %cmp, float %0, float %1
ret float %r
}
define float @__reduce_max_float(<WIDTH x float>) nounwind readnone alwaysinline {
neon_reduce(float, @__max_varying_float, @llvm.arm.neon.vpmaxs.v2f32, @max_f32)
}
declare <4 x i16> @llvm.arm.neon.vpaddls.v4i16.v8i8(<8 x i8>) nounwind readnone
declare <2 x i32> @llvm.arm.neon.vpaddlu.v2i32.v4i16(<4 x i16>) nounwind readnone
define i16 @__reduce_add_int8(<WIDTH x i8>) nounwind readnone alwaysinline {
%a16 = call <4 x i16> @llvm.arm.neon.vpaddls.v4i16.v8i8(<8 x i8> %0)
%a32 = call <2 x i32> @llvm.arm.neon.vpaddlu.v2i32.v4i16(<4 x i16> %a16)
%a0 = extractelement <2 x i32> %a32, i32 0
%a1 = extractelement <2 x i32> %a32, i32 1
%r = add i32 %a0, %a1
%r16 = trunc i32 %r to i16
ret i16 %r16
}
declare <4 x i32> @llvm.arm.neon.vpaddlu.v4i32.v8i16(<WIDTH x i16>)
define i64 @__reduce_add_int16(<WIDTH x i16>) nounwind readnone alwaysinline {
%a1 = call <4 x i32> @llvm.arm.neon.vpaddlu.v4i32.v8i16(<WIDTH x i16> %0)
%a2 = call <2 x i64> @llvm.arm.neon.vpaddlu.v2i64.v4i32(<4 x i32> %a1)
%aa = extractelement <2 x i64> %a2, i32 0
%ab = extractelement <2 x i64> %a2, i32 1
%r = add i64 %aa, %ab
ret i64 %r
}
declare <2 x i64> @llvm.arm.neon.vpaddlu.v2i64.v4i32(<4 x i32>) nounwind readnone
define i64 @__reduce_add_int32(<WIDTH x i32>) nounwind readnone alwaysinline {
v8tov4(i32, %0, %va, %vb)
%pa = call <2 x i64> @llvm.arm.neon.vpaddlu.v2i64.v4i32(<4 x i32> %va)
%pb = call <2 x i64> @llvm.arm.neon.vpaddlu.v2i64.v4i32(<4 x i32> %vb)
%psum = add <2 x i64> %pa, %pb
%a0 = extractelement <2 x i64> %psum, i32 0
%a1 = extractelement <2 x i64> %psum, i32 1
%r = add i64 %a0, %a1
ret i64 %r
}
declare <2 x i32> @llvm.arm.neon.vpmins.v2i32(<2 x i32>, <2 x i32>) nounwind readnone
define internal i32 @min_si32(i32, i32) nounwind readnone alwaysinline {
%cmp = icmp slt i32 %0, %1
%r = select i1 %cmp, i32 %0, i32 %1
ret i32 %r
}
define i32 @__reduce_min_int32(<WIDTH x i32>) nounwind readnone alwaysinline {
neon_reduce(i32, @__min_varying_int32, @llvm.arm.neon.vpmins.v2i32, @min_si32)
}
declare <2 x i32> @llvm.arm.neon.vpmaxs.v2i32(<2 x i32>, <2 x i32>) nounwind readnone
define internal i32 @max_si32(i32, i32) nounwind readnone alwaysinline {
%cmp = icmp sgt i32 %0, %1
%r = select i1 %cmp, i32 %0, i32 %1
ret i32 %r
}
define i32 @__reduce_max_int32(<WIDTH x i32>) nounwind readnone alwaysinline {
neon_reduce(i32, @__max_varying_int32, @llvm.arm.neon.vpmaxs.v2i32, @max_si32)
}
declare <2 x i32> @llvm.arm.neon.vpminu.v2i32(<2 x i32>, <2 x i32>) nounwind readnone
define internal i32 @min_ui32(i32, i32) nounwind readnone alwaysinline {
%cmp = icmp ult i32 %0, %1
%r = select i1 %cmp, i32 %0, i32 %1
ret i32 %r
}
define i32 @__reduce_min_uint32(<WIDTH x i32>) nounwind readnone alwaysinline {
neon_reduce(i32, @__min_varying_uint32, @llvm.arm.neon.vpmins.v2i32, @min_ui32)
}
declare <2 x i32> @llvm.arm.neon.vpmaxu.v2i32(<2 x i32>, <2 x i32>) nounwind readnone
define internal i32 @max_ui32(i32, i32) nounwind readnone alwaysinline {
%cmp = icmp ugt i32 %0, %1
%r = select i1 %cmp, i32 %0, i32 %1
ret i32 %r
}
define i32 @__reduce_max_uint32(<WIDTH x i32>) nounwind readnone alwaysinline {
neon_reduce(i32, @__max_varying_uint32, @llvm.arm.neon.vpmaxs.v2i32, @max_ui32)
}
define double @__reduce_add_double(<WIDTH x double>) nounwind readnone alwaysinline {
v8tov2(double, %0, %v0, %v1, %v2, %v3)
%v01 = fadd <2 x double> %v0, %v1
%v23 = fadd <2 x double> %v2, %v3
%sum = fadd <2 x double> %v01, %v23
%e0 = extractelement <2 x double> %sum, i32 0
%e1 = extractelement <2 x double> %sum, i32 1
%m = fadd double %e0, %e1
ret double %m
}
define double @__reduce_min_double(<WIDTH x double>) nounwind readnone alwaysinline {
reduce8(double, @__min_varying_double, @__min_uniform_double)
}
define double @__reduce_max_double(<WIDTH x double>) nounwind readnone alwaysinline {
reduce8(double, @__max_varying_double, @__max_uniform_double)
}
define i64 @__reduce_add_int64(<WIDTH x i64>) nounwind readnone alwaysinline {
v8tov2(i64, %0, %v0, %v1, %v2, %v3)
%v01 = add <2 x i64> %v0, %v1
%v23 = add <2 x i64> %v2, %v3
%sum = add <2 x i64> %v01, %v23
%e0 = extractelement <2 x i64> %sum, i32 0
%e1 = extractelement <2 x i64> %sum, i32 1
%m = add i64 %e0, %e1
ret i64 %m
}
define i64 @__reduce_min_int64(<WIDTH x i64>) nounwind readnone alwaysinline {
reduce8(i64, @__min_varying_int64, @__min_uniform_int64)
}
define i64 @__reduce_max_int64(<WIDTH x i64>) nounwind readnone alwaysinline {
reduce8(i64, @__max_varying_int64, @__max_uniform_int64)
}
define i64 @__reduce_min_uint64(<WIDTH x i64>) nounwind readnone alwaysinline {
reduce8(i64, @__min_varying_uint64, @__min_uniform_uint64)
}
define i64 @__reduce_max_uint64(<WIDTH x i64>) nounwind readnone alwaysinline {
reduce8(i64, @__max_varying_uint64, @__max_uniform_uint64)
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; int8/int16
declare <8 x i8> @llvm.arm.neon.vrhaddu.v8i8(<8 x i8>, <8 x i8>) nounwind readnone
define <8 x i8> @__avg_up_uint8(<8 x i8>, <8 x i8>) nounwind readnone alwaysinline {
%r = call <8 x i8> @llvm.arm.neon.vrhaddu.v8i8(<8 x i8> %0, <8 x i8> %1)
ret <8 x i8> %r
}
declare <8 x i8> @llvm.arm.neon.vrhadds.v8i8(<8 x i8>, <8 x i8>) nounwind readnone
define <8 x i8> @__avg_up_int8(<8 x i8>, <8 x i8>) nounwind readnone alwaysinline {
%r = call <8 x i8> @llvm.arm.neon.vrhadds.v8i8(<8 x i8> %0, <8 x i8> %1)
ret <8 x i8> %r
}
declare <8 x i8> @llvm.arm.neon.vhaddu.v8i8(<8 x i8>, <8 x i8>) nounwind readnone
define <8 x i8> @__avg_down_uint8(<8 x i8>, <8 x i8>) nounwind readnone alwaysinline {
%r = call <8 x i8> @llvm.arm.neon.vhaddu.v8i8(<8 x i8> %0, <8 x i8> %1)
ret <8 x i8> %r
}
declare <8 x i8> @llvm.arm.neon.vhadds.v8i8(<8 x i8>, <8 x i8>) nounwind readnone
define <8 x i8> @__avg_down_int8(<8 x i8>, <8 x i8>) nounwind readnone alwaysinline {
%r = call <8 x i8> @llvm.arm.neon.vhadds.v8i8(<8 x i8> %0, <8 x i8> %1)
ret <8 x i8> %r
}
declare <8 x i16> @llvm.arm.neon.vrhaddu.v8i16(<8 x i16>, <8 x i16>) nounwind readnone
define <8 x i16> @__avg_up_uint16(<8 x i16>, <8 x i16>) nounwind readnone alwaysinline {
%r = call <8 x i16> @llvm.arm.neon.vrhaddu.v8i16(<8 x i16> %0, <8 x i16> %1)
ret <8 x i16> %r
}
declare <8 x i16> @llvm.arm.neon.vrhadds.v8i16(<8 x i16>, <8 x i16>) nounwind readnone
define <8 x i16> @__avg_up_int16(<8 x i16>, <8 x i16>) nounwind readnone alwaysinline {
%r = call <8 x i16> @llvm.arm.neon.vrhadds.v8i16(<8 x i16> %0, <8 x i16> %1)
ret <8 x i16> %r
}
declare <8 x i16> @llvm.arm.neon.vhaddu.v8i16(<8 x i16>, <8 x i16>) nounwind readnone
define <8 x i16> @__avg_down_uint16(<8 x i16>, <8 x i16>) nounwind readnone alwaysinline {
%r = call <8 x i16> @llvm.arm.neon.vhaddu.v8i16(<8 x i16> %0, <8 x i16> %1)
ret <8 x i16> %r
}
declare <8 x i16> @llvm.arm.neon.vhadds.v8i16(<8 x i16>, <8 x i16>) nounwind readnone
define <8 x i16> @__avg_down_int16(<8 x i16>, <8 x i16>) nounwind readnone alwaysinline {
%r = call <8 x i16> @llvm.arm.neon.vhadds.v8i16(<8 x i16> %0, <8 x i16> %1)
ret <8 x i16> %r
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; reciprocals in double precision, if supported
rsqrtd_decl()
rcpd_decl()
transcendetals_decl()
trigonometry_decl()
saturation_arithmetic()