;; Copyright (c) 2010-2011, Intel Corporation ;; All rights reserved. ;; ;; Redistribution and use in source and binary forms, with or without ;; modification, are permitted provided that the following conditions are ;; met: ;; ;; * Redistributions of source code must retain the above copyright ;; notice, this list of conditions and the following disclaimer. ;; ;; * Redistributions in binary form must reproduce the above copyright ;; notice, this list of conditions and the following disclaimer in the ;; documentation and/or other materials provided with the distribution. ;; ;; * Neither the name of Intel Corporation nor the names of its ;; contributors may be used to endorse or promote products derived from ;; this software without specific prior written permission. ;; ;; ;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Define common 4-wide stuff stdlib_core(4) packed_load_and_store(4) ; Define the stuff that can be done with base SSE1/SSE2 instructions include(`stdlib-sse.ll') ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; math declare <4 x float> @llvm.x86.sse41.round.ps(<4 x float>, i32) nounwind readnone declare <4 x float> @llvm.x86.sse41.round.ss(<4 x float>, <4 x float>, i32) nounwind readnone define internal <4 x float> @__round_varying_float(<4 x float>) nounwind readonly alwaysinline { ; roundps, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8 %call = call <4 x float> @llvm.x86.sse41.round.ps(<4 x float> %0, i32 8) ret <4 x float> %call } define internal float @__round_uniform_float(float) nounwind readonly alwaysinline { ; roundss, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8 ; the roundss intrinsic is a total mess--docs say: ; ; __m128 _mm_round_ss (__m128 a, __m128 b, const int c) ; ; b is a 128-bit parameter. The lowest 32 bits are the result of the rounding function ; on b0. The higher order 96 bits are copied directly from input parameter a. The ; return value is described by the following equations: ; ; r0 = RND(b0) ; r1 = a1 ; r2 = a2 ; r3 = a3 ; ; It doesn't matter what we pass as a, since we only need the r0 value ; here. So we pass the same register for both. Further, only the 0th ; element of the b parameter matters %xi = insertelement <4 x float> undef, float %0, i32 0 %xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 8) %rs = extractelement <4 x float> %xr, i32 0 ret float %rs } define internal <4 x float> @__floor_varying_float(<4 x float>) nounwind readonly alwaysinline { ; roundps, round down 0b01 | don't signal precision exceptions 0b1000 = 9 %call = call <4 x float> @llvm.x86.sse41.round.ps(<4 x float> %0, i32 9) ret <4 x float> %call } define internal float @__floor_uniform_float(float) nounwind readonly alwaysinline { ; see above for round_ss instrinsic discussion... %xi = insertelement <4 x float> undef, float %0, i32 0 ; roundps, round down 0b01 | don't signal precision exceptions 0b1000 = 9 %xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 9) %rs = extractelement <4 x float> %xr, i32 0 ret float %rs } define internal <4 x float> @__ceil_varying_float(<4 x float>) nounwind readonly alwaysinline { ; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10 %call = call <4 x float> @llvm.x86.sse41.round.ps(<4 x float> %0, i32 10) ret <4 x float> %call } define internal float @__ceil_uniform_float(float) nounwind readonly alwaysinline { ; see above for round_ss instrinsic discussion... %xi = insertelement <4 x float> undef, float %0, i32 0 ; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10 %xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 10) %rs = extractelement <4 x float> %xr, i32 0 ret float %rs } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; integer min/max declare <4 x i32> @llvm.x86.sse41.pminsd(<4 x i32>, <4 x i32>) nounwind readnone declare <4 x i32> @llvm.x86.sse41.pmaxsd(<4 x i32>, <4 x i32>) nounwind readnone define internal <4 x i32> @__min_varying_int32(<4 x i32>, <4 x i32>) nounwind readonly alwaysinline { %call = call <4 x i32> @llvm.x86.sse41.pminsd(<4 x i32> %0, <4 x i32> %1) ret <4 x i32> %call } define internal i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminsd, %0, %1) ret i32 %ret } define internal <4 x i32> @__max_varying_int32(<4 x i32>, <4 x i32>) nounwind readonly alwaysinline { %call = call <4 x i32> @llvm.x86.sse41.pmaxsd(<4 x i32> %0, <4 x i32> %1) ret <4 x i32> %call } define internal i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxsd, %0, %1) ret i32 %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; unsigned int min/max declare <4 x i32> @llvm.x86.sse41.pminud(<4 x i32>, <4 x i32>) nounwind readnone declare <4 x i32> @llvm.x86.sse41.pmaxud(<4 x i32>, <4 x i32>) nounwind readnone define internal <4 x i32> @__min_varying_uint32(<4 x i32>, <4 x i32>) nounwind readonly alwaysinline { %call = call <4 x i32> @llvm.x86.sse41.pminud(<4 x i32> %0, <4 x i32> %1) ret <4 x i32> %call } define internal i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminud, %0, %1) ret i32 %ret } define internal <4 x i32> @__max_varying_uint32(<4 x i32>, <4 x i32>) nounwind readonly alwaysinline { %call = call <4 x i32> @llvm.x86.sse41.pmaxud(<4 x i32> %0, <4 x i32> %1) ret <4 x i32> %call } define internal i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxud, %0, %1) ret i32 %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; horizontal ops / reductions declare i32 @llvm.ctpop.i32(i32) nounwind readnone define internal i32 @__popcnt(i32) nounwind readonly alwaysinline { %call = call i32 @llvm.ctpop.i32(i32 %0) ret i32 %call } declare <4 x float> @llvm.x86.sse3.hadd.ps(<4 x float>, <4 x float>) nounwind readnone define internal float @__reduce_add_float(<4 x float>) nounwind readonly alwaysinline { %v1 = call <4 x float> @llvm.x86.sse3.hadd.ps(<4 x float> %0, <4 x float> %0) %v2 = call <4 x float> @llvm.x86.sse3.hadd.ps(<4 x float> %v1, <4 x float> %v1) %scalar = extractelement <4 x float> %v2, i32 0 ret float %scalar } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; masked store declare <4 x float> @llvm.x86.sse41.blendvps(<4 x float>, <4 x float>, <4 x float>) nounwind readnone define void @__masked_store_blend_32(<4 x i32>* nocapture, <4 x i32>, <4 x i32> %mask) nounwind alwaysinline { %mask_as_float = bitcast <4 x i32> %mask to <4 x float> %oldValue = load <4 x i32>* %0 %oldAsFloat = bitcast <4 x i32> %oldValue to <4 x float> %newAsFloat = bitcast <4 x i32> %1 to <4 x float> %blend = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %oldAsFloat, <4 x float> %newAsFloat, <4 x float> %mask_as_float) %blendAsInt = bitcast <4 x float> %blend to <4 x i32> store <4 x i32> %blendAsInt, <4 x i32>* %0 ret void } define void @__masked_store_blend_64(<4 x i64>* nocapture %ptr, <4 x i64> %new, <4 x i32> %i32mask) nounwind alwaysinline { %oldValue = load <4 x i64>* %ptr %mask = bitcast <4 x i32> %i32mask to <4 x float> ; Do 4x64-bit blends by doing two <4 x i32> blends, where the <4 x i32> values ; are actually bitcast <2 x i64> values ; ; set up the first two 64-bit values %old01 = shufflevector <4 x i64> %oldValue, <4 x i64> undef, <2 x i32> %old01f = bitcast <2 x i64> %old01 to <4 x float> %new01 = shufflevector <4 x i64> %new, <4 x i64> undef, <2 x i32> %new01f = bitcast <2 x i64> %new01 to <4 x float> ; compute mask--note that the indices 0 and 1 are doubled-up %mask01 = shufflevector <4 x float> %mask, <4 x float> undef, <4 x i32> ; and blend the two of the values %result01f = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %old01f, <4 x float> %new01f, <4 x float> %mask01) %result01 = bitcast <4 x float> %result01f to <2 x i64> ; and again %old23 = shufflevector <4 x i64> %oldValue, <4 x i64> undef, <2 x i32> %old23f = bitcast <2 x i64> %old23 to <4 x float> %new23 = shufflevector <4 x i64> %new, <4 x i64> undef, <2 x i32> %new23f = bitcast <2 x i64> %new23 to <4 x float> ; compute mask--note that the values 2 and 3 are doubled-up %mask23 = shufflevector <4 x float> %mask, <4 x float> undef, <4 x i32> ; and blend the two of the values %result23f = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %old23f, <4 x float> %new23f, <4 x float> %mask23) %result23 = bitcast <4 x float> %result23f to <2 x i64> ; reconstruct the final <4 x i64> vector %final = shufflevector <2 x i64> %result01, <2 x i64> %result23, <4 x i32> store <4 x i64> %final, <4 x i64> * %ptr ret void }