;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Define the standard library builtins for the NOVEC target define(`MASK',`i1') define(`WIDTH',`1') ;; target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64" ;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;; declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() nounwind readnone declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x() nounwind readnone declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.y() nounwind readnone declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.z() nounwind readnone declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.x() nounwind readnone declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.y() nounwind readnone declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.z() nounwind readnone declare i32 @llvm.nvvm.read.ptx.sreg.warpsize() nounwind readnone define i32 @__tid_x() nounwind readnone alwaysinline { %tid = call i32 @llvm.nvvm.read.ptx.sreg.tid.x() ret i32 %tid } define i32 @__warpsize() nounwind readnone alwaysinline { ;; %tid = call i32 @llvm.nvvm.read.ptx.sreg.warpsize() ;; ret i32 %tid ret i32 32 } define i32 @__laneidx() nounwind readnone alwaysinline { %tid = tail call i32 @__tid_x() %lane = and i32 %tid, 31 ret i32 %lane; } define i32 @__ctaid_x() nounwind readnone alwaysinline { %bid = call i32 @llvm.nvvm.read.ptx.sreg.ctaid.x() ret i32 %bid } define i32 @__ctaid_y() nounwind readnone alwaysinline { %bid = call i32 @llvm.nvvm.read.ptx.sreg.ctaid.y() ret i32 %bid } define i32 @__ctaid_z() nounwind readnone alwaysinline { %bid = call i32 @llvm.nvvm.read.ptx.sreg.ctaid.z() ret i32 %bid } define i32 @__nctaid_x() nounwind readnone alwaysinline { %nb = call i32 @llvm.nvvm.read.ptx.sreg.nctaid.x() ret i32 %nb } define i32 @__nctaid_y() nounwind readnone alwaysinline { %nb = call i32 @llvm.nvvm.read.ptx.sreg.nctaid.y() ret i32 %nb } define i32 @__nctaid_z() nounwind readnone alwaysinline { %nb = call i32 @llvm.nvvm.read.ptx.sreg.nctaid.z() ret i32 %nb } ;;;;;;;; declare i64* @llvm.nvvm.ptr.shared.to.gen.p0i64.p3i64(i64 addrspace(3)*) declare i64* @llvm.nvvm.ptr.shared.to.gen.p0i64.p4i64(i64 addrspace(4)*) define i64* @__cvt_loc2gen(i64 addrspace(3)*) nounwind readnone alwaysinline { %ptr = tail call i64* @llvm.nvvm.ptr.shared.to.gen.p0i64.p3i64(i64 addrspace(3)* %0) ret i64* %ptr } define i64* @__cvt_loc2gen_var(i64 addrspace(3)*) nounwind readnone alwaysinline { %ptr = tail call i64* @llvm.nvvm.ptr.shared.to.gen.p0i64.p3i64(i64 addrspace(3)* %0) ret i64* %ptr } define i64* @__cvt_const2gen(i64 addrspace(4)*) nounwind readnone alwaysinline { %ptr = tail call i64* @llvm.nvvm.ptr.shared.to.gen.p0i64.p4i64(i64 addrspace(4)* %0) ret i64* %ptr } ;;;;;;;; ;; i32 define i32 @__shfl_i32_nvptx(i32, i32) nounwind readnone alwaysinline { %shfl = tail call i32 asm sideeffect "shfl.idx.b32 $0, $1, $2, 0x1f;", "=r,r,r"(i32 %0, i32 %1) nounwind readnone alwaysinline ret i32 %shfl } define i32 @__shfl_xor_i32_nvptx(i32, i32) nounwind readnone alwaysinline { %shfl = tail call i32 asm sideeffect "shfl.bfly.b32 $0, $1, $2, 0x1f;", "=r,r,r"(i32 %0, i32 %1) nounwind readnone alwaysinline ret i32 %shfl } ;; float define float @__shfl_float_nvptx(float, i32) nounwind readnone alwaysinline { %shfl = tail call float asm sideeffect "shfl.idx.b32 $0, $1, $2, 0x1f;", "=f,f,r"(float %0, i32 %1) nounwind readnone alwaysinline ret float %shfl } define float @__shfl_xor_float_nvptx(float, i32) nounwind readnone alwaysinline { %shfl = tail call float asm sideeffect "shfl.bfly.b32 $0, $1, $2, 0x1f;", "=f,f,r"(float %0, i32 %1) nounwind readnone alwaysinline ret float %shfl } ;;;;;;;;;;; min/max ;; float/double define float @__fminf_nvptx(float,float) nounwind readnone alwaysinline { %min = tail call float asm sideeffect "min.f32 $0, $1, $2;", "=f,f,f"(float %0, float %1) nounwind readnone alwaysinline ret float %min } define float @__fmaxf_nvptx(float,float) nounwind readnone alwaysinline { %max = tail call float asm sideeffect "max.f32 $0, $1, $2;", "=f,f,f"(float %0, float %1) nounwind readnone alwaysinline ret float %max } ;; int define(`int_minmax',` define $1 @__min_$1_signed($1,$1) nounwind readnone alwaysinline { %c = icmp slt $1 %0, %1 %r = select i1 %c, $1 %0, $1 %1 ret $1 %r } define $1 @__max_$1_signed($1,$1) nounwind readnone alwaysinline { %c = icmp sgt $1 %0, %1 %r = select i1 %c, $1 %0, $1 %1 ret $1 %r } define $1 @__min_$1_unsigned($1,$1) nounwind readnone alwaysinline { %c = icmp ult $1 %0, %1 %r = select i1 %c, $1 %0, $1 %1 ret $1 %r } define $1 @__max_$1_unsigned($1,$1) nounwind readnone alwaysinline { %c = icmp ugt $1 %0, %1 %r = select i1 %c, $1 %0, $1 %1 ret $1 %r } ') int_minmax(i8); int_minmax(i16); int_minmax(i32); int_minmax(i64); ;; float/double define(`fp_minmax',` define $1 @__min_$1($1,$1) nounwind readnone alwaysinline { %c = fcmp olt $1 %0, %1 %r = select i1 %c, $1 %0, $1 %1 ret $1 %r } define $1 @__max_$1($1,$1) nounwind readnone alwaysinline { %c = fcmp ogt $1 %0, %1 %r = select i1 %c, $1 %0, $1 %1 ret $1 %r } ') fp_minmax(float) fp_minmax(double) ;;;;;;;;; __shfl/__shfl_xor intrinsics ;; i8/i16/i64 define(`shfl32',` define $2 @$1_$2_nvptx($2, i32) nounwind readnone alwaysinline { %ext = zext $2 %0 to i32 %res = tail call i32 @$1_i32_nvptx(i32 %ext, i32 %1) %ret = trunc i32 %res to $2 ret $2 %ret } ') shfl32(__shfl, i8); shfl32(__shfl_xor, i8); shfl32(__shfl, i16); shfl32(__shfl_xor, i16); define(`shfl64',` define $2 @$1_$2_nvptx($2, i32) nounwind readnone alwaysinline { %in = bitcast $2 %0 to <2 x i32> %in0 = extractelement <2 x i32> %in, i32 0 %in1 = extractelement <2 x i32> %in, i32 1 %out0 = tail call i32 @$1_i32_nvptx(i32 %in0, i32 %1) %out1 = tail call i32 @$1_i32_nvptx(i32 %in1, i32 %1) %out2 = insertelement <2 x i32> undef, i32 %out0, i32 0 %out = insertelement <2 x i32> %out2, i32 %out1, i32 1 %ret = bitcast <2 x i32> %out to $2 ret $2 %ret } ') shfl64(__shfl, i64) shfl64(__shfl_xor, i64) shfl64(__shfl, double) shfl64(__shfl_xor, double) ;;;;;;;;;;;;; define i32 @__ballot_nvptx(i1) nounwind readnone alwaysinline { %conv = zext i1 %0 to i32 %res = tail call i32 asm sideeffect "{ .reg .pred %p1; setp.ne.u32 %p1, $1, 0; vote.ballot.b32 $0, %p1; }", "=r,r"(i32 %conv) nounwind readnone alwaysinline ret i32 %res } define i32 @__lanemask_lt_nvptx() nounwind readnone alwaysinline { %mask = tail call i32 asm sideeffect "mov.u32 $0, %lanemask_lt;", "=r"() nounwind readnone alwaysinline ret i32 %mask } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; tasking ;; this call allocate parameter buffer for kernel launch declare i64 @cudaGetParameterBuffer(i64, i64) nounwind define i8* @ISPCAlloc(i8**, i64 %size, i32 %align32) nounwind alwaysinline { entry: %call = tail call i32 @__tid_x() %call1 = tail call i32 @__warpsize() %sub = add nsw i32 %call1, -1 %and = and i32 %sub, %call %cmp = icmp eq i32 %and, 0 %align = zext i32 %align32 to i64 br i1 %cmp, label %if.then, label %if.end if.then: %ptri64tmp = call i64 @cudaGetParameterBuffer(i64 %align, i64 %size); br label %if.end if.end: %ptri64 = phi i64 [ %ptri64tmp, %if.then ], [ 0, %entry ] %ptr = inttoptr i64 %ptri64 to i8* ret i8* %ptr } ;; this actually launches kernel a kernel module asm " .extern .func (.param .b32 func_retval0) cudaLaunchDevice ( .param .b64 cudaLaunchDevice_param_0, .param .b64 cudaLaunchDevice_param_1, .param .align 4 .b8 cudaLaunchDevice_param_2[12], .param .align 4 .b8 cudaLaunchDevice_param_3[12], .param .b32 cudaLaunchDevice_param_4, .param .b64 cudaLaunchDevice_param_5 ); " define void @ISPCLaunch(i8**, i8* %func_ptr, i8* %func_args, i32 %ntx, i32 %nty, i32 %ntz) nounwind alwaysinline { entry: ;; only 1 lane must launch the kernel !!! %func_i64 = ptrtoint i8* %func_ptr to i64 %args_i64 = ptrtoint i8* %func_args to i64 ;; nbx = (%ntx-1)/(blocksize/warpsize) + 1 for blocksize=128 & warpsize=32 %ntxm1 = add nsw i32 %ntx, -1 ;; %ntxm1d4 = sdiv i32 %ntxm1, 4 %ntxm1d4 = ashr i32 %ntxm1, 2 %nbx = add nsw i32 %ntxm1d4, 1 %call = tail call i32 @__tid_x() %call1 = tail call i32 @__warpsize() %sub = add nsw i32 %call1, -1 %and = and i32 %sub, %call ;; if (laneIdx == 0) %cmp = icmp eq i32 %and, 0 br i1 %cmp, label %if.then, label %if.end if.then: %res_tmp = call i32 asm sideeffect "{ .param .b64 param0; st.param.b64 [param0+0], $1; .param .b64 param1; st.param.b64 [param1+0], $2; .param .align 4 .b8 param2[12]; st.param.b32 [param2+0], $3; st.param.b32 [param2+4], $4; st.param.b32 [param2+8], $5; .param .align 4 .b8 param3[12]; st.param.b32 [param3+0], $6; st.param.b32 [param3+4], $7; st.param.b32 [param3+8], $8; .param .b32 param4; st.param.b32 [param4+0], $9; .param .b64 param5; st.param.b64 [param5+0], $10; .param .b32 retval0; call.uni (retval0), cudaLaunchDevice, ( param0, param1, param2, param3, param4, param5 ); ld.param.b32 $0, [retval0+0]; } ", "=r, l,l, r,r,r, r,r,r, r,l"( i64 %func_i64,i64 %args_i64, i32 %nbx,i32 %nty,i32 %ntz, i32 128,i32 1,i32 1, i32 0,i64 0); br label %if.end if.end: ; preds = %if.then, %entry ;; %res = phi i32 [ %res_tmp, %if.then ], [ undef, %entry ] ret void } ;; this synchronizes kernel declare i32 @cudaDeviceSynchronize() nounwind define void @ISPCSync(i8*) nounwind alwaysinline { call i32 @cudaDeviceSynchronize() ret void; } ;;;;;;;;;;;;;; include(`util-nvptx.m4') stdlib_core() packed_load_and_store() int64minmax() rdrand_decls() ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; broadcast/rotate/shuffle define_shuffles() ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; aos/soa aossoa() ;; dummy 1 wide vector ops declare void @__aos_to_soa4_float1(<1 x float> %v0, <1 x float> %v1, <1 x float> %v2, <1 x float> %v3, <1 x float> * noalias %out0, <1 x float> * noalias %out1, <1 x float> * noalias %out2, <1 x float> * noalias %out3) nounwind alwaysinline ; declare void @__soa_to_aos4_float1(<1 x float> %v0, <1 x float> %v1, <1 x float> %v2, <1 x float> %v3, <1 x float> * noalias %out0, <1 x float> * noalias %out1, <1 x float> * noalias %out2, <1 x float> * noalias %out3) nounwind alwaysinline ; declare void @__aos_to_soa3_float1(<1 x float> %v0, <1 x float> %v1, <1 x float> %v2, <1 x float> * %out0, <1 x float> * %out1, <1 x float> * %out2); declare void @__soa_to_aos3_float1(<1 x float> %v0, <1 x float> %v1, <1 x float> %v2, <1 x float> * %out0, <1 x float> * %out1, <1 x float> * %out2); ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; half conversion routines declare float @llvm.convert.from.fp16(i16) nounwind readnone declare i16 @llvm.convert.to.fp16(float) nounwind readnone define float @__half_to_float_uniform(i16 %v) nounwind readnone alwaysinline { ;; %res = call float @llvm.convert.from.fp16(i16 %v) %res = tail call float asm sideeffect "{ .reg .f16 tmp; mov.b16 tmp, $1; cvt.f32.f16 $0, tmp; }", "=f,h"(i16 %v) nounwind readnone alwaysinline ret float %res } define i16 @__float_to_half_uniform(float %v) nounwind readnone alwaysinline { ;; this will break the compiler, use inline asm similarly to above case ;; %half = call i16 @llvm.convert.to.fp16(float %v) %half = tail call i16 asm sideeffect "{ .reg .f16 tmp; cvt.rn.f16.f32 tmp, $1; mov.b16 $0, tmp; }", "=h,f"(float %v) nounwind readnone alwaysinline ret i16 %half } define @__half_to_float_varying( %v) nounwind readnone alwaysinline { %el = extractelement <1 x i16> %v, i32 0 %sf = call float @__half_to_float_uniform(i16 %el) %vf = insertelement <1 x float> undef, float %sf, i32 0 ret <1 x float> %vf; } define @__float_to_half_varying( %v) nounwind readnone alwaysinline { %el = extractelement <1 x float> %v, i32 0 %sh = call i16 @__float_to_half_uniform(float %el) %vh = insertelement <1 x i16> undef, i16 %sh, i32 0 ret <1 x i16> %vh; } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; math declare void @__fastmath() nounwind ;; round/floor/ceil define float @__round_uniform_float_ptx(float) nounwind readnone alwaysinline { %2 = tail call float asm sideeffect "{ .reg .pred p<3>; .reg .s32 r<4>; .reg .f32 f<10>; mov.f32 f4, $1; abs.f32 f5, f4; mov.b32 r1, f4; and.b32 r2, r1, -2147483648; or.b32 r3, r2, 1056964608; mov.b32 f6, r3; add.f32 f7, f6, f4; cvt.rzi.f32.f32 f8, f7; setp.gt.f32 p1, f5, 0f4B000000; selp.f32 f9, f4, f8, p1; setp.geu.f32 p2, f5, 0f3F000000; @p2 bra BB2_2; cvt.rzi.f32.f32 f9, f4; BB2_2: mov.f32 $0, f9; }", "=f,f"(float %0) nounwind readnone alwaysinline ret float %2 } define float @__round_uniform_float(float) nounwind readonly alwaysinline { %float_to_int_bitcast.i.i.i.i = bitcast float %0 to <1 x i32> %bitop.i.i = and <1 x i32> %float_to_int_bitcast.i.i.i.i, %bitop.i = xor <1 x i32> %float_to_int_bitcast.i.i.i.i, %bitop.i.i %int_to_float_bitcast.i.i40.i = bitcast <1 x i32> %bitop.i to <1 x float> %binop.i = fadd <1 x float> %int_to_float_bitcast.i.i40.i, %binop21.i = fadd <1 x float> %binop.i, %float_to_int_bitcast.i.i.i = bitcast <1 x float> %binop21.i to <1 x i32> %bitop31.i = xor <1 x i32> %float_to_int_bitcast.i.i.i, %bitop.i.i %int_to_float_bitcast.i.i.i = bitcast <1 x i32> %bitop31.i to float ret float %int_to_float_bitcast.i.i.i } define float @__floor_uniform_float(float) nounwind readnone alwaysinline { %2 = tail call float asm sideeffect "cvt.rmi.f32.f32 $0, $1;", "=f,f"(float %0) nounwind alwaysinline readnone ret float %2 } define float @__ceil_uniform_float(float) nounwind readnone alwaysinline { %2 = tail call float asm sideeffect "cvt.rpi.f32.f32 $0, $1;", "=f,f"(float %0) nounwind alwaysinline readnone ret float %2 } define double @__round_uniform_double(double) nounwind readnone alwaysinline { %2 = tail call double asm sideeffect "{ .reg .pred p<3>; .reg .s32 r<6>; .reg .f64 fd<9>; mov.f64 fd8, $1 abs.f64 fd1, fd8; setp.ge.f64 p1, fd1, 0d4330000000000000; @p1 bra BB5_2; add.f64 fd5, fd1, 0d3FE0000000000000; cvt.rzi.f64.f64 fd6, fd5; setp.lt.f64 p2, fd1, 0d3FE0000000000000; selp.f64 fd7, 0d0000000000000000, fd6, p2; { .reg .b32 temp; mov.b64 {r1, temp}, fd7; } { .reg .b32 temp; mov.b64 {temp, r2}, fd7; } { .reg .b32 temp; mov.b64 {temp, r3}, fd8; } and.b32 r4, r3, -2147483648; or.b32 r5, r2, r4; mov.b64 fd8, {r1, r5}; BB5_2: mov.f64 $0, fd8; }", "=d,d"(double %0) nounwind readnone alwaysinline ret double %2 } define double @__floor_uniform_double(double) nounwind readnone alwaysinline { %2 = tail call double asm sideeffect "cvt.rmi.f64.f64 $0, $1;", "=f,f"(double %0) nounwind alwaysinline readnone ret double %2 } define double @__ceil_uniform_double(double) nounwind readnone alwaysinline { %2 = tail call double asm sideeffect "cvt.rpi.f64.f64 $0, $1;", "=f,f"(double %0) nounwind alwaysinline readnone ret double %2 } define <1 x float> @__floor_varying_floatX(<1 x float>) nounwind readonly alwaysinline { %calltmp.i = tail call <1 x float> @__round_varying_float(<1 x float> %0) nounwind %bincmp.i = fcmp ogt <1 x float> %calltmp.i, %0 %val_to_boolvec32.i = sext <1 x i1> %bincmp.i to <1 x i32> %bitop.i = and <1 x i32> %val_to_boolvec32.i, %int_to_float_bitcast.i.i.i = bitcast <1 x i32> %bitop.i to <1 x float> %binop.i = fadd <1 x float> %calltmp.i, %int_to_float_bitcast.i.i.i ret <1 x float> %binop.i } define(`rfc_varying',` define <1 x $2> @__$1_varying_$2(<1 x $2>) nounwind readonly alwaysinline { %val = extractelement <1 x $2> %0, i32 0 %res = call $2 @__$1_uniform_$2($2 %val) %ret = insertelement <1 x $2> undef, $2 %res, i32 0 ret <1 x $2> %ret } ') rfc_varying(round, float) rfc_varying(floor, float) rfc_varying(ceil, float) rfc_varying(round, double) rfc_varying(floor, double) rfc_varying(ceil, double) ;; min/max uniform ;; declare float @__max_uniform_float(float, float) nounwind readnone ;; declare float @__min_uniform_float(float, float) nounwind readnone define float @__max_uniform_float(float, float) nounwind readonly alwaysinline { %d = fcmp ogt float %0, %1 %r = select i1 %d, float %0, float %1 ret float %r } define float @__min_uniform_float(float, float) nounwind readonly alwaysinline { %d = fcmp olt float %0, %1 %r = select i1 %d, float %0, float %1 ret float %r } ;; declare i32 @__min_uniform_int32(i32, i32) nounwind readnone ;; declare i32 @__max_uniform_int32(i32, i32) nounwind readnone define i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline { %c = icmp slt i32 %0, %1 %r = select i1 %c, i32 %0, i32 %1 ret i32 %r } define i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline { %c = icmp sgt i32 %0, %1 %r = select i1 %c, i32 %0, i32 %1 ret i32 %r } ;; declare i32 @__min_uniform_uint32(i32, i32) nounwind readnone ;; declare i32 @__max_uniform_uint32(i32, i32) nounwind readnone define i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline { %c = icmp ult i32 %0, %1 %r = select i1 %c, i32 %0, i32 %1 ret i32 %r } define i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline { %c = icmp ugt i32 %0, %1 %r = select i1 %c, i32 %0, i32 %1 ret i32 %r } ;; declare i64 @__min_uniform_int64(i64, i64) nounwind readnone ;; declare i64 @__max_uniform_int64(i64, i64) nounwind readnone define i64 @__min_uniform_int64X(i64, i64) nounwind readonly alwaysinline { %c = icmp slt i64 %0, %1 %r = select i1 %c, i64 %0, i64 %1 ret i64 %r } define i64 @__max_uniform_int64X(i64, i64) nounwind readonly alwaysinline { %c = icmp sgt i64 %0, %1 %r = select i1 %c, i64 %0, i64 %1 ret i64 %r } ;; declare i64 @__min_uniform_uint64(i64, i64) nounwind readnone ;; declare i64 @__max_uniform_uint64(i64, i64) nounwind readnone define i64 @__min_uniform_uint64X(i64, i64) nounwind readonly alwaysinline { %c = icmp ult i64 %0, %1 %r = select i1 %c, i64 %0, i64 %1 ret i64 %r } define i64 @__max_uniform_uint64X(i64, i64) nounwind readonly alwaysinline { %c = icmp ugt i64 %0, %1 %r = select i1 %c, i64 %0, i64 %1 ret i64 %r } define double @__max_uniform_double(double, double) nounwind readonly alwaysinline { %d = fcmp ogt double %0, %1 %r = select i1 %d, double %0, double %1 ret double %r } define double @__min_uniform_double(double, double) nounwind readonly alwaysinline { %d = fcmp olt double %0, %1 %r = select i1 %d, double %0, double %1 ret double %r } ;; min/max uniform define(`minmax_vy',` define <1 x $2> @__$1_varying_$3(<1 x $2>, <1 x $2>) nounwind readnone alwaysinline { %v0 = extractelement <1 x $2> %0, i32 0 %v1 = extractelement <1 x $2> %1, i32 0 %r = call $2 @__$1_uniform_$3($2 %v0, $2 %v1) %ret = insertelement <1 x $2> undef, $2 %r, i32 0 ret <1 x $2> %ret; } ') minmax_vy(min, i32, int32) minmax_vy(max, i32, int32) minmax_vy(min, i32, uint32) minmax_vy(max, i32, uint32) minmax_vy(min, float, float) minmax_vy(max, float, float) minmax_vy(min, double, double) minmax_vy(max, double, double) ;; sqrt/rsqrt/rcp declare float @llvm.nvvm.rsqrt.approx.f(float %f) nounwind readonly alwaysinline declare float @llvm.sqrt.f32(float %f) nounwind readonly alwaysinline declare double @llvm.nvvm.rsqrt.approx.d(double %f) nounwind readonly alwaysinline declare double @llvm.sqrt.f64(double %f) nounwind readonly alwaysinline ;; declare float @__rcp_uniform_float(float) nounwind readnone define float @__rcp_uniform_float(float) nounwind readonly alwaysinline { ; uniform float iv = extract(__rcp_u(v), 0); ; return iv * (2. - v * iv); %ret = fdiv float 1.,%0 ; %ret = tail call float asm sideeffect "rcp.approx.ftz.f32 $0, $1;", "=f,f"(float %0) nounwind readnone alwaysinline ret float %ret } ;; declare float @__sqrt_uniform_float(float) nounwind readnone define float @__sqrt_uniform_float(float) nounwind readonly alwaysinline { %ret = call float @llvm.sqrt.f32(float %0) ; %ret = tail call float asm sideeffect "sqrt.approx.ftz.f32 $0, $1;", "=f,f"(float %0) nounwind readnone alwaysinline ret float %ret } ;; declare float @__rsqrt_uniform_float(float) nounwind readnone define float @__rsqrt_uniform_float(float) nounwind readonly alwaysinline { %ret = call float @llvm.nvvm.rsqrt.approx.f(float %0) ; %ret = tail call float asm sideeffect "rsqrt.approx.ftz.f32 $0, $1;", "=f,f"(float %0) nounwind readnone alwaysinline ret float %ret } define @__rcp_varying_float() nounwind readnone alwaysinline { %v = extractelement <1 x float> %0, i32 0 %r = call float @__rcp_uniform_float(float %v) %rv = insertelement <1 x float> undef, float %r, i32 0 ret %rv } define @__rsqrt_varying_float() nounwind readnone alwaysinline { %v = extractelement <1 x float> %0, i32 0 %r = call float @__rsqrt_uniform_float(float %v) %rv = insertelement <1 x float> undef, float %r, i32 0 ret %rv } define @__sqrt_varying_float() nounwind readnone alwaysinline { %v = extractelement <1 x float> %0, i32 0 %r = call float @__sqrt_uniform_float(float %v) %rv = insertelement <1 x float> undef, float %r, i32 0 ret %rv } ;; declare double @__sqrt_uniform_double(double) nounwind readnone define double @__sqrt_uniform_double(double) nounwind readonly alwaysinline { %ret = call double @llvm.sqrt.f64(double %0) ret double %ret } define @__sqrt_varying_double() nounwind readnone alwaysinline { %v = extractelement <1 x double> %0, i32 0 %r = call double @__sqrt_uniform_double(double %v) %rv = insertelement <1 x double> undef, double %r, i32 0 ret %rv } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; population count declare i32 @llvm.ctpop.i32(i32) nounwind readnone define i32 @__popcnt_int32(i32) nounwind readonly alwaysinline { %call = call i32 @llvm.ctpop.i32(i32 %0) ret i32 %call ;; %res = tail call i32 asm sideeffect "popc.b32 $0, $1;", "=r,r"(i32 %0) nounwind readnone alwaysinline ;; ret i32 %res } declare i64 @llvm.ctpop.i64(i64) nounwind readnone define i64 @__popcnt_int64(i64) nounwind readonly alwaysinline { %call = call i64 @llvm.ctpop.i64(i64 %0) ret i64 %call } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; binary prefix sum define i64 @__warpBinExclusiveScan(i1 %p) nounwind readonly alwaysinline { entry: %call = call i32 @__ballot_nvptx(i1 zeroext %p) %call1 = call i32 @__popcnt_int32(i32 %call) %call2 = call i32 @__lanemask_lt_nvptx() %and = and i32 %call2, %call %call3 = call i32 @__popcnt_int32(i32 %and) %retval.sroa.1.4.insert.ext.i = zext i32 %call3 to i64 %retval.sroa.1.4.insert.shift.i = shl nuw i64 %retval.sroa.1.4.insert.ext.i, 32 %retval.sroa.0.0.insert.ext.i = zext i32 %call1 to i64 %retval.sroa.0.0.insert.insert.i = or i64 %retval.sroa.1.4.insert.shift.i, %retval.sroa.0.0.insert.ext.i ret i64 %retval.sroa.0.0.insert.insert.i } ctlztz() ; FIXME: need either to wire these up to the 8-wide SVML entrypoints, ; or, use the macro to call the 4-wide ones twice with our 8-wide ; vectors... ;; svml is not support in PTX, will generate linking error include(`svml.m4') svml_stubs(float,f,WIDTH) svml_stubs(double,d,WIDTH) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; reductions define i64 @__movmsk(<1 x i1>) nounwind readnone alwaysinline { %v = extractelement <1 x i1> %0, i32 0 %v64 = zext i1 %v to i64 ret i64 %v64 } define i64 @__movmsk_ptx(<1 x i1>) nounwind readnone alwaysinline { %v = extractelement <1 x i1> %0, i32 0 %v0 = call i32 @__ballot_nvptx(i1 %v) %v64 = zext i32 %v0 to i64 ret i64 %v64 } define i1 @__any(<1 x i1>) nounwind readnone alwaysinline { %v = extractelement <1 x i1> %0, i32 0 %res = call i32 @__ballot_nvptx(i1 %v) %cmp = icmp ne i32 %res, 0 ret i1 %cmp } define i1 @__all(<1 x i1>) nounwind readnone alwaysinline { %v = extractelement <1 x i1> %0, i32 0 %res = call i32 @__ballot_nvptx(i1 %v) %cmp = icmp eq i32 %res, 31 ret i1 %cmp } define i1 @__none(<1 x i1>) nounwind readnone alwaysinline { %v = extractelement <1 x i1> %0, i32 0 %res = call i32 @__ballot_nvptx(i1 %v) %cmp = icmp eq i32 %res, 0 ret i1 %cmp } ;;;;;;;;; reductions i8 define i16 @__reduce_add_int8(<1 x i8> %v) nounwind readnone alwaysinline { %value8 = extractelement <1 x i8> %v, i32 0 %value = zext i8 %value8 to i16 %call = tail call i16 @__shfl_xor_i16_nvptx(i16 %value, i32 16) %call1 = add i16 %call, %value %call.1 = tail call i16 @__shfl_xor_i16_nvptx(i16 %call1, i32 8) %call1.1 = add i16 %call1, %call.1 %call.2 = tail call i16 @__shfl_xor_i16_nvptx(i16 %call1.1, i32 4) %call1.2 = add i16 %call1.1, %call.2 %call.3 = tail call i16 @__shfl_xor_i16_nvptx(i16 %call1.2, i32 2) %call1.3 = add i16 %call1.2, %call.3 %call.4 = tail call i16 @__shfl_xor_i16_nvptx(i16 %call1.3, i32 1) %call1.4 = add i16 %call1.3, %call.4 ret i16 %call1.4 } ;;;;;;;;; reductions i16 define i32 @__reduce_add_int16(<1 x i16> %v) nounwind readnone alwaysinline { %value16 = extractelement <1 x i16> %v, i32 0 %value = zext i16 %value16 to i32 %call = tail call i32 @__shfl_xor_i32_nvptx(i32 %value, i32 16) %call1 = add i32 %call, %value %call.1 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1, i32 8) %call1.1 = add i32 %call1, %call.1 %call.2 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.1, i32 4) %call1.2 = add i32 %call1.1, %call.2 %call.3 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.2, i32 2) %call1.3 = add i32 %call1.2, %call.3 %call.4 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.3, i32 1) %call1.4 = add i32 %call1.3, %call.4 ret i32 %call1.4 } ;;;;;;;;; reductions float define float @__reduce_add_float(<1 x float> %v) nounwind readonly alwaysinline { %value = extractelement <1 x float> %v, i32 0 %call = tail call float @__shfl_xor_float_nvptx(float %value, i32 16) %call1 = fadd float %call, %value %call.1 = tail call float @__shfl_xor_float_nvptx(float %call1, i32 8) %call1.1 = fadd float %call1, %call.1 %call.2 = tail call float @__shfl_xor_float_nvptx(float %call1.1, i32 4) %call1.2 = fadd float %call1.1, %call.2 %call.3 = tail call float @__shfl_xor_float_nvptx(float %call1.2, i32 2) %call1.3 = fadd float %call1.2, %call.3 %call.4 = tail call float @__shfl_xor_float_nvptx(float %call1.3, i32 1) %call1.4 = fadd float %call1.3, %call.4 ret float %call1.4 } define float @__reduce_min_float(<1 x float>) nounwind readnone alwaysinline { %value = extractelement <1 x float> %0, i32 0 %call = tail call float @__shfl_xor_float_nvptx(float %value, i32 16) %call1 = tail call float @__fminf_nvptx(float %value, float %call) %call.1 = tail call float @__shfl_xor_float_nvptx(float %call1, i32 8) %call1.1 = tail call float @__fminf_nvptx(float %call1, float %call.1) %call.2 = tail call float @__shfl_xor_float_nvptx(float %call1.1, i32 4) %call1.2 = tail call float @__fminf_nvptx(float %call1.1, float %call.2) %call.3 = tail call float @__shfl_xor_float_nvptx(float %call1.2, i32 2) %call1.3 = tail call float @__fminf_nvptx(float %call1.2, float %call.3) %call.4 = tail call float @__shfl_xor_float_nvptx(float %call1.3, i32 1) %call1.4 = tail call float @__fminf_nvptx(float %call1.3, float %call.4) ret float %call1.4 } define float @__reduce_max_float(<1 x float>) nounwind readnone alwaysinline { %value = extractelement <1 x float> %0, i32 0 %call = tail call float @__shfl_xor_float_nvptx(float %value, i32 16) %call1 = tail call float @__fmaxf_nvptx(float %value, float %call) %call.1 = tail call float @__shfl_xor_float_nvptx(float %call1, i32 8) %call1.1 = tail call float @__fmaxf_nvptx(float %call1, float %call.1) %call.2 = tail call float @__shfl_xor_float_nvptx(float %call1.1, i32 4) %call1.2 = tail call float @__fmaxf_nvptx(float %call1.1, float %call.2) %call.3 = tail call float @__shfl_xor_float_nvptx(float %call1.2, i32 2) %call1.3 = tail call float @__fmaxf_nvptx(float %call1.2, float %call.3) %call.4 = tail call float @__shfl_xor_float_nvptx(float %call1.3, i32 1) %call1.4 = tail call float @__fmaxf_nvptx(float %call1.3, float %call.4) ret float %call1.4 } ;;;;;;;;; reductions int32 define i32 @__reduce_add_int32(<1 x i32>) nounwind readnone alwaysinline { %value = extractelement <1 x i32> %0, i32 0 %call = tail call i32 @__shfl_xor_i32_nvptx(i32 %value, i32 16) %call1 = add i32 %call, %value %call.1 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1, i32 8) %call1.1 =add i32 %call1, %call.1 %call.2 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.1, i32 4) %call1.2 = add i32 %call1.1, %call.2 %call.3 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.2, i32 2) %call1.3 = add i32 %call1.2, %call.3 %call.4 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.3, i32 1) %call1.4 = add i32 %call1.3, %call.4 ret i32 %call1.4 } define i32 @__reduce_min_int32(<1 x i32>) nounwind readnone alwaysinline { %value = extractelement <1 x i32> %0, i32 0 %call = tail call i32 @__shfl_xor_i32_nvptx(i32 %value, i32 16) %call1 = tail call i32 @__min_i32_signed(i32 %value, i32 %call) %call.1 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1, i32 8) %call1.1 = tail call i32 @__min_i32_signed(i32 %call1, i32 %call.1) %call.2 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.1, i32 4) %call1.2 = tail call i32 @__min_i32_signed(i32 %call1.1, i32 %call.2) %call.3 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.2, i32 2) %call1.3 = tail call i32 @__min_i32_signed(i32 %call1.2, i32 %call.3) %call.4 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.3, i32 1) %call1.4 = tail call i32 @__min_i32_signed(i32 %call1.3, i32 %call.4) ret i32 %call1.4 } define i32 @__reduce_max_int32(<1 x i32>) nounwind readnone alwaysinline { %value = extractelement <1 x i32> %0, i32 0 %call = tail call i32 @__shfl_xor_i32_nvptx(i32 %value, i32 16) %call1 = tail call i32 @__max_i32_signed(i32 %value, i32 %call) %call.1 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1, i32 8) %call1.1 = tail call i32 @__max_i32_signed(i32 %call1, i32 %call.1) %call.2 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.1, i32 4) %call1.2 = tail call i32 @__max_i32_signed(i32 %call1.1, i32 %call.2) %call.3 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.2, i32 2) %call1.3 = tail call i32 @__max_i32_signed(i32 %call1.2, i32 %call.3) %call.4 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.3, i32 1) %call1.4 = tail call i32 @__max_i32_signed(i32 %call1.3, i32 %call.4) ret i32 %call1.4 } ;;;;;;;;; reductions uint32 define i32 @__reduce_min_uint32(<1 x i32>) nounwind readnone alwaysinline { %value = extractelement <1 x i32> %0, i32 0 %call = tail call i32 @__shfl_xor_i32_nvptx(i32 %value, i32 16) %call1 = tail call i32 @__min_i32_unsigned(i32 %value, i32 %call) %call.1 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1, i32 8) %call1.1 = tail call i32 @__min_i32_unsigned(i32 %call1, i32 %call.1) %call.2 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.1, i32 4) %call1.2 = tail call i32 @__min_i32_unsigned(i32 %call1.1, i32 %call.2) %call.3 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.2, i32 2) %call1.3 = tail call i32 @__min_i32_unsigned(i32 %call1.2, i32 %call.3) %call.4 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.3, i32 1) %call1.4 = tail call i32 @__min_i32_unsigned(i32 %call1.3, i32 %call.4) ret i32 %call1.4 } define i32 @__reduce_max_uint32(<1 x i32>) nounwind readnone alwaysinline { %value = extractelement <1 x i32> %0, i32 0 %call = tail call i32 @__shfl_xor_i32_nvptx(i32 %value, i32 16) %call1 = tail call i32 @__max_i32_unsigned(i32 %value, i32 %call) %call.1 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1, i32 8) %call1.1 = tail call i32 @__max_i32_unsigned(i32 %call1, i32 %call.1) %call.2 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.1, i32 4) %call1.2 = tail call i32 @__max_i32_unsigned(i32 %call1.1, i32 %call.2) %call.3 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.2, i32 2) %call1.3 = tail call i32 @__max_i32_unsigned(i32 %call1.2, i32 %call.3) %call.4 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.3, i32 1) %call1.4 = tail call i32 @__max_i32_unsigned(i32 %call1.3, i32 %call.4) ret i32 %call1.4 } ;;;;;;;;; reductions double define double @__reduce_add_double(<1 x double>) nounwind readnone alwaysinline { %value = extractelement <1 x double> %0, i32 0 %call = tail call double @__shfl_xor_double_nvptx(double %value, i32 16) %call1 = fadd double %call, %value %call.1 = tail call double @__shfl_xor_double_nvptx(double %call1, i32 8) %call1.1 = fadd double %call1, %call.1 %call.2 = tail call double @__shfl_xor_double_nvptx(double %call1.1, i32 4) %call1.2 = fadd double %call1.1, %call.2 %call.3 = tail call double @__shfl_xor_double_nvptx(double %call1.2, i32 2) %call1.3 = fadd double %call1.2, %call.3 %call.4 = tail call double @__shfl_xor_double_nvptx(double %call1.3, i32 1) %call1.4 = fadd double %call1.3, %call.4 ret double %call1.4 } define double @__reduce_min_double(<1 x double>) nounwind readnone alwaysinline { %value = extractelement <1 x double> %0, i32 0 %call = tail call double @__shfl_xor_double_nvptx(double %value, i32 16) %call1 = tail call double @__min_double(double %value, double %call) %call.1 = tail call double @__shfl_xor_double_nvptx(double %call1, i32 8) %call1.1 = tail call double @__min_double(double %call1, double %call.1) %call.2 = tail call double @__shfl_xor_double_nvptx(double %call1.1, i32 4) %call1.2 = tail call double @__min_double(double %call1.1, double %call.2) %call.3 = tail call double @__shfl_xor_double_nvptx(double %call1.2, i32 2) %call1.3 = tail call double @__min_double(double %call1.2, double %call.3) %call.4 = tail call double @__shfl_xor_double_nvptx(double %call1.3, i32 1) %call1.4 = tail call double @__min_double(double %call1.3, double %call.4) ret double %call1.4 } define double @__reduce_max_double(<1 x double>) nounwind readnone alwaysinline { %value = extractelement <1 x double> %0, i32 0 %call = tail call double @__shfl_xor_double_nvptx(double %value, i32 16) %call1 = tail call double @__max_double(double %value, double %call) %call.1 = tail call double @__shfl_xor_double_nvptx(double %call1, i32 8) %call1.1 = tail call double @__max_double(double %call1, double %call.1) %call.2 = tail call double @__shfl_xor_double_nvptx(double %call1.1, i32 4) %call1.2 = tail call double @__max_double(double %call1.1, double %call.2) %call.3 = tail call double @__shfl_xor_double_nvptx(double %call1.2, i32 2) %call1.3 = tail call double @__max_double(double %call1.2, double %call.3) %call.4 = tail call double @__shfl_xor_double_nvptx(double %call1.3, i32 1) %call1.4 = tail call double @__max_double(double %call1.3, double %call.4) ret double %call1.4 } ;;;;;;;;; reductions int64 define i64 @__reduce_add_int64(<1 x i64>) nounwind readnone alwaysinline { %value = extractelement <1 x i64> %0, i32 0 %call = tail call i64 @__shfl_xor_i64_nvptx(i64 %value, i32 16) %call1 = add i64 %call, %value %call.1 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1, i32 8) %call1.1 =add i64 %call1, %call.1 %call.2 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.1, i32 4) %call1.2 = add i64 %call1.1, %call.2 %call.3 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.2, i32 2) %call1.3 = add i64 %call1.2, %call.3 %call.4 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.3, i32 1) %call1.4 = add i64 %call1.3, %call.4 ret i64 %call1.4 } define i64 @__reduce_min_int64(<1 x i64>) nounwind readnone alwaysinline { %value = extractelement <1 x i64> %0, i32 0 %call = tail call i64 @__shfl_xor_i64_nvptx(i64 %value, i32 16) %call1 = tail call i64 @__min_i64_signed(i64 %value, i64 %call) %call.1 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1, i32 8) %call1.1 = tail call i64 @__min_i64_signed(i64 %call1, i64 %call.1) %call.2 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.1, i32 4) %call1.2 = tail call i64 @__min_i64_signed(i64 %call1.1, i64 %call.2) %call.3 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.2, i32 2) %call1.3 = tail call i64 @__min_i64_signed(i64 %call1.2, i64 %call.3) %call.4 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.3, i32 1) %call1.4 = tail call i64 @__min_i64_signed(i64 %call1.3, i64 %call.4) ret i64 %call1.4 } define i64 @__reduce_max_int64(<1 x i64>) nounwind readnone alwaysinline { %value = extractelement <1 x i64> %0, i32 0 %call = tail call i64 @__shfl_xor_i64_nvptx(i64 %value, i32 16) %call1 = tail call i64 @__max_i64_signed(i64 %value, i64 %call) %call.1 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1, i32 8) %call1.1 = tail call i64 @__max_i64_signed(i64 %call1, i64 %call.1) %call.2 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.1, i32 4) %call1.2 = tail call i64 @__max_i64_signed(i64 %call1.1, i64 %call.2) %call.3 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.2, i32 2) %call1.3 = tail call i64 @__max_i64_signed(i64 %call1.2, i64 %call.3) %call.4 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.3, i32 1) %call1.4 = tail call i64 @__max_i64_signed(i64 %call1.3, i64 %call.4) ret i64 %call1.4 } define i64 @__reduce_min_uint64(<1 x i64>) nounwind readnone alwaysinline { %value = extractelement <1 x i64> %0, i32 0 %call = tail call i64 @__shfl_xor_i64_nvptx(i64 %value, i32 16) %call1 = tail call i64 @__min_i64_unsigned(i64 %value, i64 %call) %call.1 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1, i32 8) %call1.1 = tail call i64 @__min_i64_unsigned(i64 %call1, i64 %call.1) %call.2 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.1, i32 4) %call1.2 = tail call i64 @__min_i64_unsigned(i64 %call1.1, i64 %call.2) %call.3 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.2, i32 2) %call1.3 = tail call i64 @__min_i64_unsigned(i64 %call1.2, i64 %call.3) %call.4 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.3, i32 1) %call1.4 = tail call i64 @__min_i64_unsigned(i64 %call1.3, i64 %call.4) ret i64 %call1.4 } define i64 @__reduce_max_uint64(<1 x i64>) nounwind readnone alwaysinline { %value = extractelement <1 x i64> %0, i32 0 %call = tail call i64 @__shfl_xor_i64_nvptx(i64 %value, i32 16) %call1 = tail call i64 @__max_i64_unsigned(i64 %value, i64 %call) %call.1 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1, i32 8) %call1.1 = tail call i64 @__max_i64_unsigned(i64 %call1, i64 %call.1) %call.2 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.1, i32 4) %call1.2 = tail call i64 @__max_i64_unsigned(i64 %call1.1, i64 %call.2) %call.3 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.2, i32 2) %call1.3 = tail call i64 @__max_i64_unsigned(i64 %call1.2, i64 %call.3) %call.4 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.3, i32 1) %call1.4 = tail call i64 @__max_i64_unsigned(i64 %call1.3, i64 %call.4) ret i64 %call1.4 } ;;;; reduce equal, must be tested and may fail if data has -1 define i32 @__shfl_reduce_and_step_i32_nvptx(i32, i32) nounwind readnone alwaysinline { %shfl = tail call i32 asm sideeffect "{.reg .u32 r0; .reg .pred p; shfl.bfly.b32 r0|p, $1, $2, 0; @p and.b32 r0, r0, $3; mov.u32 $0, r0; }", "=r,r,r,r"(i32 %0, i32 %1, i32 %0) nounwind readnone alwaysinline ret i32 %shfl } shfl64(__shfl_reduce_and_step, i64) define i32 @__reduce_and_i32(i32 %v0, i1 %mask) nounwind readnone alwaysinline { %v = select i1 %mask, i32 %v0, i32 -1 %s1 = tail call i32 @__shfl_reduce_and_step_i32_nvptx(i32 %v, i32 16); %s2 = tail call i32 @__shfl_reduce_and_step_i32_nvptx(i32 %s1, i32 8); %s3 = tail call i32 @__shfl_reduce_and_step_i32_nvptx(i32 %s2, i32 4); %s4 = tail call i32 @__shfl_reduce_and_step_i32_nvptx(i32 %s3, i32 2); %s5 = tail call i32 @__shfl_reduce_and_step_i32_nvptx(i32 %s4, i32 1); ret i32 %s5 } define i64 @__reduce_and_i64(i64, i1) nounwind readnone alwaysinline { %v = bitcast i64 %0 to <2 x i32> %v0 = extractelement <2 x i32> %v, i32 0 %v1 = extractelement <2 x i32> %v, i32 1 %s0 = call i32 @__reduce_and_i32(i32 %v0, i1 %1) %s1 = call i32 @__reduce_and_i32(i32 %v1, i1 %1) %tmp = insertelement <2 x i32> undef, i32 %s0, i32 0 %res = insertelement <2 x i32> %tmp, i32 %s1, i32 1 %ret = bitcast <2 x i32> %res to i64 ret i64 %ret; } define(`reduce_equal',` define i1 @__reduce_equal_$2(<1 x $1> %v0, $1 * %samevalue, <1 x i1> %maskv) nounwind alwaysinline { entry: %vv = bitcast <1 x $1> %v0 to <1 x $3> %sv = extractelement <1 x $3> %vv, i32 0 %mask = extractelement <1 x i1> %maskv, i32 0 %s = call $3 @__reduce_and_$3($3 %sv, i1 %mask); ;; find last active lane %nact = call i32 @__ballot_nvptx(i1 %mask) %lane1 = call i32 @__count_leading_zeros_i32(i32 %nact) %lane = sub i32 31, %lane1 ;; broadcast result from this lane %r = tail call $3 @__shfl_$3_nvptx($3 %s, i32 %lane) ;; compare result to the original value %c0 = icmp eq $3 %r, %sv %c1 = and i1 %c0, %mask %neq = call i32 @__ballot_nvptx(i1 %c1) %cmp = icmp eq i32 %neq, %nact br i1 %cmp, label %all_equal, label %all_not_equal all_equal: %vstore = bitcast $3 %r to $1 store $1 %vstore, $1* %samevalue; ret i1 true all_not_equal: ret i1 false } ') reduce_equal(i32, int32, i32); reduce_equal(i64, int64, i64); reduce_equal(float, float, i32); reduce_equal(double, double, i64); ;;;;;;;;;;; shuffle define(`shuffle1', ` define <1 x $1> @__shuffle_$1(<1 x $1>, <1 x i32>) nounwind readnone alwaysinline { %val = extractelement <1 x $1> %0, i32 0 %lane = extractelement <1 x i32> %1, i32 0 %rets = tail call $1 @__shfl_$1_nvptx($1 %val, i32 %lane) %retv = insertelement <1 x $1> undef, $1 %rets, i32 0 ret <1 x $1> %retv } ') shuffle1(i8) shuffle1(i16) shuffle1(i32) shuffle1(i64) shuffle1(float) shuffle1(double) define(`shuffle2',` define <1 x $1> @__shuffle2_$1(<1 x $1>, <1 x $1>, <1 x i32>) nounwind readnone alwaysinline { %val1 = extractelement <1 x $1> %0, i32 0 %val2 = extractelement <1 x $1> %1, i32 0 ;; fetch both values %lane = extractelement <1 x i32> %2, i32 0 %lane_mask = and i32 %lane, 31 %ret1 = tail call $1 @__shfl_$1_nvptx($1 %val1, i32 %lane_mask); %ret2 = tail call $1 @__shfl_$1_nvptx($1 %val2, i32 %lane_mask); ;; select the correct one %c = icmp slt i32 %lane, 32 %rets = select i1 %c, $1 %ret1, $1 %ret2 %retv = insertelement <1 x $1> undef, $1 %rets, i32 0 ret <1 x $1> %retv } ') shuffle2(i8) shuffle2(i16) shuffle2(i32) shuffle2(i64) shuffle2(float) shuffle2(double) define(`shift',` define <1 x $1> @__shift_$1(<1 x $1>, i32) nounwind readnone alwaysinline { %val = extractelement <1 x $1> %0, i32 0 %tid = tail call i32 @__tid_x() %lane = and i32 %tid, 31 %src = add i32 %lane, %1 %ret = tail call $1 @__shfl_$1_nvptx($1 %val, i32 %src) %c1 = icmp sge i32 %src, 0 %c2 = icmp slt i32 %src, 32 %c = and i1 %c1, %c2 %rets = select i1 %c, $1 %ret, $1 zeroinitializer %retv = insertelement <1 x $1> undef, $1 %rets, i32 0 ret <1 x $1> %retv } ') shift(i8) shift(i16) shift(i32) shift(i64) shift(float) shift(double) define(`rotate', ` define <1 x $1> @__rotate_$1(<1 x $1>, i32) nounwind readnone alwaysinline { %val = extractelement <1 x $1> %0, i32 0 %tid = tail call i32 @__tid_x() %src = add i32 %tid, %1 %lane = and i32 %src, 31 %rets = tail call $1 @__shfl_$1_nvptx($1 %val, i32 %lane) %retv = insertelement <1 x $1> undef, $1 %rets, i32 0 ret <1 x $1> %retv } ') rotate(i8) rotate(i16) rotate(i32) rotate(i64) rotate(float) rotate(double) define(`broadcast', ` define <1 x $1> @__broadcast_$1(<1 x $1>, i32) nounwind readnone alwaysinline { %val = extractelement <1 x $1> %0, i32 0 %rets = tail call $1 @__shfl_$1_nvptx($1 %val, i32 %1) %retv = insertelement <1 x $1> undef, $1 %rets, i32 0 ret <1 x $1> %retv } ') broadcast(i8) broadcast(i16) broadcast(i32) broadcast(i64) broadcast(float) broadcast(double) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; prefix sum stuff define i32 @__shfl_scan_add_step_i32(i32 %partial, i32 %up_offset) nounwind readnone alwaysinline { %result = tail call i32 asm sideeffect "{.reg .u32 r0; .reg .pred p; shfl.up.b32 r0|p, $1, $2, 0; @p add.u32 r0, r0, $3; mov.u32 $0, r0; }", "=r,r,r,r"(i32 %partial, i32 %up_offset, i32 %partial) nounwind readnone alwaysinline ret i32 %result; } define <1 x i32> @__exclusive_scan_add_i32(<1 x i32>, <1 x i1>) nounwind readnone alwaysinline { %v0 = extractelement <1 x i32> %0, i32 0 %mask = extractelement <1 x i1 > %1, i32 0 %v = select i1 %mask, i32 %v0, i32 0 %s1 = tail call i32 @__shfl_scan_add_step_i32(i32 %v, i32 1); %s2 = tail call i32 @__shfl_scan_add_step_i32(i32 %s1, i32 2); %s3 = tail call i32 @__shfl_scan_add_step_i32(i32 %s2, i32 4); %s4 = tail call i32 @__shfl_scan_add_step_i32(i32 %s3, i32 8); %s5 = tail call i32 @__shfl_scan_add_step_i32(i32 %s4, i32 16); %rets = sub i32 %s5, %v %retv = insertelement <1 x i32> undef, i32 %rets, i32 0 ret <1 x i32> %retv } ;; define i32 @__shfl_scan_or_step_i32(i32 %partial, i32 %up_offset) nounwind readnone alwaysinline { %result = tail call i32 asm sideeffect "{.reg .u32 r0; .reg .pred p; shfl.up.b32 r0|p, $1, $2, 0; @p or.b32 r0, r0, $3; mov.u32 $0, r0; }", "=r,r,r,r"(i32 %partial, i32 %up_offset, i32 %partial) nounwind readnone alwaysinline ret i32 %result; } define <1 x i32> @__exclusive_scan_or_i32(<1 x i32>, <1 x i1>) nounwind readnone alwaysinline { %v0 = extractelement <1 x i32> %0, i32 0 %mask = extractelement <1 x i1 > %1, i32 0 %v1 = select i1 %mask, i32 %v0, i32 0 ;; shfl-up by one for exclusive scan %v = tail call i32 asm sideeffect "{.reg .u32 r0; .reg .pred p; shfl.up.b32 r0|p, $1, 1, 0; @!p mov.u32 r0, 0; mov.u32 $0, r0; }","=r,r"(i32 %v1); %s1 = tail call i32 @__shfl_scan_or_step_i32(i32 %v, i32 1); %s2 = tail call i32 @__shfl_scan_or_step_i32(i32 %s1, i32 2); %s3 = tail call i32 @__shfl_scan_or_step_i32(i32 %s2, i32 4); %s4 = tail call i32 @__shfl_scan_or_step_i32(i32 %s3, i32 8); %s5 = tail call i32 @__shfl_scan_or_step_i32(i32 %s4, i32 16); %retv = insertelement <1 x i32> undef, i32 %s5, i32 0 ret <1 x i32> %retv } ;; define i32 @__shfl_scan_and_step_i32(i32 %partial, i32 %up_offset) nounwind readnone alwaysinline { %result = tail call i32 asm sideeffect "{.reg .u32 r0; .reg .pred p; shfl.up.b32 r0|p, $1, $2, 0; @p and.b32 r0, r0, $3; mov.u32 $0, r0; }", "=r,r,r,r"(i32 %partial, i32 %up_offset, i32 %partial) nounwind readnone alwaysinline ret i32 %result; } define <1 x i32> @__exclusive_scan_and_i32(<1 x i32>, <1 x i1>) nounwind readnone alwaysinline { %v0 = extractelement <1 x i32> %0, i32 0 %mask = extractelement <1 x i1 > %1, i32 0 %v1 = select i1 %mask, i32 %v0, i32 -1 ;; shfl-up by one for exclusive scan %v = tail call i32 asm sideeffect "{.reg .u32 r0; .reg .pred p; shfl.up.b32 r0|p, $1, 1, 0; @!p mov.u32 r0, -1; mov.u32 $0, r0; }","=r,r"(i32 %v1); %s1 = tail call i32 @__shfl_scan_and_step_i32(i32 %v, i32 1); %s2 = tail call i32 @__shfl_scan_and_step_i32(i32 %s1, i32 2); %s3 = tail call i32 @__shfl_scan_and_step_i32(i32 %s2, i32 4); %s4 = tail call i32 @__shfl_scan_and_step_i32(i32 %s3, i32 8); %s5 = tail call i32 @__shfl_scan_and_step_i32(i32 %s4, i32 16); %retv = insertelement <1 x i32> undef, i32 %s5, i32 0 ret <1 x i32> %retv } define float @__shfl_scan_add_step_float(float %partial, i32 %up_offset) nounwind readnone alwaysinline { %result = tail call float asm sideeffect "{.reg .f32 f0; .reg .pred p; shfl.up.b32 f0|p, $1, $2, 0; @p add.f32 f0, f0, $3; mov.f32 $0, f0; }", "=f,f,r,f"(float %partial, i32 %up_offset, float %partial) nounwind readnone alwaysinline ret float %result; } define <1 x float> @__exclusive_scan_add_float(<1 x float>, <1 x i1>) nounwind readnone alwaysinline { %v0 = extractelement <1 x float> %0, i32 0 %mask = extractelement <1 x i1 > %1, i32 0 %v = select i1 %mask, float %v0, float zeroinitializer %s1 = tail call float @__shfl_scan_add_step_float(float %v, i32 1); %s2 = tail call float @__shfl_scan_add_step_float(float %s1, i32 2); %s3 = tail call float @__shfl_scan_add_step_float(float %s2, i32 4); %s4 = tail call float @__shfl_scan_add_step_float(float %s3, i32 8); %s5 = tail call float @__shfl_scan_add_step_float(float %s4, i32 16); %rets = fsub float %s5, %v %retv = insertelement <1 x float> undef, float %rets, i32 0 ret <1 x float> %retv } define double @__shfl_scan_add_step_double(double %partial, i32 %up_offset) nounwind readnone alwaysinline { %result = tail call double asm sideeffect "{.reg .s32 r<10>; .reg .f64 fd0; .reg .pred p; .reg .b32 temp; mov.b64 {r1,temp}, $1; mov.b64 {temp,r2}, $1; shfl.up.b32 r3, r1, $2, 0; shfl.up.b32 r4|p, r2, $2, 0; mov.b64 fd0, {r3,r4}; @p add.f64 fd0, fd0, $3; mov.f64 $0, fd0; }", "=d,d,r,d"(double %partial, i32 %up_offset, double %partial) nounwind readnone alwaysinline ret double %result; } define <1 x double> @__exclusive_scan_add_double(<1 x double>, <1 x i1>) nounwind readnone alwaysinline { %v0 = extractelement <1 x double> %0, i32 0 %mask = extractelement <1 x i1 > %1, i32 0 %v = select i1 %mask, double %v0, double zeroinitializer %s1 = tail call double @__shfl_scan_add_step_double(double %v, i32 1); %s2 = tail call double @__shfl_scan_add_step_double(double %s1, i32 2); %s3 = tail call double @__shfl_scan_add_step_double(double %s2, i32 4); %s4 = tail call double @__shfl_scan_add_step_double(double %s3, i32 8); %s5 = tail call double @__shfl_scan_add_step_double(double %s4, i32 16); %rets = fsub double %s5, %v %retv = bitcast double %rets to <1 x double> ret <1 x double> %retv } define i64 @__shfl_scan_add_step_i64(i64 %partial, i32 %up_offset) nounwind readnone alwaysinline { %result = tail call i64 asm sideeffect "{.reg .s32 r<10>; .reg .s64 rl0; .reg .pred p; .reg .b32 temp; mov.b64 {r1,temp}, $1; mov.b64 {temp,r2}, $1; shfl.up.b32 r3, r1, $2, 0; shfl.up.b32 r4|p, r2, $2, 0; mov.b64 rl0, {r3,r4}; @p add.s64 rl0, rl0, $3; mov.s64 $0, rl0; }", "=l,l,r,l"(i64 %partial, i32 %up_offset, i64 %partial) nounwind readnone alwaysinline ret i64 %result; } define <1 x i64> @__exclusive_scan_add_i64(<1 x i64>, <1 x i1>) nounwind readnone alwaysinline { %v0 = extractelement <1 x i64> %0, i32 0 %mask = extractelement <1 x i1 > %1, i32 0 %v = select i1 %mask, i64 %v0, i64 zeroinitializer %s1 = tail call i64 @__shfl_scan_add_step_i64(i64 %v, i32 1); %s2 = tail call i64 @__shfl_scan_add_step_i64(i64 %s1, i32 2); %s3 = tail call i64 @__shfl_scan_add_step_i64(i64 %s2, i32 4); %s4 = tail call i64 @__shfl_scan_add_step_i64(i64 %s3, i32 8); %s5 = tail call i64 @__shfl_scan_add_step_i64(i64 %s4, i32 16); %rets = sub i64 %s5, %v %retv = bitcast i64 %rets to <1 x i64> ret <1 x i64> %retv } define(`exclusive_scan_i64',` define <1 x i64> @__exclusive_scan_$1_i64(<1 x i64>, <1 x i1>) nounwind readnone alwaysinline { %v = bitcast <1 x i64> %0 to <2 x i32> %v0 = extractelement <2 x i32> %v, i32 0 %v1 = extractelement <2 x i32> %v, i32 1 %inp0 = bitcast i32 %v0 to <1 x i32> %inp1 = bitcast i32 %v1 to <1 x i32> %res0 = call <1 x i32> @__exclusive_scan_$1_i32(<1 x i32> %inp0, <1 x i1> %1); %res1 = call <1 x i32> @__exclusive_scan_$1_i32(<1 x i32> %inp1, <1 x i1> %1); %r0 = bitcast <1 x i32> %res0 to i32 %r1 = bitcast <1 x i32> %res1 to i32 %ret0 = insertelement <2 x i32> undef, i32 %r0, i32 0 %ret1 = insertelement <2 x i32> %ret0, i32 %r1, i32 1 %ret = bitcast <2 x i32> %ret1 to <1 x i64> ret <1 x i64> %ret } ') exclusive_scan_i64(or) exclusive_scan_i64(and) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; unaligned loads/loads+broadcasts masked_load(i8, 1) masked_load(i16, 2) masked_load(i32, 4) masked_load(float, 4) masked_load(i64, 8) masked_load(double, 8) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; masked store gen_masked_store(i8) gen_masked_store(i16) gen_masked_store(i32) gen_masked_store(float) gen_masked_store(i64) gen_masked_store(double) define void @__masked_store_blend_i8(* nocapture, , ) nounwind alwaysinline { %v = load * %0 %v1 = select %2, %1, %v store %v1, * %0 ret void } define void @__masked_store_blend_i16(* nocapture, , ) nounwind alwaysinline { %v = load * %0 %v1 = select %2, %1, %v store %v1, * %0 ret void } define void @__masked_store_blend_i32(* nocapture, , ) nounwind alwaysinline { %v = load * %0 %v1 = select %2, %1, %v store %v1, * %0 ret void } define void @__masked_store_blend_float(* nocapture, , ) nounwind alwaysinline { %v = load * %0 %v1 = select %2, %1, %v store %v1, * %0 ret void } define void @__masked_store_blend_i64(* nocapture, , ) nounwind alwaysinline { %v = load * %0 %v1 = select %2, %1, %v store %v1, * %0 ret void } define void @__masked_store_blend_double(* nocapture, , ) nounwind alwaysinline { %v = load * %0 %v1 = select %2, %1, %v store %v1, * %0 ret void } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; gather/scatter ; define these with the macros from stdlib.m4 gen_gather_factored(i8) gen_gather_factored(i16) gen_gather_factored(i32) gen_gather_factored(float) gen_gather_factored(i64) gen_gather_factored(double) gen_scatter(i8) gen_scatter(i16) gen_scatter(i32) gen_scatter(float) gen_scatter(i64) gen_scatter(double) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; prefetch define_prefetches() ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; int8/int16 builtins define_avgs() ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; vector ops define(`extract_insert',` define $1 @__extract_$2(<1 x $1>, i32) nounwind readnone alwaysinline { %val = extractelement <1 x $1> %0, i32 0 %extract = tail call $1 @__shfl_$1_nvptx($1 %val, i32 %1) ret $1 %extract } define <1 x $1> @__insert_$2(<1 x $1>, i32, $1) nounwind readnone alwaysinline { %orig = extractelement <1 x $1> %0, i32 0 %lane = call i32 @__laneidx() %c = icmp eq i32 %lane, %1 %val = select i1 %c, $1 %2, $1 %orig %insert = insertelement <1 x $1> %0, $1 %val, i32 0 ret <1 x $1> %insert } ') extract_insert(i8, int8) extract_insert(i16, int16) extract_insert(i32, int32) extract_insert(i64, int64) extract_insert(float, float) extract_insert(double, double) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; assert declare void @__assertfail(i64,i64,i32,i64,i64) noreturn; declare i32 @vprintf(i64,i64) define i32 @__puts_nvptx(i8*) alwaysinline { %str = ptrtoint i8* %0 to i64 %parm = or i64 0, 0 %call = call i32 @vprintf(i64 %str, i64 %parm) ;; %cr = alloca <3 x i8> ;; store <3 x i8> , <3 x i8>* %cr ;; %cr1 = ptrtoint <3 x i8>* %cr to i64 ;; %call1 = call i32 @vprintf(i64 %cr1, i64 %parm) ret i32 %call; } define void @__abort_nvptx(i8* %str) noreturn { %tmp1 = alloca <3 x i8> store <3 x i8> , <3 x i8>* %tmp1 %tmp2 = alloca <2 x i8> store <2 x i8> , <2 x i8>* %tmp2 %param1 = ptrtoint <2 x i8>* %tmp2 to i64 %param3 = or i32 0, 0 %string = ptrtoint i8* %str to i64 %param4 = ptrtoint <3 x i8>* %tmp1 to i64 %param5 = or i64 1, 1 call void @__assertfail(i64 %param1, i64 %string, i32 %param3, i64 %param4, i64 %param5); ret void } define void @__do_assert_uniform(i8 *%str, i1 %test, %mask) { br i1 %test, label %ok, label %fail fail: %lane = call i32 @__laneidx() %cmp = icmp eq i32 %lane, 0 br i1 %cmp, label %fail_print, label %fail_void; fail_print: call void @__abort_nvptx(i8* %str) noreturn unreachable fail_void: unreachable ok: ret void } define void @__do_assert_varying(i8 *%str, %test, %mask) { %nottest = xor %test, < forloop(i, 1, eval(WIDTH-1), `MASK -1, ') MASK -1 > %nottest_and_mask = and %nottest, %mask %mm = call i64 @__movmsk( %nottest_and_mask) %all_ok = icmp eq i64 %mm, 0 br i1 %all_ok, label %ok, label %fail fail: call void @__abort_nvptx(i8* %str) noreturn unreachable ok: ret void } define i64 @__clock() nounwind alwaysinline { %r = call i64 asm sideeffect "mov.b64 $0, %clock64;", "=l"(); ret i64 %r }