;; Copyright (c) 2010-2011, Intel Corporation ;; All rights reserved. ;; ;; Redistribution and use in source and binary forms, with or without ;; modification, are permitted provided that the following conditions are ;; met: ;; ;; * Redistributions of source code must retain the above copyright ;; notice, this list of conditions and the following disclaimer. ;; ;; * Redistributions in binary form must reproduce the above copyright ;; notice, this list of conditions and the following disclaimer in the ;; documentation and/or other materials provided with the distribution. ;; ;; * Neither the name of Intel Corporation nor the names of its ;; contributors may be used to endorse or promote products derived from ;; this software without specific prior written permission. ;; ;; ;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;; This file declares implementations of various stdlib builtins that ;; only require SSE version 1 and 2 functionality; this file, in turn ;; is then included by builtins-sse2.ll and builtins-sse4.ll to provide ;; those definitions for them. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; int64minmax(4) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rcp declare <4 x float> @llvm.x86.sse.rcp.ps(<4 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone define internal <4 x float> @__rcp_varying_float(<4 x float>) nounwind readonly alwaysinline { %call = call <4 x float> @llvm.x86.sse.rcp.ps(<4 x float> %0) ; do one N-R iteration to improve precision ; float iv = __rcp_v(v); ; return iv * (2. - v * iv); %v_iv = fmul <4 x float> %0, %call %two_minus = fsub <4 x float> , %v_iv %iv_mul = fmul <4 x float> %call, %two_minus ret <4 x float> %iv_mul } define internal float @__rcp_uniform_float(float) nounwind readonly alwaysinline { ; do the rcpss call %vecval = insertelement <4 x float> undef, float %0, i32 0 %call = call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %vecval) %scall = extractelement <4 x float> %call, i32 0 ; do one N-R iteration to improve precision, as above %v_iv = fmul float %0, %scall %two_minus = fsub float 2., %v_iv %iv_mul = fmul float %scall, %two_minus ret float %iv_mul } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; rsqrt declare <4 x float> @llvm.x86.sse.rsqrt.ps(<4 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone define internal <4 x float> @__rsqrt_varying_float(<4 x float> %v) nounwind readonly alwaysinline { ; float is = __rsqrt_v(v); %is = call <4 x float> @llvm.x86.sse.rsqrt.ps(<4 x float> %v) ; Newton-Raphson iteration to improve precision ; return 0.5 * is * (3. - (v * is) * is); %v_is = fmul <4 x float> %v, %is %v_is_is = fmul <4 x float> %v_is, %is %three_sub = fsub <4 x float> , %v_is_is %is_mul = fmul <4 x float> %is, %three_sub %half_scale = fmul <4 x float> , %is_mul ret <4 x float> %half_scale } define internal float @__rsqrt_uniform_float(float) nounwind readonly alwaysinline { ; uniform float is = extract(__rsqrt_u(v), 0); %v = insertelement <4 x float> undef, float %0, i32 0 %vis = call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %v) %is = extractelement <4 x float> %vis, i32 0 ; Newton-Raphson iteration to improve precision ; return 0.5 * is * (3. - (v * is) * is); %v_is = fmul float %0, %is %v_is_is = fmul float %v_is, %is %three_sub = fsub float 3., %v_is_is %is_mul = fmul float %is, %three_sub %half_scale = fmul float 0.5, %is_mul ret float %half_scale } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; sqrt declare <4 x float> @llvm.x86.sse.sqrt.ps(<4 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone define internal <4 x float> @__sqrt_varying_float(<4 x float>) nounwind readonly alwaysinline { %call = call <4 x float> @llvm.x86.sse.sqrt.ps(<4 x float> %0) ret <4 x float> %call } define internal float @__sqrt_uniform_float(float) nounwind readonly alwaysinline { sse_unary_scalar(ret, 4, float, @llvm.x86.sse.sqrt.ss, %0) ret float %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; fast math mode declare void @llvm.x86.sse.stmxcsr(i8 *) nounwind declare void @llvm.x86.sse.ldmxcsr(i8 *) nounwind define internal void @__fastmath() nounwind alwaysinline { %ptr = alloca i32 %ptr8 = bitcast i32 * %ptr to i8 * call void @llvm.x86.sse.stmxcsr(i8 * %ptr8) %oldval = load i32 *%ptr ; turn on DAZ (64)/FTZ (32768) -> 32832 %update = or i32 %oldval, 32832 store i32 %update, i32 *%ptr call void @llvm.x86.sse.ldmxcsr(i8 * %ptr8) ret void } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; svml stuff declare <4 x float> @__svml_sinf4(<4 x float>) nounwind readnone declare <4 x float> @__svml_cosf4(<4 x float>) nounwind readnone declare <4 x float> @__svml_sincosf4(<4 x float> *, <4 x float>) nounwind readnone declare <4 x float> @__svml_tanf4(<4 x float>) nounwind readnone declare <4 x float> @__svml_atanf4(<4 x float>) nounwind readnone declare <4 x float> @__svml_atan2f4(<4 x float>, <4 x float>) nounwind readnone declare <4 x float> @__svml_expf4(<4 x float>) nounwind readnone declare <4 x float> @__svml_logf4(<4 x float>) nounwind readnone declare <4 x float> @__svml_powf4(<4 x float>, <4 x float>) nounwind readnone define internal <4 x float> @__svml_sin(<4 x float>) nounwind readnone alwaysinline { %ret = call <4 x float> @__svml_sinf4(<4 x float> %0) ret <4 x float> %ret } define internal <4 x float> @__svml_cos(<4 x float>) nounwind readnone alwaysinline { %ret = call <4 x float> @__svml_cosf4(<4 x float> %0) ret <4 x float> %ret } define internal void @__svml_sincos(<4 x float>, <4 x float> *, <4 x float> *) nounwind readnone alwaysinline { %s = call <4 x float> @__svml_sincosf4(<4 x float> * %2, <4 x float> %0) store <4 x float> %s, <4 x float> * %1 ret void } define internal <4 x float> @__svml_tan(<4 x float>) nounwind readnone alwaysinline { %ret = call <4 x float> @__svml_tanf4(<4 x float> %0) ret <4 x float> %ret } define internal <4 x float> @__svml_atan(<4 x float>) nounwind readnone alwaysinline { %ret = call <4 x float> @__svml_atanf4(<4 x float> %0) ret <4 x float> %ret } define internal <4 x float> @__svml_atan2(<4 x float>, <4 x float>) nounwind readnone alwaysinline { %ret = call <4 x float> @__svml_atan2f4(<4 x float> %0, <4 x float> %1) ret <4 x float> %ret } define internal <4 x float> @__svml_exp(<4 x float>) nounwind readnone alwaysinline { %ret = call <4 x float> @__svml_expf4(<4 x float> %0) ret <4 x float> %ret } define internal <4 x float> @__svml_log(<4 x float>) nounwind readnone alwaysinline { %ret = call <4 x float> @__svml_logf4(<4 x float> %0) ret <4 x float> %ret } define internal <4 x float> @__svml_pow(<4 x float>, <4 x float>) nounwind readnone alwaysinline { %ret = call <4 x float> @__svml_powf4(<4 x float> %0, <4 x float> %1) ret <4 x float> %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; float min/max declare <4 x float> @llvm.x86.sse.max.ps(<4 x float>, <4 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.max.ss(<4 x float>, <4 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.min.ps(<4 x float>, <4 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.min.ss(<4 x float>, <4 x float>) nounwind readnone define internal <4 x float> @__max_varying_float(<4 x float>, <4 x float>) nounwind readonly alwaysinline { %call = call <4 x float> @llvm.x86.sse.max.ps(<4 x float> %0, <4 x float> %1) ret <4 x float> %call } define internal float @__max_uniform_float(float, float) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, float, @llvm.x86.sse.max.ss, %0, %1) ret float %ret } define internal <4 x float> @__min_varying_float(<4 x float>, <4 x float>) nounwind readonly alwaysinline { %call = call <4 x float> @llvm.x86.sse.min.ps(<4 x float> %0, <4 x float> %1) ret <4 x float> %call } define internal float @__min_uniform_float(float, float) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, float, @llvm.x86.sse.min.ss, %0, %1) ret float %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; double precision sqrt declare <2 x double> @llvm.x86.sse2.sqrt.pd(<2 x double>) nounwind readnone declare <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double>) nounwind readnone define internal <4 x double> @__sqrt_varying_double(<4 x double>) nounwind alwaysinline { unary2to4(ret, double, @llvm.x86.sse2.sqrt.pd, %0) ret <4 x double> %ret } define internal double @__sqrt_uniform_double(double) nounwind alwaysinline { sse_unary_scalar(ret, 2, double, @llvm.x86.sse2.sqrt.sd, %0) ret double %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; double precision min/max declare <2 x double> @llvm.x86.sse2.max.pd(<2 x double>, <2 x double>) nounwind readnone declare <2 x double> @llvm.x86.sse2.max.sd(<2 x double>, <2 x double>) nounwind readnone declare <2 x double> @llvm.x86.sse2.min.pd(<2 x double>, <2 x double>) nounwind readnone declare <2 x double> @llvm.x86.sse2.min.sd(<2 x double>, <2 x double>) nounwind readnone define internal <4 x double> @__min_varying_double(<4 x double>, <4 x double>) nounwind readnone { binary2to4(ret, double, @llvm.x86.sse2.min.pd, %0, %1) ret <4 x double> %ret } define internal double @__min_uniform_double(double, double) nounwind readnone { sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.min.sd, %0, %1) ret double %ret } define internal <4 x double> @__max_varying_double(<4 x double>, <4 x double>) nounwind readnone { binary2to4(ret, double, @llvm.x86.sse2.max.pd, %0, %1) ret <4 x double> %ret } define internal double @__max_uniform_double(double, double) nounwind readnone { sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.max.sd, %0, %1) ret double %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; horizontal ops / reductions declare i32 @llvm.x86.sse.movmsk.ps(<4 x float>) nounwind readnone define internal i32 @__movmsk(<4 x i32>) nounwind readnone alwaysinline { %floatmask = bitcast <4 x i32> %0 to <4 x float> %v = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %floatmask) nounwind readnone ret i32 %v } define internal float @__reduce_min_float(<4 x float>) nounwind readnone { reduce4(float, @__min_varying_float, @__min_uniform_float) } define internal float @__reduce_max_float(<4 x float>) nounwind readnone { reduce4(float, @__max_varying_float, @__max_uniform_float) } define internal i32 @__reduce_add_int32(<4 x i32> %v) nounwind readnone { %v1 = shufflevector <4 x i32> %v, <4 x i32> undef, <4 x i32> %m1 = add <4 x i32> %v1, %v %m1a = extractelement <4 x i32> %m1, i32 0 %m1b = extractelement <4 x i32> %m1, i32 1 %sum = add i32 %m1a, %m1b ret i32 %sum } define internal i32 @__reduce_min_int32(<4 x i32>) nounwind readnone { reduce4(i32, @__min_varying_int32, @__min_uniform_int32) } define internal i32 @__reduce_max_int32(<4 x i32>) nounwind readnone { reduce4(i32, @__max_varying_int32, @__max_uniform_int32) } define internal i32 @__reduce_add_uint32(<4 x i32> %v) nounwind readnone { %r = call i32 @__reduce_add_int32(<4 x i32> %v) ret i32 %r } define internal i32 @__reduce_min_uint32(<4 x i32>) nounwind readnone { reduce4(i32, @__min_varying_uint32, @__min_uniform_uint32) } define internal i32 @__reduce_max_uint32(<4 x i32>) nounwind readnone { reduce4(i32, @__max_varying_uint32, @__max_uniform_uint32) } define internal double @__reduce_add_double(<4 x double>) nounwind readnone { %v0 = shufflevector <4 x double> %0, <4 x double> undef, <2 x i32> %v1 = shufflevector <4 x double> %0, <4 x double> undef, <2 x i32> %sum = fadd <2 x double> %v0, %v1 %e0 = extractelement <2 x double> %sum, i32 0 %e1 = extractelement <2 x double> %sum, i32 1 %m = fadd double %e0, %e1 ret double %m } define internal double @__reduce_min_double(<4 x double>) nounwind readnone { reduce4(double, @__min_varying_double, @__min_uniform_double) } define internal double @__reduce_max_double(<4 x double>) nounwind readnone { reduce4(double, @__max_varying_double, @__max_uniform_double) } define internal i64 @__reduce_add_int64(<4 x i64>) nounwind readnone { %v0 = shufflevector <4 x i64> %0, <4 x i64> undef, <2 x i32> %v1 = shufflevector <4 x i64> %0, <4 x i64> undef, <2 x i32> %sum = add <2 x i64> %v0, %v1 %e0 = extractelement <2 x i64> %sum, i32 0 %e1 = extractelement <2 x i64> %sum, i32 1 %m = add i64 %e0, %e1 ret i64 %m } define internal i64 @__reduce_min_int64(<4 x i64>) nounwind readnone { reduce4(i64, @__min_varying_int64, @__min_uniform_int64) } define internal i64 @__reduce_max_int64(<4 x i64>) nounwind readnone { reduce4(i64, @__max_varying_int64, @__max_uniform_int64) } define internal i64 @__reduce_min_uint64(<4 x i64>) nounwind readnone { reduce4(i64, @__min_varying_uint64, @__min_uniform_uint64) } define internal i64 @__reduce_max_uint64(<4 x i64>) nounwind readnone { reduce4(i64, @__max_varying_uint64, @__max_uniform_uint64) } reduce_equal(4) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; masked store masked_store_blend_8_16_by_4() gen_masked_store(4, i8, 8) gen_masked_store(4, i16, 16) gen_masked_store(4, i32, 32) gen_masked_store(4, i64, 64) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; unaligned loads/loads+broadcasts load_and_broadcast(4, i8, 8) load_and_broadcast(4, i16, 16) load_and_broadcast(4, i32, 32) load_and_broadcast(4, i64, 64) load_masked(4, i8, 8, 1) load_masked(4, i16, 16, 2) load_masked(4, i32, 32, 4) load_masked(4, i64, 64, 8) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; gather/scatter ; define these with the macros from stdlib.m4 gen_gather(4, i8) gen_gather(4, i16) gen_gather(4, i32) gen_gather(4, i64) gen_scatter(4, i8) gen_scatter(4, i16) gen_scatter(4, i32) gen_scatter(4, i64)