;; Copyright (c) 2010-2011, Intel Corporation ;; All rights reserved. ;; ;; Redistribution and use in source and binary forms, with or without ;; modification, are permitted provided that the following conditions are ;; met: ;; ;; * Redistributions of source code must retain the above copyright ;; notice, this list of conditions and the following disclaimer. ;; ;; * Redistributions in binary form must reproduce the above copyright ;; notice, this list of conditions and the following disclaimer in the ;; documentation and/or other materials provided with the distribution. ;; ;; * Neither the name of Intel Corporation nor the names of its ;; contributors may be used to endorse or promote products derived from ;; this software without specific prior written permission. ;; ;; ;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; *** Untested *** AVX target implementation. ;; ;; The LLVM AVX code generator is incomplete, so the ispc AVX target ;; hasn't yet been tested. There is therefore a higher-than-normal ;; chance that there are bugs in the code in this file. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Basic 8-wide definitions stdlib_core(8) packed_load_and_store(8) int64minmax(8) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rcp declare <8 x float> @llvm.x86.avx.rcp.ps.256(<8 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone define internal <8 x float> @__rcp_varying_float(<8 x float>) nounwind readonly alwaysinline { ; float iv = __rcp_v(v); ; return iv * (2. - v * iv); %call = call <8 x float> @llvm.x86.avx.rcp.ps.256(<8 x float> %0) ; do one N-R iteration %v_iv = fmul <8 x float> %0, %call %two_minus = fsub <8 x float> , %v_iv %iv_mul = fmul <8 x float> %call, %two_minus ret <8 x float> %iv_mul } define internal float @__rcp_uniform_float(float) nounwind readonly alwaysinline { ; uniform float iv = extract(__rcp_u(v), 0); ; return iv * (2. - v * iv); %vecval = insertelement <4 x float> undef, float %0, i32 0 %call = call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %vecval) %scall = extractelement <4 x float> %call, i32 0 ; do one N-R iteration %v_iv = fmul float %0, %scall %two_minus = fsub float 2., %v_iv %iv_mul = fmul float %scall, %two_minus ret float %iv_mul } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rounding floats declare <8 x float> @llvm.x86.avx.round.ps.256(<8 x float>, i32) nounwind readnone declare <4 x float> @llvm.x86.sse.round.ss(<4 x float>, <4 x float>, i32) nounwind readnone define internal <8 x float> @__round_varying_float(<8 x float>) nounwind readonly alwaysinline { ; roundps, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8 %call = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %0, i32 8) ret <8 x float> %call } define internal float @__round_uniform_float(float) nounwind readonly alwaysinline { ; roundss, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8 ; the roundss intrinsic is a total mess--docs say: ; ; __m128 _mm_round_ss (__m128 a, __m128 b, const int c) ; ; b is a 128-bit parameter. The lowest 32 bits are the result of the rounding function ; on b0. The higher order 96 bits are copied directly from input parameter a. The ; return value is described by the following equations: ; ; r0 = RND(b0) ; r1 = a1 ; r2 = a2 ; r3 = a3 ; ; It doesn't matter what we pass as a, since we only need the r0 value ; here. So we pass the same register for both. %xi = insertelement <4 x float> undef, float %0, i32 0 %xr = call <4 x float> @llvm.x86.sse.round.ss(<4 x float> %xi, <4 x float> %xi, i32 8) %rs = extractelement <4 x float> %xr, i32 0 ret float %rs } define internal <8 x float> @__floor_varying_float(<8 x float>) nounwind readonly alwaysinline { ; roundps, round down 0b01 | don't signal precision exceptions 0b1000 = 9 %call = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %0, i32 9) ret <8 x float> %call } define internal float @__floor_uniform_float(float) nounwind readonly alwaysinline { ; see above for round_ss instrinsic discussion... %xi = insertelement <4 x float> undef, float %0, i32 0 ; roundps, round down 0b01 | don't signal precision exceptions 0b1000 = 9 %xr = call <4 x float> @llvm.x86.sse.round.ss(<4 x float> %xi, <4 x float> %xi, i32 9) %rs = extractelement <4 x float> %xr, i32 0 ret float %rs } define internal <8 x float> @__ceil_varying_float(<8 x float>) nounwind readonly alwaysinline { ; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10 %call = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %0, i32 10) ret <8 x float> %call } define internal float @__ceil_uniform_float(float) nounwind readonly alwaysinline { ; see above for round_ss instrinsic discussion... %xi = insertelement <4 x float> undef, float %0, i32 0 ; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10 %xr = call <4 x float> @llvm.x86.sse.round.ss(<4 x float> %xi, <4 x float> %xi, i32 10) %rs = extractelement <4 x float> %xr, i32 0 ret float %rs } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rounding doubles declare <4 x double> @llvm.x86.avx.round.pd.256(<4 x double>, i32) nounwind readnone declare <2 x double> @llvm.x86.sse41.round.sd(<2 x double>, <2 x double>, i32) nounwind readnone define internal <8 x double> @__round_varying_double(<8 x double>) nounwind readonly alwaysinline { round4to8double(%0, 8) } define internal double @__round_uniform_double(double) nounwind readonly alwaysinline { %xi = insertelement <2 x double> undef, double %0, i32 0 %xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 8) %rs = extractelement <2 x double> %xr, i32 0 ret double %rs } define internal <8 x double> @__floor_varying_double(<8 x double>) nounwind readonly alwaysinline { ; roundpd, round down 0b01 | don't signal precision exceptions 0b1000 = 9 round4to8double(%0, 9) } define internal double @__floor_uniform_double(double) nounwind readonly alwaysinline { ; see above for round_ss instrinsic discussion... %xi = insertelement <2 x double> undef, double %0, i32 0 ; roundpd, round down 0b01 | don't signal precision exceptions 0b1000 = 9 %xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 9) %rs = extractelement <2 x double> %xr, i32 0 ret double %rs } define internal <8 x double> @__ceil_varying_double(<8 x double>) nounwind readonly alwaysinline { ; roundpd, round up 0b10 | don't signal precision exceptions 0b1000 = 10 round4to8double(%0, 10) } define internal double @__ceil_uniform_double(double) nounwind readonly alwaysinline { ; see above for round_ss instrinsic discussion... %xi = insertelement <2 x double> undef, double %0, i32 0 ; roundps, round up 0b10 | don't signal precision exceptions 0b1000 = 10 %xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 10) %rs = extractelement <2 x double> %xr, i32 0 ret double %rs } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rsqrt declare <8 x float> @llvm.x86.avx.rsqrt.ps.256(<8 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone define internal <8 x float> @__rsqrt_varying_float(<8 x float> %v) nounwind readonly alwaysinline { ; float is = __rsqrt_v(v); %is = call <8 x float> @llvm.x86.avx.rsqrt.ps.256(<8 x float> %v) ; return 0.5 * is * (3. - (v * is) * is); %v_is = fmul <8 x float> %v, %is %v_is_is = fmul <8 x float> %v_is, %is %three_sub = fsub <8 x float> , %v_is_is %is_mul = fmul <8 x float> %is, %three_sub %half_scale = fmul <8 x float> , %is_mul ret <8 x float> %half_scale } define internal float @__rsqrt_uniform_float(float) nounwind readonly alwaysinline { ; uniform float is = extract(__rsqrt_u(v), 0); %v = insertelement <4 x float> undef, float %0, i32 0 %vis = call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %v) %is = extractelement <4 x float> %vis, i32 0 ; return 0.5 * is * (3. - (v * is) * is); %v_is = fmul float %0, %is %v_is_is = fmul float %v_is, %is %three_sub = fsub float 3., %v_is_is %is_mul = fmul float %is, %three_sub %half_scale = fmul float 0.5, %is_mul ret float %half_scale } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; sqrt declare <8 x float> @llvm.x86.avx.sqrt.ps.256(<8 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone define internal <8 x float> @__sqrt_varying_float(<8 x float>) nounwind readonly alwaysinline { %call = call <8 x float> @llvm.x86.avx.sqrt.ps.256(<8 x float> %0) ret <8 x float> %call } define internal float @__sqrt_uniform_float(float) nounwind readonly alwaysinline { sse_unary_scalar(ret, 4, float, @llvm.x86.sse.sqrt.ss, %0) ret float %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; fastmath declare void @llvm.x86.sse.stmxcsr(i8 *) nounwind declare void @llvm.x86.sse.ldmxcsr(i8 *) nounwind define internal void @__fastmath() nounwind alwaysinline { %ptr = alloca i32 %ptr8 = bitcast i32 * %ptr to i8 * call void @llvm.x86.sse.stmxcsr(i8 * %ptr8) %oldval = load i32 *%ptr ; turn on DAZ (64)/FTZ (32768) -> 32832 %update = or i32 %oldval, 32832 store i32 %update, i32 *%ptr call void @llvm.x86.sse.ldmxcsr(i8 * %ptr8) ret void } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; svml ; FIXME: need either to wire these up to the 8-wide SVML entrypoints, ; or, use the macro to call the 4-wide ones twice with our 8-wide ; vectors... declare <8 x float> @__svml_sin(<8 x float>) declare <8 x float> @__svml_cos(<8 x float>) declare void @__svml_sincos(<8 x float>, <8 x float> *, <8 x float> *) declare <8 x float> @__svml_tan(<8 x float>) declare <8 x float> @__svml_atan(<8 x float>) declare <8 x float> @__svml_atan2(<8 x float>, <8 x float>) declare <8 x float> @__svml_exp(<8 x float>) declare <8 x float> @__svml_log(<8 x float>) declare <8 x float> @__svml_pow(<8 x float>, <8 x float>) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; float min/max declare <8 x float> @llvm.x86.avx.max.ps.256(<8 x float>, <8 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.max.ss(<4 x float>, <4 x float>) nounwind readnone declare <8 x float> @llvm.x86.avx.min.ps.256(<8 x float>, <8 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.min.ss(<4 x float>, <4 x float>) nounwind readnone define internal <8 x float> @__max_varying_float(<8 x float>, <8 x float>) nounwind readonly alwaysinline { %call = call <8 x float> @llvm.x86.avx.max.ps.256(<8 x float> %0, <8 x float> %1) ret <8 x float> %call } define internal float @__max_uniform_float(float, float) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, float, @llvm.x86.sse.max.ss, %0, %1) ret float %ret } define internal <8 x float> @__min_varying_float(<8 x float>, <8 x float>) nounwind readonly alwaysinline { %call = call <8 x float> @llvm.x86.avx.min.ps.256(<8 x float> %0, <8 x float> %1) ret <8 x float> %call } define internal float @__min_uniform_float(float, float) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, float, @llvm.x86.sse.min.ss, %0, %1) ret float %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; int min/max declare <8 x i32> @llvm.x86.avx.min.sd.256(<8 x i32>, <8 x i32>) nounwind readnone declare <8 x i32> @llvm.x86.avx.max.sd.256(<8 x i32>, <8 x i32>) nounwind readnone define internal <8 x i32> @__min_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline { %call = call <8 x i32> @llvm.x86.avx.min.sd.256(<8 x i32> %0, <8 x i32> %1) ret <8 x i32> %call } define internal i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline { sse_binary_scalar(ret, 8, i32, @llvm.x86.avx.min.sd.256, %0, %1) ret i32 %ret } define internal <8 x i32> @__max_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline { %call = call <8 x i32> @llvm.x86.avx.max.sd.256(<8 x i32> %0, <8 x i32> %1) ret <8 x i32> %call } define internal i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline { sse_binary_scalar(ret, 8, i32, @llvm.x86.avx.max.sd.256, %0, %1) ret i32 %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; unsigned int min/max ; FIXME: looks like these aren't available in LLVM? declare <8 x i32> @llvm.x86.avx.min.ud.256(<8 x i32>, <8 x i32>) nounwind readnone declare <8 x i32> @llvm.x86.avx.max.ud.256(<8 x i32>, <8 x i32>) nounwind readnone define internal <8 x i32> @__min_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline { %call = call <8 x i32> @llvm.x86.avx.min.ud.256(<8 x i32> %0, <8 x i32> %1) ret <8 x i32> %call } define internal i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline { sse_binary_scalar(ret, 8, i32, @llvm.x86.avx.min.ud.256, %0, %1) ret i32 %ret } define internal <8 x i32> @__max_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline { %call = call <8 x i32> @llvm.x86.avx.max.ud.256(<8 x i32> %0, <8 x i32> %1) ret <8 x i32> %call } define internal i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline { sse_binary_scalar(ret, 8, i32, @llvm.x86.avx.max.ud.256, %0, %1) ret i32 %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; horizontal ops declare i32 @llvm.ctpop.i32(i32) nounwind readnone define internal i32 @__popcnt_int32(i32) nounwind readonly alwaysinline { %call = call i32 @llvm.ctpop.i32(i32 %0) ret i32 %call } declare i64 @llvm.ctpop.i64(i64) nounwind readnone define internal i64 @__popcnt_int64(i64) nounwind readonly alwaysinline { %call = call i64 @llvm.ctpop.i64(i64 %0) ret i64 %call } declare i32 @llvm.x86.avx.movmsk.ps.256(<8 x float>) nounwind readnone define internal i32 @__movmsk(<8 x i32>) nounwind readnone alwaysinline { %floatmask = bitcast <8 x i32> %0 to <8 x float> %v = call i32 @llvm.x86.avx.movmsk.ps.256(<8 x float> %floatmask) nounwind readnone ret i32 %v } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; horizontal float ops declare <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float>, <8 x float>) nounwind readnone define internal float @__reduce_add_float(<8 x float>) nounwind readonly alwaysinline { %v1 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %0, <8 x float> %0) %v2 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %v1, <8 x float> %v1) %scalar1 = extractelement <8 x float> %v2, i32 0 %scalar2 = extractelement <8 x float> %v2, i32 4 %sum = fadd float %scalar1, %scalar2 ret float %sum } define internal float @__reduce_min_float(<8 x float>) nounwind readnone alwaysinline { reduce8(float, @__min_varying_float, @__min_uniform_float) } define internal float @__reduce_max_float(<8 x float>) nounwind readnone alwaysinline { reduce8(float, @__max_varying_float, @__max_uniform_float) } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; horizontal int32 ops define internal <8 x i32> @__add_varying_int32(<8 x i32>, <8 x i32>) nounwind readnone alwaysinline { %s = add <8 x i32> %0, %1 ret <8 x i32> %s } define internal i32 @__add_uniform_int32(i32, i32) nounwind readnone alwaysinline { %s = add i32 %0, %1 ret i32 %s } define internal i32 @__reduce_add_int32(<8 x i32>) nounwind readnone alwaysinline { reduce8(i32, @__add_varying_int32, @__add_uniform_int32) } define internal i32 @__reduce_min_int32(<8 x i32>) nounwind readnone alwaysinline { reduce8(i32, @__min_varying_int32, @__min_uniform_int32) } define internal i32 @__reduce_max_int32(<8 x i32>) nounwind readnone alwaysinline { reduce8(i32, @__max_varying_int32, @__max_uniform_int32) } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; horizontal uint32 ops define internal i32 @__reduce_add_uint32(<8 x i32> %v) nounwind readnone alwaysinline { %r = call i32 @__reduce_add_int32(<8 x i32> %v) ret i32 %r } define internal i32 @__reduce_min_uint32(<8 x i32>) nounwind readnone alwaysinline { reduce8(i32, @__min_varying_uint32, @__min_uniform_uint32) } define internal i32 @__reduce_max_uint32(<8 x i32>) nounwind readnone alwaysinline { reduce8(i32, @__max_varying_uint32, @__max_uniform_uint32) } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; horizontal double ops declare <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double>, <4 x double>) nounwind readnone define internal double @__reduce_add_double(<8 x double>) nounwind readonly alwaysinline { %v0 = shufflevector <8 x double> %0, <8 x double> undef, <4 x i32> %v1 = shufflevector <8 x double> %0, <8 x double> undef, <4 x i32> %sum0 = call <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double> %v0, <4 x double> %v1) %sum1 = call <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double> %sum0, <4 x double> %sum0) %scalar1 = extractelement <4 x double> %sum0, i32 0 %scalar2 = extractelement <4 x double> %sum1, i32 1 %sum = fadd double %scalar1, %scalar2 ret double %sum } define internal double @__reduce_min_double(<8 x double>) nounwind readnone alwaysinline { reduce8(double, @__min_varying_double, @__min_uniform_double) } define internal double @__reduce_max_double(<8 x double>) nounwind readnone alwaysinline { reduce8(double, @__max_varying_double, @__max_uniform_double) } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; horizontal int64 ops define internal <8 x i64> @__add_varying_int64(<8 x i64>, <8 x i64>) nounwind readnone alwaysinline { %s = add <8 x i64> %0, %1 ret <8 x i64> %s } define internal i64 @__add_uniform_int64(i64, i64) nounwind readnone alwaysinline { %s = add i64 %0, %1 ret i64 %s } define internal i64 @__reduce_add_int64(<8 x i64>) nounwind readnone alwaysinline { reduce8(i64, @__add_varying_int64, @__add_uniform_int64) } define internal i64 @__reduce_min_int64(<8 x i64>) nounwind readnone alwaysinline { reduce8(i64, @__min_varying_int64, @__min_uniform_int64) } define internal i64 @__reduce_max_int64(<8 x i64>) nounwind readnone alwaysinline { reduce8(i64, @__max_varying_int64, @__max_uniform_int64) } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; horizontal uint64 ops define internal i64 @__reduce_add_uint64(<8 x i64> %v) nounwind readnone alwaysinline { %r = call i64 @__reduce_add_int64(<8 x i64> %v) ret i64 %r } define internal i64 @__reduce_min_uint64(<8 x i64>) nounwind readnone alwaysinline { reduce8(i64, @__min_varying_uint64, @__min_uniform_uint64) } define internal i64 @__reduce_max_uint64(<8 x i64>) nounwind readnone alwaysinline { reduce8(i64, @__max_varying_uint64, @__max_uniform_uint64) } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; unaligned loads/loads+broadcasts load_and_broadcast(8, i8, 8) load_and_broadcast(8, i16, 16) load_and_broadcast(8, i32, 32) load_and_broadcast(8, i64, 64) ; no masked load instruction for i8 and i16 types?? load_masked(8, i8, 8, 1) load_masked(8, i16, 16, 2) declare <8 x float> @llvm.x86.avx.maskload.ps.256(i8 *, <8 x float> %mask) declare <4 x double> @llvm.x86.avx.maskload.pd.256(i8 *, <4 x double> %mask) define <8 x i32> @__load_masked_32(i8 *, <8 x i32> %mask) nounwind alwaysinline { %floatmask = bitcast <8 x i32> %mask to <8 x float> %floatval = call <8 x float> @llvm.x86.avx.maskload.ps.256(i8 * %0, <8 x float> %floatmask) %retval = bitcast <8 x float> %floatval to <8 x i32> ret <8 x i32> %retval } define <8 x i64> @__load_masked_64(i8 *, <8 x i32> %mask) nounwind alwaysinline { ; double up masks, bitcast to doubles %mask0 = shufflevector <8 x i32> %mask, <8 x i32> undef, <8 x i32> %mask1 = shufflevector <8 x i32> %mask, <8 x i32> undef, <8 x i32> %mask0d = bitcast <8 x i32> %mask0 to <4 x double> %mask1d = bitcast <8 x i32> %mask1 to <4 x double> %val0d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %0, <4 x double> %mask0d) %ptr1 = getelementptr i8 * %0, i32 32 %val1d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %ptr1, <4 x double> %mask1d) %vald = shufflevector <4 x double> %val0d, <4 x double> %val1d, <8 x i32> %val = bitcast <8 x double> %vald to <8 x i64> ret <8 x i64> %val } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; masked store ; FIXME: there is no AVX instruction for these, but we could be clever ; by packing the bits down and setting the last 3/4 or half, respectively, ; of the mask to zero... Not sure if this would be a win in the end gen_masked_store(8, i8, 8) gen_masked_store(8, i16, 16) ; note that mask is the 2nd parameter, not the 3rd one!! declare void @llvm.x86.avx.maskstore.ps.256(i8 *, <8 x float>, <8 x float>) declare void @llvm.x86.avx.maskstore.pd.256(i8 *, <4 x double>, <4 x double>) define void @__masked_store_32(<8 x i32>* nocapture, <8 x i32>, <8 x i32>) nounwind alwaysinline { %ptr = bitcast <8 x i32> * %0 to i8 * %val = bitcast <8 x i32> %1 to <8 x float> %mask = bitcast <8 x i32> %2 to <8 x float> call void @llvm.x86.avx.maskstore.ps.256(i8 * %ptr, <8 x float> %mask, <8 x float> %val) ret void } define void @__masked_store_64(<8 x i64>* nocapture, <8 x i64>, <8 x i32> %mask) nounwind alwaysinline { %ptr = bitcast <8 x i64> * %0 to i8 * %val = bitcast <8 x i64> %1 to <8 x double> %mask0 = shufflevector <8 x i32> %mask, <8 x i32> undef, <8 x i32> %mask1 = shufflevector <8 x i32> %mask, <8 x i32> undef, <8 x i32> %mask0d = bitcast <8 x i32> %mask0 to <4 x double> %mask1d = bitcast <8 x i32> %mask1 to <4 x double> %val0 = shufflevector <8 x double> %val, <8 x double> undef, <4 x i32> %val1 = shufflevector <8 x double> %val, <8 x double> undef, <4 x i32> call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr, <4 x double> %mask0d, <4 x double> %val0) %ptr1 = getelementptr i8 * %ptr, i32 32 call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr1, <4 x double> %mask1d, <4 x double> %val1) ret void } masked_store_blend_8_16_by_8() declare <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float>, <8 x float>, <8 x float>) nounwind readnone define void @__masked_store_blend_32(<8 x i32>* nocapture, <8 x i32>, <8 x i32>) nounwind alwaysinline { %mask_as_float = bitcast <8 x i32> %2 to <8 x float> %oldValue = load <8 x i32>* %0, align 4 %oldAsFloat = bitcast <8 x i32> %oldValue to <8 x float> %newAsFloat = bitcast <8 x i32> %1 to <8 x float> %blend = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %oldAsFloat, <8 x float> %newAsFloat, <8 x float> %mask_as_float) %blendAsInt = bitcast <8 x float> %blend to <8 x i32> store <8 x i32> %blendAsInt, <8 x i32>* %0, align 4 ret void } define void @__masked_store_blend_64(<8 x i64>* nocapture %ptr, <8 x i64> %new, <8 x i32> %i32mask) nounwind alwaysinline { %oldValue = load <8 x i64>* %ptr, align 8 %mask = bitcast <8 x i32> %i32mask to <8 x float> ; Do 4x64-bit blends by doing two <8 x i32> blends, where the <8 x i32> values ; are actually bitcast <4 x i64> values ; ; set up the first four 64-bit values %old01 = shufflevector <8 x i64> %oldValue, <8 x i64> undef, <4 x i32> %old01f = bitcast <4 x i64> %old01 to <8 x float> %new01 = shufflevector <8 x i64> %new, <8 x i64> undef, <4 x i32> %new01f = bitcast <4 x i64> %new01 to <8 x float> ; compute mask--note that the indices are all doubled-up %mask01 = shufflevector <8 x float> %mask, <8 x float> undef, <8 x i32> ; and blend them %result01f = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %old01f, <8 x float> %new01f, <8 x float> %mask01) %result01 = bitcast <8 x float> %result01f to <4 x i64> ; and again %old23 = shufflevector <8 x i64> %oldValue, <8 x i64> undef, <4 x i32> %old23f = bitcast <4 x i64> %old23 to <8 x float> %new23 = shufflevector <8 x i64> %new, <8 x i64> undef, <4 x i32> %new23f = bitcast <4 x i64> %new23 to <8 x float> ; compute mask--note that the values are doubled-up... %mask23 = shufflevector <8 x float> %mask, <8 x float> undef, <8 x i32> ; and blend them %result23f = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %old23f, <8 x float> %new23f, <8 x float> %mask23) %result23 = bitcast <8 x float> %result23f to <4 x i64> ; reconstruct the final <8 x i64> vector %final = shufflevector <4 x i64> %result01, <4 x i64> %result23, <8 x i32> store <8 x i64> %final, <8 x i64> * %ptr, align 8 ret void } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; gather/scatter gen_gather(8, i8) gen_gather(8, i16) gen_gather(8, i32) gen_gather(8, i64) gen_scatter(8, i8) gen_scatter(8, i16) gen_scatter(8, i32) gen_scatter(8, i64) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; double precision sqrt declare <4 x double> @llvm.x86.avx.sqrt.pd.256(<4 x double>) nounwind readnone declare <2 x double> @llvm.x86.sse.sqrt.sd(<2 x double>) nounwind readnone define internal <8 x double> @__sqrt_varying_double(<8 x double>) nounwind alwaysinline { unary4to8(ret, double, @llvm.x86.avx.sqrt.pd.256, %0) ret <8 x double> %ret } define internal double @__sqrt_uniform_double(double) nounwind alwaysinline { sse_unary_scalar(ret, 2, double, @llvm.x86.sse.sqrt.sd, %0) ret double %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; double precision min/max declare <4 x double> @llvm.x86.avx.max.pd.256(<4 x double>, <4 x double>) nounwind readnone declare <2 x double> @llvm.x86.sse.max.sd(<2 x double>, <2 x double>) nounwind readnone declare <4 x double> @llvm.x86.avx.min.pd.256(<4 x double>, <4 x double>) nounwind readnone declare <2 x double> @llvm.x86.sse.min.sd(<2 x double>, <2 x double>) nounwind readnone define internal <8 x double> @__min_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline { binary4to8(ret, double, @llvm.x86.avx.min.pd.256, %0, %1) ret <8 x double> %ret } define internal double @__min_uniform_double(double, double) nounwind readnone alwaysinline { sse_binary_scalar(ret, 2, double, @llvm.x86.sse.min.sd, %0, %1) ret double %ret } define internal <8 x double> @__max_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline { binary4to8(ret, double, @llvm.x86.avx.max.pd.256, %0, %1) ret <8 x double> %ret } define internal double @__max_uniform_double(double, double) nounwind readnone alwaysinline { sse_binary_scalar(ret, 2, double, @llvm.x86.sse.max.sd, %0, %1) ret double %ret }