// -*- mode: c++ -*- /* Copyright (c) 2010-2014, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Based on Syoyo Fujita's aobench: http://code.google.com/p/aobench */ #include "cuda_helpers.cuh" #define NAO_SAMPLES 8 //#define M_PI 3.1415926535f #define vec Float3 struct Float3 { float x,y,z; __device__ friend Float3 operator+(const Float3 a, const Float3 b) { Float3 c; c.x = a.x+b.x; c.y = a.y+b.y; c.z = a.z+b.z; return c; } __device__ friend Float3 operator-(const Float3 a, const Float3 b) { Float3 c; c.x = a.x-b.x; c.y = a.y-b.y; c.z = a.z-b.z; return c; } __device__ friend Float3 operator/(const Float3 a, const Float3 b) { Float3 c; c.x = a.x/b.x; c.y = a.y/b.y; c.z = a.z/b.z; return c; } __device__ friend Float3 operator/(const float a, const Float3 b) { Float3 c; c.x = a/b.x; c.y = a/b.y; c.z = a/b.z; return c; } __device__ friend Float3 operator*(const Float3 a, const Float3 b) { Float3 c; c.x = a.x*b.x; c.y = a.y*b.y; c.z = a.z*b.z; return c; } __device__ friend Float3 operator*(const Float3 a, const float b) { Float3 c; c.x = a.x*b; c.y = a.y*b; c.z = a.z*b; return c; } }; /////////////////////////////////////////////////////////////////////////// // RNG stuff struct RNGState { unsigned int z1, z2, z3, z4; }; __device__ static inline unsigned int random(RNGState * state) { unsigned int b; b = ((state->z1 << 6) ^ state->z1) >> 13; state->z1 = ((state->z1 & 4294967294U) << 18) ^ b; b = ((state->z2 << 2) ^ state->z2) >> 27; state->z2 = ((state->z2 & 4294967288U) << 2) ^ b; b = ((state->z3 << 13) ^ state->z3) >> 21; state->z3 = ((state->z3 & 4294967280U) << 7) ^ b; b = ((state->z4 << 3) ^ state->z4) >> 12; state->z4 = ((state->z4 & 4294967168U) << 13) ^ b; return (state->z1 ^ state->z2 ^ state->z3 ^ state->z4); } __device__ static inline float frandom(RNGState * state) { unsigned int irand = random(state); irand &= (1ul<<23)-1; return __int_as_float(0x3F800000 | irand)-1.0f; } __device__ static inline void seed_rng(RNGState * state, unsigned int seed) { state->z1 = seed; state->z2 = seed ^ 0xbeeff00d; state->z3 = ((seed & 0xfffful) << 16) | (seed >> 16); state->z4 = (((seed & 0xfful) << 24) | ((seed & 0xff00ul) << 8) | ((seed & 0xff0000ul) >> 8) | (seed & 0xff000000ul) >> 24); } struct Isect { float t; vec p; vec n; int hit; }; struct Sphere { vec center; float radius; }; struct Plane { vec p; vec n; }; struct Ray { vec org; vec dir; }; __device__ static inline float dot(vec a, vec b) { return a.x * b.x + a.y * b.y + a.z * b.z; } __device__ static inline vec vcross(vec v0, vec v1) { vec ret; ret.x = v0.y * v1.z - v0.z * v1.y; ret.y = v0.z * v1.x - v0.x * v1.z; ret.z = v0.x * v1.y - v0.y * v1.x; return ret; } __device__ static inline void vnormalize(vec &v) { float len2 = dot(v, v); float invlen = rsqrt(len2); v = v*invlen; } __device__ static inline void ray_plane_intersect(Isect &isect,const Ray &ray, const Plane &plane) { float d = -dot(plane.p, plane.n); float v = dot(ray.dir, plane.n); #if 0 if (abs(v) < 1.0f-17) return; else { float t = -(dot(ray.org, plane.n) + d) / v; if ((t > 0.0) && (t < isect.t)) { isect.t = t; isect.hit = 1; isect.p = ray.org + ray.dir * t; isect.n = plane.n; } } #else if (abs(v) <= 1.0e-17) return; float t = -(dot(ray.org, plane.n) + d) / v; if ((t > 0.0) && (t < isect.t)) { isect.t = t; isect.hit = 1; isect.p = ray.org + ray.dir * t; isect.n = plane.n; } #endif } __device__ static inline void ray_sphere_intersect(Isect &isect,const Ray &ray, const Sphere &sphere) { vec rs = ray.org - sphere.center; float B = dot(rs, ray.dir); float C = dot(rs, rs) - sphere.radius * sphere.radius; float D = B * B - C; #if 0 if (D > 0.) { float t = -B - sqrt(D); if ((t > 0.0) && (t < isect.t)) { isect.t = t; isect.hit = 1; isect.p = ray.org + ray.dir * t; isect.n = isect.p - sphere.center; vnormalize(isect.n); } } #else if (D <= 0.0f) return; float t = -B - sqrt(D); if ((t > 0.0) && (t < isect.t)) { isect.t = t; isect.hit = 1; isect.p = ray.org + ray.dir * t; isect.n = isect.p - sphere.center; vnormalize(isect.n); } #endif } __device__ static inline void orthoBasis(vec basis[3], vec n) { basis[2] = n; basis[1].x = 0.0f; basis[1].y = 0.0f; basis[1].z = 0.0f; if ((n.x < 0.6f) && (n.x > -0.6f)) { basis[1].x = 1.0f; } else if ((n.y < 0.6f) && (n.y > -0.6f)) { basis[1].y = 1.0f; } else if ((n.z < 0.6f) && (n.z > -0.6f)) { basis[1].z = 1.0f; } else { basis[1].x = 1.0f; } basis[0] = vcross(basis[1], basis[2]); vnormalize(basis[0]); basis[1] = vcross(basis[2], basis[0]); vnormalize(basis[1]); } __device__ static inline float ambient_occlusion(Isect &isect, const Plane &plane, const Sphere spheres[3], RNGState &rngstate) { float eps = 0.0001f; vec p; //, n; vec basis[3]; float occlusion = 0.0f; p = isect.p + isect.n * eps; orthoBasis(basis, isect.n); const int ntheta = NAO_SAMPLES; const int nphi = NAO_SAMPLES; for ( int j = 0; j < ntheta; j++) { for ( int i = 0; i < nphi; i++) { Ray ray; Isect occIsect; float theta = sqrt(frandom(&rngstate)); float phi = 2.0f * M_PI * frandom(&rngstate); float x = cos(phi) * theta; float y = sin(phi) * theta; float z = sqrtf(1.0f - theta * theta); // local . global float rx = x * basis[0].x + y * basis[1].x + z * basis[2].x; float ry = x * basis[0].y + y * basis[1].y + z * basis[2].y; float rz = x * basis[0].z + y * basis[1].z + z * basis[2].z; ray.org = p; ray.dir.x = rx; ray.dir.y = ry; ray.dir.z = rz; occIsect.t = 1.0f+17; occIsect.hit = 0; for ( int snum = 0; snum < 3; ++snum) ray_sphere_intersect(occIsect, ray, spheres[snum]); ray_plane_intersect (occIsect, ray, plane); if (occIsect.hit) occlusion += 1.0f; } } occlusion = (ntheta * nphi - occlusion) / (float)(ntheta * nphi); return occlusion; } /* Compute the image for the scanlines from [y0,y1), for an overall image of width w and height h. */ __device__ static inline void ao_tiles( int x0, int x1, int y0, int y1, int w, int h, int nsubsamples, float image[]) { const Plane plane = { { 0.0f, -0.5f, 0.0f }, { 0.f, 1.f, 0.f } }; const Sphere spheres[3] = { { { -2.0f, 0.0f, -3.5f }, 0.5f }, { { -0.5f, 0.0f, -3.0f }, 0.5f }, { { 1.0f, 0.0f, -2.2f }, 0.5f } }; RNGState rngstate; seed_rng(&rngstate, programIndex + (y0 << (programIndex & 15))); float invSamples = 1.f / nsubsamples; for ( int y = y0; y < y1; y++) for ( int x = programIndex+x0; x < x1; x += programCount) { const int offset = 3 * (y * w + x); float res = 0.0f; for ( int u = 0; u < nsubsamples; u++) for ( int v = 0; v < nsubsamples; v++) { float du = (float)u * invSamples, dv = (float)v * invSamples; // Figure out x,y pixel in NDC float px = (x + du - (w / 2.0f)) / (w / 2.0f); float py = -(y + dv - (h / 2.0f)) / (h / 2.0f); float ret = 0.f; Ray ray; Isect isect; ray.org.x = 0.0f; ray.org.y = 0.0f; ray.org.z = 0.0f; // Poor man's perspective projection ray.dir.x = px; ray.dir.y = py; ray.dir.z = -1.0; vnormalize(ray.dir); isect.t = 1.0e+17; isect.hit = 0; for ( int snum = 0; snum < 3; ++snum) ray_sphere_intersect(isect, ray, spheres[snum]); ray_plane_intersect(isect, ray, plane); // Note use of 'coherent' if statement; the set of rays we // trace will often all hit or all miss the scene if (any(isect.hit)) { ret = isect.hit*ambient_occlusion(isect, plane, spheres, rngstate); ret *= invSamples * invSamples; res += ret; } } if (x < x1) { image[offset ] = res; image[offset+1] = res; image[offset+2] = res; } } } #define TILEX 64 #define TILEY 4 extern "C" __global__ void ao_task( int width, int height, int nsubsamples, float image[]) { if (taskIndex0 >= taskCount0) return; if (taskIndex1 >= taskCount1) return; const int x0 = taskIndex0 * TILEX; const int x1 = min(x0 + TILEX, width); const int y0 = taskIndex1 * TILEY; const int y1 = min(y0 + TILEY, height); ao_tiles(x0,x1,y0,y1, width, height, nsubsamples, image); } extern "C" __global__ void ao_ispc_tasks___export( int w, int h, int nsubsamples, float image[]) { const int ntilex = (w+TILEX-1)/TILEX; const int ntiley = (h+TILEY-1)/TILEY; launch(ntilex,ntiley,1,ao_task)(w,h,nsubsamples,image); cudaDeviceSynchronize(); } extern "C" __host__ void ao_ispc_tasks( int w, int h, int nsubsamples, float image[]) { ao_ispc_tasks___export<<<1,32>>>(w,h,nsubsamples,image); cudaDeviceSynchronize(); }