/* * Copyright 1993-2010 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ //Based on http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm #include #include #include "sortingNetworks_common.h" #include "sortingNetworks_common.cuh" //////////////////////////////////////////////////////////////////////////////// // Monolithic bitonic sort kernel for short arrays fitting into shared memory //////////////////////////////////////////////////////////////////////////////// __global__ void bitonicSortShared( uint *d_DstKey, uint *d_DstVal, uint *d_SrcKey, uint *d_SrcVal, uint arrayLength, uint dir ){ //Shared memory storage for one or more short vectors __shared__ uint s_key[SHARED_SIZE_LIMIT]; __shared__ uint s_val[SHARED_SIZE_LIMIT]; //Offset to the beginning of subbatch and load data d_SrcKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x; d_SrcVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x; d_DstKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x; d_DstVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x; s_key[threadIdx.x + 0] = d_SrcKey[ 0]; s_val[threadIdx.x + 0] = d_SrcVal[ 0]; s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] = d_SrcKey[(SHARED_SIZE_LIMIT / 2)]; s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] = d_SrcVal[(SHARED_SIZE_LIMIT / 2)]; for(uint size = 2; size < arrayLength; size <<= 1){ //Bitonic merge uint ddd = dir ^ ( (threadIdx.x & (size / 2)) != 0 ); for(uint stride = size / 2; stride > 0; stride >>= 1){ __syncthreads(); uint pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1)); Comparator( s_key[pos + 0], s_val[pos + 0], s_key[pos + stride], s_val[pos + stride], ddd ); } } //ddd == dir for the last bitonic merge step { for(uint stride = arrayLength / 2; stride > 0; stride >>= 1){ __syncthreads(); uint pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1)); Comparator( s_key[pos + 0], s_val[pos + 0], s_key[pos + stride], s_val[pos + stride], dir ); } } __syncthreads(); d_DstKey[ 0] = s_key[threadIdx.x + 0]; d_DstVal[ 0] = s_val[threadIdx.x + 0]; d_DstKey[(SHARED_SIZE_LIMIT / 2)] = s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)]; d_DstVal[(SHARED_SIZE_LIMIT / 2)] = s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)]; } //////////////////////////////////////////////////////////////////////////////// // Bitonic sort kernel for large arrays (not fitting into shared memory) //////////////////////////////////////////////////////////////////////////////// //Bottom-level bitonic sort //Almost the same as bitonicSortShared with the exception of //even / odd subarrays being sorted in opposite directions //Bitonic merge accepts both //Ascending | descending or descending | ascending sorted pairs __global__ void bitonicSortShared1( uint *d_DstKey, uint *d_DstVal, uint *d_SrcKey, uint *d_SrcVal ){ //Shared memory storage for current subarray __shared__ uint s_key[SHARED_SIZE_LIMIT]; __shared__ uint s_val[SHARED_SIZE_LIMIT]; //Offset to the beginning of subarray and load data d_SrcKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x; d_SrcVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x; d_DstKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x; d_DstVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x; s_key[threadIdx.x + 0] = d_SrcKey[ 0]; s_val[threadIdx.x + 0] = d_SrcVal[ 0]; s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] = d_SrcKey[(SHARED_SIZE_LIMIT / 2)]; s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] = d_SrcVal[(SHARED_SIZE_LIMIT / 2)]; for(uint size = 2; size < SHARED_SIZE_LIMIT; size <<= 1){ //Bitonic merge uint ddd = (threadIdx.x & (size / 2)) != 0; for(uint stride = size / 2; stride > 0; stride >>= 1){ __syncthreads(); uint pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1)); Comparator( s_key[pos + 0], s_val[pos + 0], s_key[pos + stride], s_val[pos + stride], ddd ); } } //Odd / even arrays of SHARED_SIZE_LIMIT elements //sorted in opposite directions uint ddd = blockIdx.x & 1; { for(uint stride = SHARED_SIZE_LIMIT / 2; stride > 0; stride >>= 1){ __syncthreads(); uint pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1)); Comparator( s_key[pos + 0], s_val[pos + 0], s_key[pos + stride], s_val[pos + stride], ddd ); } } __syncthreads(); d_DstKey[ 0] = s_key[threadIdx.x + 0]; d_DstVal[ 0] = s_val[threadIdx.x + 0]; d_DstKey[(SHARED_SIZE_LIMIT / 2)] = s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)]; d_DstVal[(SHARED_SIZE_LIMIT / 2)] = s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)]; } //Bitonic merge iteration for stride >= SHARED_SIZE_LIMIT __global__ void bitonicMergeGlobal( uint *d_DstKey, uint *d_DstVal, uint *d_SrcKey, uint *d_SrcVal, uint arrayLength, uint size, uint stride, uint dir ){ uint global_comparatorI = blockIdx.x * blockDim.x + threadIdx.x; uint comparatorI = global_comparatorI & (arrayLength / 2 - 1); //Bitonic merge uint ddd = dir ^ ( (comparatorI & (size / 2)) != 0 ); uint pos = 2 * global_comparatorI - (global_comparatorI & (stride - 1)); uint keyA = d_SrcKey[pos + 0]; uint valA = d_SrcVal[pos + 0]; uint keyB = d_SrcKey[pos + stride]; uint valB = d_SrcVal[pos + stride]; Comparator( keyA, valA, keyB, valB, ddd ); d_DstKey[pos + 0] = keyA; d_DstVal[pos + 0] = valA; d_DstKey[pos + stride] = keyB; d_DstVal[pos + stride] = valB; } //Combined bitonic merge steps for //size > SHARED_SIZE_LIMIT and stride = [1 .. SHARED_SIZE_LIMIT / 2] __global__ void bitonicMergeShared( uint *d_DstKey, uint *d_DstVal, uint *d_SrcKey, uint *d_SrcVal, uint arrayLength, uint size, uint dir ){ //Shared memory storage for current subarray __shared__ uint s_key[SHARED_SIZE_LIMIT]; __shared__ uint s_val[SHARED_SIZE_LIMIT]; d_SrcKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x; d_SrcVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x; d_DstKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x; d_DstVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x; s_key[threadIdx.x + 0] = d_SrcKey[ 0]; s_val[threadIdx.x + 0] = d_SrcVal[ 0]; s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] = d_SrcKey[(SHARED_SIZE_LIMIT / 2)]; s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] = d_SrcVal[(SHARED_SIZE_LIMIT / 2)]; //Bitonic merge uint comparatorI = UMAD(blockIdx.x, blockDim.x, threadIdx.x) & ((arrayLength / 2) - 1); uint ddd = dir ^ ( (comparatorI & (size / 2)) != 0 ); for(uint stride = SHARED_SIZE_LIMIT / 2; stride > 0; stride >>= 1){ __syncthreads(); uint pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1)); Comparator( s_key[pos + 0], s_val[pos + 0], s_key[pos + stride], s_val[pos + stride], ddd ); } __syncthreads(); d_DstKey[ 0] = s_key[threadIdx.x + 0]; d_DstVal[ 0] = s_val[threadIdx.x + 0]; d_DstKey[(SHARED_SIZE_LIMIT / 2)] = s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)]; d_DstVal[(SHARED_SIZE_LIMIT / 2)] = s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)]; } //////////////////////////////////////////////////////////////////////////////// // Interface function //////////////////////////////////////////////////////////////////////////////// //Helper function (also used by odd-even merge sort) extern "C" uint factorRadix2(uint *log2L, uint L){ if(!L){ *log2L = 0; return 0; }else{ for(*log2L = 0; (L & 1) == 0; L >>= 1, *log2L++); return L; } } extern "C" uint bitonicSort( uint *d_DstKey, uint *d_DstVal, uint *d_SrcKey, uint *d_SrcVal, uint batchSize, uint arrayLength, uint dir ){ //Nothing to sort if(arrayLength < 2) return 0; //Only power-of-two array lengths are supported by this implementation uint log2L; uint factorizationRemainder = factorRadix2(&log2L, arrayLength); assert( factorizationRemainder == 1 ); dir = (dir != 0); uint blockCount = batchSize * arrayLength / SHARED_SIZE_LIMIT; uint threadCount = SHARED_SIZE_LIMIT / 2; if(arrayLength <= SHARED_SIZE_LIMIT){ assert( (batchSize * arrayLength) % SHARED_SIZE_LIMIT == 0 ); bitonicSortShared<<>>(d_DstKey, d_DstVal, d_SrcKey, d_SrcVal, arrayLength, dir); }else{ bitonicSortShared1<<>>(d_DstKey, d_DstVal, d_SrcKey, d_SrcVal); for(uint size = 2 * SHARED_SIZE_LIMIT; size <= arrayLength; size <<= 1) for(unsigned stride = size / 2; stride > 0; stride >>= 1) if(stride >= SHARED_SIZE_LIMIT){ bitonicMergeGlobal<<<(batchSize * arrayLength) / 512, 256>>>(d_DstKey, d_DstVal, d_DstKey, d_DstVal, arrayLength, size, stride, dir); }else{ bitonicMergeShared<<>>(d_DstKey, d_DstVal, d_DstKey, d_DstVal, arrayLength, size, dir); break; } } return threadCount; } extern "C" int isDeviceEmulation(void){ #ifdef __DEVICE_EMULATION__ return 1; #else return 0; #endif }