;; Copyright (c) 2010-2011, Intel Corporation ;; All rights reserved. ;; ;; Redistribution and use in source and binary forms, with or without ;; modification, are permitted provided that the following conditions are ;; met: ;; ;; * Redistributions of source code must retain the above copyright ;; notice, this list of conditions and the following disclaimer. ;; ;; * Redistributions in binary form must reproduce the above copyright ;; notice, this list of conditions and the following disclaimer in the ;; documentation and/or other materials provided with the distribution. ;; ;; * Neither the name of Intel Corporation nor the names of its ;; contributors may be used to endorse or promote products derived from ;; this software without specific prior written permission. ;; ;; ;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Define the standard library builtins for the SSE2 target ; Define some basics for a 4-wide target stdlib_core(4) packed_load_and_store(4) ; Include the various definitions of things that only require SSE1 and SSE2 include(`stdlib-sse.ll') ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rounding ;; ;; There are not any rounding instructions in SSE2, so we have to emulate ;; the functionality with multiple instructions... ; The code for __round_* is the result of compiling the following source ; code. ; ; export float Round(float x) { ; unsigned int sign = signbits(x); ; unsigned int ix = intbits(x); ; ix ^= sign; ; x = floatbits(ix); ; x += 0x1.0p23f; ; x -= 0x1.0p23f; ; ix = intbits(x); ; ix ^= sign; ; x = floatbits(ix); ; return x; ;} define internal <4 x float> @__round_varying_float(<4 x float>) nounwind readonly alwaysinline { %float_to_int_bitcast.i.i.i.i = bitcast <4 x float> %0 to <4 x i32> %bitop.i.i = and <4 x i32> %float_to_int_bitcast.i.i.i.i, %bitop.i = xor <4 x i32> %float_to_int_bitcast.i.i.i.i, %bitop.i.i %int_to_float_bitcast.i.i40.i = bitcast <4 x i32> %bitop.i to <4 x float> %binop.i = fadd <4 x float> %int_to_float_bitcast.i.i40.i, %binop21.i = fadd <4 x float> %binop.i, %float_to_int_bitcast.i.i.i = bitcast <4 x float> %binop21.i to <4 x i32> %bitop31.i = xor <4 x i32> %float_to_int_bitcast.i.i.i, %bitop.i.i %int_to_float_bitcast.i.i.i = bitcast <4 x i32> %bitop31.i to <4 x float> ret <4 x float> %int_to_float_bitcast.i.i.i } define internal float @__round_uniform_float(float) nounwind readonly alwaysinline { %float_to_int_bitcast.i.i.i.i = bitcast float %0 to i32 %bitop.i.i = and i32 %float_to_int_bitcast.i.i.i.i, -2147483648 %bitop.i = xor i32 %bitop.i.i, %float_to_int_bitcast.i.i.i.i %int_to_float_bitcast.i.i40.i = bitcast i32 %bitop.i to float %binop.i = fadd float %int_to_float_bitcast.i.i40.i, 8.388608e+06 %binop21.i = fadd float %binop.i, -8.388608e+06 %float_to_int_bitcast.i.i.i = bitcast float %binop21.i to i32 %bitop31.i = xor i32 %float_to_int_bitcast.i.i.i, %bitop.i.i %int_to_float_bitcast.i.i.i = bitcast i32 %bitop31.i to float ret float %int_to_float_bitcast.i.i.i } ;; Similarly, for implementations of the __floor* functions below, we have the ;; bitcode from compiling the following source code... ;export float Floor(float x) { ; float y = Round(x); ; unsigned int cmp = y > x ? 0xffffffff : 0; ; float delta = -1.f; ; unsigned int idelta = intbits(delta); ; idelta &= cmp; ; delta = floatbits(idelta); ; return y + delta; ;} define internal <4 x float> @__floor_varying_float(<4 x float>) nounwind readonly alwaysinline { %calltmp.i = tail call <4 x float> @__round_varying_float(<4 x float> %0) nounwind %bincmp.i = fcmp ogt <4 x float> %calltmp.i, %0 %val_to_boolvec32.i = sext <4 x i1> %bincmp.i to <4 x i32> %bitop.i = and <4 x i32> %val_to_boolvec32.i, %int_to_float_bitcast.i.i.i = bitcast <4 x i32> %bitop.i to <4 x float> %binop.i = fadd <4 x float> %calltmp.i, %int_to_float_bitcast.i.i.i ret <4 x float> %binop.i } define internal float @__floor_uniform_float(float) nounwind readonly alwaysinline { %calltmp.i = tail call float @__round_uniform_float(float %0) nounwind %bincmp.i = fcmp ogt float %calltmp.i, %0 %selectexpr.i = sext i1 %bincmp.i to i32 %bitop.i = and i32 %selectexpr.i, -1082130432 %int_to_float_bitcast.i.i.i = bitcast i32 %bitop.i to float %binop.i = fadd float %calltmp.i, %int_to_float_bitcast.i.i.i ret float %binop.i } ;; And here is the code we compiled to get the __ceil* functions below ; ;export uniform float Ceil(uniform float x) { ; uniform float y = Round(x); ; uniform int yltx = y < x ? 0xffffffff : 0; ; uniform float delta = 1.f; ; uniform int idelta = intbits(delta); ; idelta &= yltx; ; delta = floatbits(idelta); ; return y + delta; ;} define internal <4 x float> @__ceil_varying_float(<4 x float>) nounwind readonly alwaysinline { %calltmp.i = tail call <4 x float> @__round_varying_float(<4 x float> %0) nounwind %bincmp.i = fcmp olt <4 x float> %calltmp.i, %0 %val_to_boolvec32.i = sext <4 x i1> %bincmp.i to <4 x i32> %bitop.i = and <4 x i32> %val_to_boolvec32.i, %int_to_float_bitcast.i.i.i = bitcast <4 x i32> %bitop.i to <4 x float> %binop.i = fadd <4 x float> %calltmp.i, %int_to_float_bitcast.i.i.i ret <4 x float> %binop.i } define internal float @__ceil_uniform_float(float) nounwind readonly alwaysinline { %calltmp.i = tail call float @__round_uniform_float(float %0) nounwind %bincmp.i = fcmp olt float %calltmp.i, %0 %selectexpr.i = sext i1 %bincmp.i to i32 %bitop.i = and i32 %selectexpr.i, 1065353216 %int_to_float_bitcast.i.i.i = bitcast i32 %bitop.i to float %binop.i = fadd float %calltmp.i, %int_to_float_bitcast.i.i.i ret float %binop.i } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; min/max ; There is no blend instruction with SSE2, so we simulate it with bit ; operations on i32s. For these two vselect functions, for each ; vector element, if the mask is on, we return the corresponding value ; from %1, and otherwise return the value from %0. define internal <4 x i32> @__vselect_i32(<4 x i32>, <4 x i32> , <4 x i32> %mask) nounwind readnone alwaysinline { %notmask = xor <4 x i32> %mask, %cleared_old = and <4 x i32> %0, %notmask %masked_new = and <4 x i32> %1, %mask %new = or <4 x i32> %cleared_old, %masked_new ret <4 x i32> %new } define internal <4 x float> @__vselect_float(<4 x float>, <4 x float>, <4 x i32> %mask) nounwind readnone alwaysinline { %v0 = bitcast <4 x float> %0 to <4 x i32> %v1 = bitcast <4 x float> %1 to <4 x i32> %r = call <4 x i32> @__vselect_i32(<4 x i32> %v0, <4 x i32> %v1, <4 x i32> %mask) %rf = bitcast <4 x i32> %r to <4 x float> ret <4 x float> %rf } ; To do vector integer min and max, we do the vector compare and then sign ; extend the i1 vector result to an i32 mask. The __vselect does the ; rest... define internal <4 x i32> @__min_varying_int32(<4 x i32>, <4 x i32>) nounwind readonly alwaysinline { %c = icmp slt <4 x i32> %0, %1 %mask = sext <4 x i1> %c to <4 x i32> %v = call <4 x i32> @__vselect_i32(<4 x i32> %1, <4 x i32> %0, <4 x i32> %mask) ret <4 x i32> %v } define internal i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline { %c = icmp slt i32 %0, %1 %r = select i1 %c, i32 %0, i32 %1 ret i32 %r } define internal <4 x i32> @__max_varying_int32(<4 x i32>, <4 x i32>) nounwind readonly alwaysinline { %c = icmp sgt <4 x i32> %0, %1 %mask = sext <4 x i1> %c to <4 x i32> %v = call <4 x i32> @__vselect_i32(<4 x i32> %1, <4 x i32> %0, <4 x i32> %mask) ret <4 x i32> %v } define internal i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline { %c = icmp sgt i32 %0, %1 %r = select i1 %c, i32 %0, i32 %1 ret i32 %r } ; The functions for unsigned ints are similar, just with unsigned ; comparison functions... define internal <4 x i32> @__min_varying_uint32(<4 x i32>, <4 x i32>) nounwind readonly alwaysinline { %c = icmp ult <4 x i32> %0, %1 %mask = sext <4 x i1> %c to <4 x i32> %v = call <4 x i32> @__vselect_i32(<4 x i32> %1, <4 x i32> %0, <4 x i32> %mask) ret <4 x i32> %v } define internal i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline { %c = icmp ult i32 %0, %1 %r = select i1 %c, i32 %0, i32 %1 ret i32 %r } define internal <4 x i32> @__max_varying_uint32(<4 x i32>, <4 x i32>) nounwind readonly alwaysinline { %c = icmp ugt <4 x i32> %0, %1 %mask = sext <4 x i1> %c to <4 x i32> %v = call <4 x i32> @__vselect_i32(<4 x i32> %1, <4 x i32> %0, <4 x i32> %mask) ret <4 x i32> %v } define internal i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline { %c = icmp ugt i32 %0, %1 %r = select i1 %c, i32 %0, i32 %1 ret i32 %r } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; horizontal ops / reductions ; FIXME: this is very inefficient, loops over all 32 bits... define internal i32 @__popcnt(i32) nounwind readonly alwaysinline { entry: br label %loop loop: %count = phi i32 [ 0, %entry ], [ %newcount, %loop ] %val = phi i32 [ %0, %entry ], [ %newval, %loop ] %delta = and i32 %val, 1 %newcount = add i32 %count, %delta %newval = lshr i32 %val, 1 %done = icmp eq i32 %newval, 0 br i1 %done, label %exit, label %loop exit: ret i32 %newcount } define internal float @__reduce_add_float(<4 x float> %v) nounwind readonly alwaysinline { %v1 = shufflevector <4 x float> %v, <4 x float> undef, <4 x i32> %m1 = fadd <4 x float> %v1, %v %m1a = extractelement <4 x float> %m1, i32 0 %m1b = extractelement <4 x float> %m1, i32 1 %sum = fadd float %m1a, %m1b ret float %sum } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; masked store define void @__masked_store_blend_32(<4 x i32>* nocapture, <4 x i32>, <4 x i32> %mask) nounwind alwaysinline { %val = load <4 x i32> * %0, align 4 %newval = call <4 x i32> @__vselect_i32(<4 x i32> %val, <4 x i32> %1, <4 x i32> %mask) store <4 x i32> %newval, <4 x i32> * %0, align 4 ret void } define void @__masked_store_blend_64(<4 x i64>* nocapture %ptr, <4 x i64> %new, <4 x i32> %mask) nounwind alwaysinline { %oldValue = load <4 x i64>* %ptr, align 8 ; Do 4x64-bit blends by doing two <4 x i32> blends, where the <4 x i32> values ; are actually bitcast <2 x i64> values ; ; set up the first two 64-bit values %old01 = shufflevector <4 x i64> %oldValue, <4 x i64> undef, <2 x i32> %old01f = bitcast <2 x i64> %old01 to <4 x float> %new01 = shufflevector <4 x i64> %new, <4 x i64> undef, <2 x i32> %new01f = bitcast <2 x i64> %new01 to <4 x float> ; compute mask--note that the indices 0 and 1 are doubled-up %mask01 = shufflevector <4 x i32> %mask, <4 x i32> undef, <4 x i32> ; and blend the two of the values %result01f = call <4 x float> @__vselect_float(<4 x float> %old01f, <4 x float> %new01f, <4 x i32> %mask01) %result01 = bitcast <4 x float> %result01f to <2 x i64> ; and again %old23 = shufflevector <4 x i64> %oldValue, <4 x i64> undef, <2 x i32> %old23f = bitcast <2 x i64> %old23 to <4 x float> %new23 = shufflevector <4 x i64> %new, <4 x i64> undef, <2 x i32> %new23f = bitcast <2 x i64> %new23 to <4 x float> ; compute mask--note that the values 2 and 3 are doubled-up %mask23 = shufflevector <4 x i32> %mask, <4 x i32> undef, <4 x i32> ; and blend the two of the values %result23f = call <4 x float> @__vselect_float(<4 x float> %old23f, <4 x float> %new23f, <4 x i32> %mask23) %result23 = bitcast <4 x float> %result23f to <2 x i64> ; reconstruct the final <4 x i64> vector %final = shufflevector <2 x i64> %result01, <2 x i64> %result23, <4 x i32> store <4 x i64> %final, <4 x i64> * %ptr, align 8 ret void }