;; Copyright (c) 2010-2011, Intel Corporation ;; All rights reserved. ;; ;; Redistribution and use in source and binary forms, with or without ;; modification, are permitted provided that the following conditions are ;; met: ;; ;; * Redistributions of source code must retain the above copyright ;; notice, this list of conditions and the following disclaimer. ;; ;; * Redistributions in binary form must reproduce the above copyright ;; notice, this list of conditions and the following disclaimer in the ;; documentation and/or other materials provided with the distribution. ;; ;; * Neither the name of Intel Corporation nor the names of its ;; contributors may be used to endorse or promote products derived from ;; this software without specific prior written permission. ;; ;; ;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; *** Untested *** AVX target implementation. ;; ;; The LLVM AVX code generator is incomplete, so the ispc AVX target ;; hasn't yet been tested. There is therefore a higher-than-normal ;; chance that there are bugs in the code in this file. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Basic 16-wide definitions stdlib_core(16) packed_load_and_store(16) scans(16) int64minmax(16) include(`builtins-avx-common.ll') ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rcp declare <8 x float> @llvm.x86.avx.rcp.ps.256(<8 x float>) nounwind readnone define internal <16 x float> @__rcp_varying_float(<16 x float>) nounwind readonly alwaysinline { ; float iv = __rcp_v(v); ; return iv * (2. - v * iv); unary8to16(call, float, @llvm.x86.avx.rcp.ps.256, %0) ; do one N-R iteration %v_iv = fmul <16 x float> %0, %call %two_minus = fsub <16 x float> , %v_iv %iv_mul = fmul <16 x float> %call, %two_minus ret <16 x float> %iv_mul } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rounding floats declare <8 x float> @llvm.x86.avx.round.ps.256(<8 x float>, i32) nounwind readnone define internal <16 x float> @__round_varying_float(<16 x float>) nounwind readonly alwaysinline { ; roundps, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8 round8to16(%0, 8) } define internal <16 x float> @__floor_varying_float(<16 x float>) nounwind readonly alwaysinline { ; roundps, round down 0b01 | don't signal precision exceptions 0b1001 = 9 round8to16(%0, 9) } define internal <16 x float> @__ceil_varying_float(<16 x float>) nounwind readonly alwaysinline { ; roundps, round up 0b10 | don't signal precision exceptions 0b1010 = 10 round8to16(%0, 10) } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rounding doubles declare <4 x double> @llvm.x86.avx.round.pd.256(<4 x double>, i32) nounwind readnone define internal <16 x double> @__round_varying_double(<16 x double>) nounwind readonly alwaysinline { round4to16double(%0, 8) } define internal <16 x double> @__floor_varying_double(<16 x double>) nounwind readonly alwaysinline { round4to16double(%0, 9) } define internal <16 x double> @__ceil_varying_double(<16 x double>) nounwind readonly alwaysinline { round4to16double(%0, 10) } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rsqrt declare <8 x float> @llvm.x86.avx.rsqrt.ps.256(<8 x float>) nounwind readnone define internal <16 x float> @__rsqrt_varying_float(<16 x float> %v) nounwind readonly alwaysinline { ; float is = __rsqrt_v(v); unary8to16(is, float, @llvm.x86.avx.rsqrt.ps.256, %v) ; return 0.5 * is * (3. - (v * is) * is); %v_is = fmul <16 x float> %v, %is %v_is_is = fmul <16 x float> %v_is, %is %three_sub = fsub <16 x float> , %v_is_is %is_mul = fmul <16 x float> %is, %three_sub %half_scale = fmul <16 x float> , %is_mul ret <16 x float> %half_scale } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; sqrt declare <8 x float> @llvm.x86.avx.sqrt.ps.256(<8 x float>) nounwind readnone define internal <16 x float> @__sqrt_varying_float(<16 x float>) nounwind readonly alwaysinline { unary8to16(call, float, @llvm.x86.avx.sqrt.ps.256, %0) ret <16 x float> %call } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; svml ; FIXME: need either to wire these up to the 8-wide SVML entrypoints, ; or, use the macro to call the 4-wide ones 4x with our 16-wide ; vectors... declare <16 x float> @__svml_sin(<16 x float>) declare <16 x float> @__svml_cos(<16 x float>) declare void @__svml_sincos(<16 x float>, <16 x float> *, <16 x float> *) declare <16 x float> @__svml_tan(<16 x float>) declare <16 x float> @__svml_atan(<16 x float>) declare <16 x float> @__svml_atan2(<16 x float>, <16 x float>) declare <16 x float> @__svml_exp(<16 x float>) declare <16 x float> @__svml_log(<16 x float>) declare <16 x float> @__svml_pow(<16 x float>, <16 x float>) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; float min/max declare <8 x float> @llvm.x86.avx.max.ps.256(<8 x float>, <8 x float>) nounwind readnone declare <8 x float> @llvm.x86.avx.min.ps.256(<8 x float>, <8 x float>) nounwind readnone define internal <16 x float> @__max_varying_float(<16 x float>, <16 x float>) nounwind readonly alwaysinline { binary8to16(call, float, @llvm.x86.avx.max.ps.256, %0, %1) ret <16 x float> %call } define internal <16 x float> @__min_varying_float(<16 x float>, <16 x float>) nounwind readonly alwaysinline { binary8to16(call, float, @llvm.x86.avx.min.ps.256, %0, %1) ret <16 x float> %call } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; int min/max define internal <16 x i32> @__min_varying_int32(<16 x i32>, <16 x i32>) nounwind readonly alwaysinline { binary4to16(ret, i32, @llvm.x86.sse41.pminsd, %0, %1) ret <16 x i32> %ret } define internal <16 x i32> @__max_varying_int32(<16 x i32>, <16 x i32>) nounwind readonly alwaysinline { binary4to16(ret, i32, @llvm.x86.sse41.pmaxsd, %0, %1) ret <16 x i32> %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; unsigned int min/max define internal <16 x i32> @__min_varying_uint32(<16 x i32>, <16 x i32>) nounwind readonly alwaysinline { binary4to16(ret, i32, @llvm.x86.sse41.pminud, %0, %1) ret <16 x i32> %ret } define internal <16 x i32> @__max_varying_uint32(<16 x i32>, <16 x i32>) nounwind readonly alwaysinline { binary4to16(ret, i32, @llvm.x86.sse41.pmaxud, %0, %1) ret <16 x i32> %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; horizontal ops declare i32 @llvm.x86.avx.movmsk.ps.256(<8 x float>) nounwind readnone define internal i32 @__movmsk(<16 x i32>) nounwind readnone alwaysinline { %floatmask = bitcast <16 x i32> %0 to <16 x float> %mask0 = shufflevector <16 x float> %floatmask, <16 x float> undef, <8 x i32> %v0 = call i32 @llvm.x86.avx.movmsk.ps.256(<8 x float> %mask0) nounwind readnone %mask1 = shufflevector <16 x float> %floatmask, <16 x float> undef, <8 x i32> %v1 = call i32 @llvm.x86.avx.movmsk.ps.256(<8 x float> %mask1) nounwind readnone %v1shift = shl i32 %v1, 8 %v = or i32 %v1shift, %v0 ret i32 %v } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; horizontal float ops declare <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float>, <8 x float>) nounwind readnone define internal float @__reduce_add_float(<16 x float>) nounwind readonly alwaysinline { %va = shufflevector <16 x float> %0, <16 x float> undef, <8 x i32> %vb = shufflevector <16 x float> %0, <16 x float> undef, <8 x i32> %v1 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %va, <8 x float> %vb) %v2 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %v1, <8 x float> %v1) %v3 = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %v2, <8 x float> %v2) %scalar1 = extractelement <8 x float> %v2, i32 0 %scalar2 = extractelement <8 x float> %v2, i32 4 %sum = fadd float %scalar1, %scalar2 ret float %sum } define internal float @__reduce_min_float(<16 x float>) nounwind readnone alwaysinline { reduce16(float, @__min_varying_float, @__min_uniform_float) } define internal float @__reduce_max_float(<16 x float>) nounwind readnone alwaysinline { reduce16(float, @__max_varying_float, @__max_uniform_float) } reduce_equal(16) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; horizontal int32 ops define internal <16 x i32> @__add_varying_int32(<16 x i32>, <16 x i32>) nounwind readnone alwaysinline { %s = add <16 x i32> %0, %1 ret <16 x i32> %s } define internal i32 @__add_uniform_int32(i32, i32) nounwind readnone alwaysinline { %s = add i32 %0, %1 ret i32 %s } define internal i32 @__reduce_add_int32(<16 x i32>) nounwind readnone alwaysinline { reduce16(i32, @__add_varying_int32, @__add_uniform_int32) } define internal i32 @__reduce_min_int32(<16 x i32>) nounwind readnone alwaysinline { reduce16(i32, @__min_varying_int32, @__min_uniform_int32) } define internal i32 @__reduce_max_int32(<16 x i32>) nounwind readnone alwaysinline { reduce16(i32, @__max_varying_int32, @__max_uniform_int32) } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; horizontal uint32 ops define internal i32 @__reduce_add_uint32(<16 x i32> %v) nounwind readnone alwaysinline { %r = call i32 @__reduce_add_int32(<16 x i32> %v) ret i32 %r } define internal i32 @__reduce_min_uint32(<16 x i32>) nounwind readnone alwaysinline { reduce16(i32, @__min_varying_uint32, @__min_uniform_uint32) } define internal i32 @__reduce_max_uint32(<16 x i32>) nounwind readnone alwaysinline { reduce16(i32, @__max_varying_uint32, @__max_uniform_uint32) } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; horizontal double ops declare <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double>, <4 x double>) nounwind readnone define internal double @__reduce_add_double(<16 x double>) nounwind readonly alwaysinline { %va = shufflevector <16 x double> %0, <16 x double> undef, <4 x i32> %vb = shufflevector <16 x double> %0, <16 x double> undef, <4 x i32> %vc = shufflevector <16 x double> %0, <16 x double> undef, <4 x i32> %vd = shufflevector <16 x double> %0, <16 x double> undef, <4 x i32> %vab = fadd <4 x double> %va, %vb %vcd = fadd <4 x double> %vc, %vd %sum0 = call <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double> %vab, <4 x double> %vcd) %sum1 = call <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double> %sum0, <4 x double> %sum0) %sum = extractelement <4 x double> %sum1, i32 0 ret double %sum } define internal double @__reduce_min_double(<16 x double>) nounwind readnone alwaysinline { reduce16(double, @__min_varying_double, @__min_uniform_double) } define internal double @__reduce_max_double(<16 x double>) nounwind readnone alwaysinline { reduce16(double, @__max_varying_double, @__max_uniform_double) } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; horizontal int64 ops define internal <16 x i64> @__add_varying_int64(<16 x i64>, <16 x i64>) nounwind readnone alwaysinline { %s = add <16 x i64> %0, %1 ret <16 x i64> %s } define internal i64 @__add_uniform_int64(i64, i64) nounwind readnone alwaysinline { %s = add i64 %0, %1 ret i64 %s } define internal i64 @__reduce_add_int64(<16 x i64>) nounwind readnone alwaysinline { reduce16(i64, @__add_varying_int64, @__add_uniform_int64) } define internal i64 @__reduce_min_int64(<16 x i64>) nounwind readnone alwaysinline { reduce16(i64, @__min_varying_int64, @__min_uniform_int64) } define internal i64 @__reduce_max_int64(<16 x i64>) nounwind readnone alwaysinline { reduce16(i64, @__max_varying_int64, @__max_uniform_int64) } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; horizontal uint64 ops define internal i64 @__reduce_add_uint64(<16 x i64> %v) nounwind readnone alwaysinline { %r = call i64 @__reduce_add_int64(<16 x i64> %v) ret i64 %r } define internal i64 @__reduce_min_uint64(<16 x i64>) nounwind readnone alwaysinline { reduce16(i64, @__min_varying_uint64, @__min_uniform_uint64) } define internal i64 @__reduce_max_uint64(<16 x i64>) nounwind readnone alwaysinline { reduce16(i64, @__max_varying_uint64, @__max_uniform_uint64) } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; unaligned loads/loads+broadcasts load_and_broadcast(16, i8, 8) load_and_broadcast(16, i16, 16) load_and_broadcast(16, i32, 32) load_and_broadcast(16, i64, 64) ; no masked load instruction for i8 and i16 types?? load_masked(16, i8, 8, 1) load_masked(16, i16, 16, 2) declare <8 x float> @llvm.x86.avx.maskload.ps.256(i8 *, <8 x float> %mask) declare <4 x double> @llvm.x86.avx.maskload.pd.256(i8 *, <4 x double> %mask) define <16 x i32> @__load_masked_32(i8 *, <16 x i32> %mask) nounwind alwaysinline { %floatmask = bitcast <16 x i32> %mask to <16 x float> %mask0 = shufflevector <16 x float> %floatmask, <16 x float> undef, <8 x i32> %val0 = call <8 x float> @llvm.x86.avx.maskload.ps.256(i8 * %0, <8 x float> %mask0) %mask1 = shufflevector <16 x float> %floatmask, <16 x float> undef, <8 x i32> %ptr1 = getelementptr i8 * %0, i32 32 ;; 8x4 bytes = 32 %val1 = call <8 x float> @llvm.x86.avx.maskload.ps.256(i8 * %ptr1, <8 x float> %mask1) %retval = shufflevector <8 x float> %val0, <8 x float> %val1, <16 x i32> %reti32 = bitcast <16 x float> %retval to <16 x i32> ret <16 x i32> %reti32 } define <16 x i64> @__load_masked_64(i8 *, <16 x i32> %mask) nounwind alwaysinline { ; double up masks, bitcast to doubles %mask0 = shufflevector <16 x i32> %mask, <16 x i32> undef, <8 x i32> %mask1 = shufflevector <16 x i32> %mask, <16 x i32> undef, <8 x i32> %mask2 = shufflevector <16 x i32> %mask, <16 x i32> undef, <8 x i32> %mask3 = shufflevector <16 x i32> %mask, <16 x i32> undef, <8 x i32> %mask0d = bitcast <8 x i32> %mask0 to <4 x double> %mask1d = bitcast <8 x i32> %mask1 to <4 x double> %mask2d = bitcast <8 x i32> %mask2 to <4 x double> %mask3d = bitcast <8 x i32> %mask3 to <4 x double> %val0d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %0, <4 x double> %mask0d) %ptr1 = getelementptr i8 * %0, i32 32 %val1d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %ptr1, <4 x double> %mask1d) %ptr2 = getelementptr i8 * %0, i32 64 %val2d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %ptr2, <4 x double> %mask2d) %ptr3 = getelementptr i8 * %0, i32 96 %val3d = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8 * %ptr3, <4 x double> %mask3d) %val01 = shufflevector <4 x double> %val0d, <4 x double> %val1d, <8 x i32> %val23 = shufflevector <4 x double> %val2d, <4 x double> %val3d, <8 x i32> %val0123 = shufflevector <8 x double> %val01, <8 x double> %val23, <16 x i32> %val = bitcast <16 x double> %val0123 to <16 x i64> ret <16 x i64> %val } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; masked store ; FIXME: there is no AVX instruction for these, but we could be clever ; by packing the bits down and setting the last 3/4 or half, respectively, ; of the mask to zero... Not sure if this would be a win in the end gen_masked_store(16, i8, 8) gen_masked_store(16, i16, 16) ; note that mask is the 2nd parameter, not the 3rd one!! declare void @llvm.x86.avx.maskstore.ps.256(i8 *, <8 x float>, <8 x float>) declare void @llvm.x86.avx.maskstore.pd.256(i8 *, <4 x double>, <4 x double>) define void @__masked_store_32(<16 x i32>* nocapture, <16 x i32>, <16 x i32>) nounwind alwaysinline { %ptr = bitcast <16 x i32> * %0 to i8 * %val = bitcast <16 x i32> %1 to <16 x float> %mask = bitcast <16 x i32> %2 to <16 x float> %val0 = shufflevector <16 x float> %val, <16 x float> undef, <8 x i32> %val1 = shufflevector <16 x float> %val, <16 x float> undef, <8 x i32> %mask0 = shufflevector <16 x float> %mask, <16 x float> undef, <8 x i32> %mask1 = shufflevector <16 x float> %mask, <16 x float> undef, <8 x i32> call void @llvm.x86.avx.maskstore.ps.256(i8 * %ptr, <8 x float> %mask0, <8 x float> %val0) %ptr1 = getelementptr i8 * %ptr, i32 32 call void @llvm.x86.avx.maskstore.ps.256(i8 * %ptr1, <8 x float> %mask1, <8 x float> %val1) ret void } define void @__masked_store_64(<16 x i64>* nocapture, <16 x i64>, <16 x i32> %mask) nounwind alwaysinline { %ptr = bitcast <16 x i64> * %0 to i8 * %val = bitcast <16 x i64> %1 to <16 x double> ; double up masks, bitcast to doubles %mask0 = shufflevector <16 x i32> %mask, <16 x i32> undef, <8 x i32> %mask1 = shufflevector <16 x i32> %mask, <16 x i32> undef, <8 x i32> %mask2 = shufflevector <16 x i32> %mask, <16 x i32> undef, <8 x i32> %mask3 = shufflevector <16 x i32> %mask, <16 x i32> undef, <8 x i32> %mask0d = bitcast <8 x i32> %mask0 to <4 x double> %mask1d = bitcast <8 x i32> %mask1 to <4 x double> %mask2d = bitcast <8 x i32> %mask2 to <4 x double> %mask3d = bitcast <8 x i32> %mask3 to <4 x double> %val0 = shufflevector <16 x double> %val, <16 x double> undef, <4 x i32> %val1 = shufflevector <16 x double> %val, <16 x double> undef, <4 x i32> %val2 = shufflevector <16 x double> %val, <16 x double> undef, <4 x i32> %val3 = shufflevector <16 x double> %val, <16 x double> undef, <4 x i32> call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr, <4 x double> %mask0d, <4 x double> %val0) %ptr1 = getelementptr i8 * %ptr, i32 32 call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr1, <4 x double> %mask1d, <4 x double> %val1) %ptr2 = getelementptr i8 * %ptr, i32 64 call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr2, <4 x double> %mask2d, <4 x double> %val2) %ptr3 = getelementptr i8 * %ptr, i32 96 call void @llvm.x86.avx.maskstore.pd.256(i8 * %ptr3, <4 x double> %mask3d, <4 x double> %val3) ret void } ;; FIXME: various code elsewhere in the builtins implementations makes ;; calls to the 32/64 bit versions of these, basically assuming that doing ;; so is faster than doing a full call to an actual masked store, which ;; isn't likely to be the case on AVX. So here we provide those functions ;; but then don't actually do what the caller asked for... declare void @llvm.trap() define void @__masked_store_blend_8(<8 x i8>* nocapture, <8 x i8>, <8 x i32>) nounwind alwaysinline { call void @llvm.trap() ret void } define void @__masked_store_blend_16(<8 x i16>* nocapture, <8 x i16>, <8 x i32>) nounwind alwaysinline { call void @llvm.trap() ret void } define void @__masked_store_blend_32(<16 x i32>* nocapture, <16 x i32>, <16 x i32>) nounwind alwaysinline { call void @__masked_store_32(<16 x i32> * %0, <16 x i32> %1, <16 x i32> %2) ret void } define void @__masked_store_blend_64(<16 x i64>* nocapture, <16 x i64>, <16 x i32>) nounwind alwaysinline { call void @__masked_store_64(<16 x i64> * %0, <16 x i64> %1, <16 x i32> %2) ret void } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; gather/scatter gen_gather(16, i8) gen_gather(16, i16) gen_gather(16, i32) gen_gather(16, i64) gen_scatter(16, i8) gen_scatter(16, i16) gen_scatter(16, i32) gen_scatter(16, i64) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; double precision sqrt declare <4 x double> @llvm.x86.avx.sqrt.pd.256(<4 x double>) nounwind readnone define internal <16 x double> @__sqrt_varying_double(<16 x double>) nounwind alwaysinline { unary4to16(ret, double, @llvm.x86.avx.sqrt.pd.256, %0) ret <16 x double> %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; double precision min/max declare <4 x double> @llvm.x86.avx.max.pd.256(<4 x double>, <4 x double>) nounwind readnone declare <4 x double> @llvm.x86.avx.min.pd.256(<4 x double>, <4 x double>) nounwind readnone define internal <16 x double> @__min_varying_double(<16 x double>, <16 x double>) nounwind readnone alwaysinline { binary4to16(ret, double, @llvm.x86.avx.min.pd.256, %0, %1) ret <16 x double> %ret } define internal <16 x double> @__max_varying_double(<16 x double>, <16 x double>) nounwind readnone alwaysinline { binary4to16(ret, double, @llvm.x86.avx.max.pd.256, %0, %1) ret <16 x double> %ret }